一种基于状态聚类的发电系统可靠性快速评估方法

文档序号:10687763阅读:205来源:国知局
一种基于状态聚类的发电系统可靠性快速评估方法
【专利摘要】本发明公开提供一种基于状态聚类的发电系统可靠性快速评估方法,属于电力系统可靠性评估技术领域,主要采用非序贯蒙特卡罗抽样及状态聚类的方法进行发电系统的可靠性评估,通过提出系统常规机组运行(故障)状态的非序贯蒙特卡罗抽样方法,计及了发电机组强迫停运率,不仅替代了对系统增加备用容量以保证系统可靠性的常规方法,而且充分计及了系统内所有机组的运行随机性与不确定性,建立了系统可用发电容量概率模型,通过对抽样获得的可用发电容量样本聚类成典型可用发电容量场景,减少了可靠性计算的工作量,使可靠性评估速度得到大幅提高,达到大规模电力系统可靠性快速评估的目的。
【专利说明】
一种基于状态聚类的发电系统可靠性快速评估方法
技术领域
[0001] 本发明涉及电气工程技术领域,更具体地来说它是一种基于状态聚类的发电系统 可靠性快速评估方法。
【背景技术】
[0002] 电力系统可靠性评估是指在计入各种不确定性因素的情况下对系统的充裕度或 安全性进行分析计算,包含元件停运模型、系统状态选择、系统状态评估和系统指标计算等 方面的内容。
[0003] 随着电力系统的规模日益增大,电力系统内发电机组数量大规模增加,对发电系 统的可靠性进行准确评估势必增大计算工作量,增加了计算时间。在电力系统的运行过程 中,负荷水平、机组开停机与发电出力等都是实时变化的,在负荷加重、大容量机组等发生 故障退出运行时,系统的可靠性水平会大幅降低,需及时采取措施预防大停电事故的发生。 因此,如何能够快速准确地对系统的可靠性进行评估是亟待研究的问题。
[0004] 目前的电力系统可靠性评估方法主要分为解析法和模拟法,其中,解析法在系统 规模较大时,可能会出现"维数灾"的问题,故一般适合应用于规模较小的系统;以蒙特卡罗 为代表的模拟法在电力系统的可靠性评估中应用较为广泛。在同样的精度要求下,非序贯 蒙特卡罗模拟法的计算时间远小于序贯蒙特卡罗法的计算时间,在不需要计算频率和持续 时间指标的场合,优先采用非序贯蒙特卡罗法进行电力系统可靠性的计算,然而,由于蒙特 卡罗方法在计算精度和计算时间之间的矛盾,要取得令人满意的计算精度,往往耗费大量 的计算时间。目前通常采用方差减小技术,如控制变量法、等分散抽样法等,以加快蒙特卡 罗模拟的收敛速度,提高计算效率,但这些技术仅在保证一定的计算精度的条件下减少抽 样次数,不能达到可靠性的快速评估。

【发明内容】

[0005] 本发明的目的为了克服上述【背景技术】的不足之处,而提供一种基于状态聚类的发 电系统可靠性快速评估方法,基于非序贯蒙特卡罗模拟法对系统内机组的运行状态抽样, 通过计及系统机组的强迫停运率的方法,替代了对系统增加备用容量以保证系统可靠性的 常规方法,并对抽样获得的系统可用发电容量结果进行聚类,建立系统的可用发电容量概 率模型,不仅在保证计算结果准确性的条件下提高了系统可靠性指标的计算效率,且能够 应用于快速评估发电系统的可靠性,解决了现有技术中未有能够快速评估发电系统可靠性 的问题。
[0006] 为了实现上述目的,本发明的技术方案是这样的:一种基于状态聚类的发电系统 可靠性快速评估方法,包括以下步骤:
[0007] 步骤1,输入参数,输入系统机组参数(机组类型、机组容量及机组强迫停运率等)、 系统负荷数据;
[0008] 步骤2,采用蒙特卡罗非序贯抽样法对系统内机组的运行(故障)状态进行抽样,生 成Ns个系统状态,并计算每个系统状态下的系统可用发电容量;
[0009]步骤3,建立系统可用发电容量概率模型,对抽样生成的系统状态进行聚类,聚类 算法采用K-means聚类算法,获得系统的典型可用发电容量场景及每个典型可用发电容量 场景对应的概率;
[0010]步骤4,对聚类获得的系统每个可用发电容量典型场景依次进行可靠性计算,结合 每个典型可用发电容量场景相应的概率,计算系统的概率可靠性指标,主要计算的系统可 靠性指标包括停电功率期望值(Exception Power Not Supply ,EPNS)、电力不足概率(Loss of Load Probability,L0LP)〇
[0011] 在上述技术方案中,步骤2的具体步骤如下:
[0012] 步骤2-1,根据输入参数确定系统内所有常规机组的台数为NC,并确定抽样样本数 为Ns;
[0013] 步骤2-2,模拟产生Ns组Nc个服从[0,1]均匀分布的随机数x^,对于第i组中第j个 随机数XU,将其与第j台机组的强迫停运率的数值进行比较。若XU大于机组的强迫停运率 FORj,则第i组状态中第j台机组的状态为开机,否则第i组状态中第j台机组的状态为停机, 即,
表示处于运行状态
[0014] 表示处于故障状态 (1)
[00?5 ]则具有Ng台常规机组的系统的状态为:
[0016]

[0017] 步骤2-3,根据每组状态下的所有机组的开停机状态,按照式(3)计算第i组抽样状 态下的畜缔可爾穷長'为Pc」_
[0018] ⑶
[0019] 故所有抽样状态下的系统可用发电容量可表示为,
[0020]
(4)
[0021] 在上述技术方案中,步骤3的具体步骤如下:
[0022] 步骤3-1,在对系统内的所有发电机组的可用发电容量进行聚类时,聚类数的大小 对最终的计算结果产生很大的影响。常规的聚类算法中,对聚类数的选取具有盲目性和随 意性,故会对最终结果产生较大影响。因此本步骤中采用斯特杰斯(Sturges)经验公式确定 最终可用发电容量的聚类数为Nz,计算公式如下式所示,计算时对结果进行四舍五入取整 数,
[0023] (5)
[0024] 步骤3-2,采用K-means聚类算法,获得系统内常规机组的典型可用发电容量概率 模型GT。其中第i个可用发电容量场景为G T,i,该场景对应出现的概率为p(GT>1),如式所示,
[0025]
(6)
[0026] 在上述技术方案中,步骤4的具体步骤如下:
[0027] 步骤4-1,对每类系统的可用发电容量GT, i,对应系统负荷曲线Pl的第t小时的负荷 值分别判断每小时的系统电力平衡情况,并计算电力不足值DNSt。若该时段负荷值与系统 可用容量之差小于等于零,则系统供电充裕,不存在缺电的情况;若该时段负荷值与系统可 用容量之差大于零,则存在系统供电不足的情况。
[0028] (7)
[0029]步骤4-2,计算GT,i下的系统可靠性指标L0LPi、EPNSi,计算公式如下所示,
[0030] ΓοΝ (8)
[0031] (9)
[0032] 步骤4-3,将每类可用发电容量场景下计算出的系统可靠性指标汇总,结合每个可 用发电容量场景的概率,加权计算即可得出,
[0033] (10)
[0034] (11)
[0035] 本发明的有益效果是:从发电系统的角度出发,在对机组运行状态进行蒙特卡罗 非序贯抽样的基础上,提出了系统可用发电容量概率模型,即通过对抽样获得的系统可用 发电容量进行聚类,获得典型的可用发电容量场景来计算系统的可靠性,以大幅减小大规 模电力系统的计算工作量,目前尚未有文献将基于状态聚类的方法应用到可靠性快速评估 方法的研究中,具体来说:
[0036] -是通过提出系统常规机组运行(故障)状态的非序贯蒙特卡罗抽样方法,计及了 发电机组强迫停运率,不仅替代了对系统增加备用容量以保证系统可靠性的常规方法,而 且充分计及了系统内所有机组的运行随机性与不确定性;二是通过提出状态聚类的方法, 建立了系统可用发电容量概率模型,通过对抽样获得的可用发电容量样本聚类成典型可用 发电容量场景,减少了可靠性计算的工作量,使可靠性评估速度得到大幅提高,达到大规模 电力系统可靠性快速评估的目的。
【附图说明】
[0037] 图1为本发明提出的基于状态聚类的发电系统可靠性快速评估方法流程图。
[0038] 图2为可用发电容量概率模型建立方法流程图。
【具体实施方式】
[0039] 下面结合附图详细说明本发明实施情况,但它们并不构成对本发明的限定,仅作 举例而已,同时通过说明本发明的优点将变得更加清楚和容易理解。
[0040] -种基于状态聚类的发电系统可靠性快速评估方法,包含步骤:输入系统参数及 负荷数据;对系统发电机组运行(故障)状态进行蒙特卡罗抽样;建立系统可用发电容量概 率模型;加权计算系统可靠性指标。其中,计及了系统发电机组强迫停运率,达到了充分考 虑系统机组运行的随机性的目的;且提出了状态聚类的方法,建立系统可用发电容量典型 场景,减小了计算工作量。
[0041] 如图1所示,基于状态聚类的发电系统可靠性快速评估方法,包含步骤如下:
[0042] 步骤1,输入参数:输入系统机组参数(机组类型、机组容量及机组强迫停运率等)、 系统负荷数据。
[0043]步骤2,采用蒙特卡罗非序贯抽样法对系统内所有机组的开停机状态进行抽样,并 计算获得系统所有抽样样本下的系统可用发电容量Pc。步骤2的具体步骤如下:
[0044]步骤2-1,根据输入参数确定系统内所有常规机组的台数为NC,并确定抽样样本数 为Ns;
[0045]步骤2-2,模拟产生Ns组Ng个服从[0,1]均匀分布的随机数X1^对于第i组中第j个 随机数XU,将其与第j台机组的强迫停运率的数值进行比较。若XU大于机组的强迫停运率 FORj,则第i组状态中第j台机组的状态为开机,否则第i组状态中第j台机组的状态为停机, 即,
表示处于运行状态 [0046] 表示处于故障状态
[0047 ]则具有Ng台常规机组的系统的状态为:
[0048]
(2)
[0049] 步骤2-3,根据每组状态下的所有机组的开停机状态,按照式(3)计算第i组抽样状 态下的系统可用容量为Pc, i,
[0050] (3)
[0051] 故所有抽样状态下的系统可用发电容量可表示为,
[0052]
(4)
[0053] 其中,采用蒙特卡罗非序贯抽样法对系统内机组的开停机状态进行抽样的具体做 法是:模拟产生Ns组Ng个服从[0,1]均匀分布的随机数X 1^对于第i组中第j个随机数^,」,将 其与第j台机组的强迫停运率的数值进行比较。若XU大于机组的强迫停运率FOR j,则第i组 状态中第j台机组的状态为开机,否则第i组状态中第j台机组的状态为停机。由此生成系统 状态S并计算所有抽样样本下的系统可用发电容量Pc。
[0054] 步骤3,建立系统可用发电容量概率模型。如图2所示,对抽样生成的系统状态进行 典型发电场景聚类,获得系统的典型可用发电容量场景及每个典型可用发电容量场景对应 的概率。
[0055] 其中,对抽样生成的系统状态进行典型发电场景的聚类方法的具体做法是:根据 斯特杰斯(Sturges)经验公式(式5)计算可用发电容量的聚类数Nz。 _6]
(5)
[0057] 采用K-means聚类算法获得系统内常规机组的典型可用发电容量概率模型,其中 第i个典型可用发电容量场景为GT, i,其对应出现的概率为p(GT,i)。
[0058]
(6)
[0059] 步骤4,对每类系统的可用发电容量GT, i,对应系统负荷曲线Pl的第t小时的负荷值 分别判断每小时的系统电力平衡情况,并计算电力不足值DNSt。若该时段负荷值与系统可 用容量之差小于等于零,则系统供电充裕,不存在缺电的情况;若该时段负荷值与系统可用 容量之差大于零,则存在系统供电不足的情况。
[0060] (7)
[0061 ]计算GT,i下的系统可靠性指标L0LPi、EPNSi,计算公式如下所示,
_2] ⑶
[0_ m
[0064] 将每类可用发电容量场景下计算出的系统可靠性指标汇总,结合每个可用发电容 量场景的概率,加权计算即可得出,
[0065] (10)
[0066] (11)
[0067]以IEEE-RTS 79系统为例,说明基于状态聚类的发电系统可靠性快速评估方法。系 统内包含32台发电机组,系统负荷包含8736小时个负荷点。
[0068]采用蒙特卡罗非序贯抽样法对系统内的发电机组的运行状态进行抽样,设定抽样 次数为10万次,通过式(5)计算得到本发明的快速评估算法中的最优聚类次数为18类。 [0069]为验证计算结果准确性,对实例系统进行随机生产模拟的计算,计算获得实例系 统的可靠性指标,与本发明提出的可靠性快速评估方法的所获得可靠性指标相比较,计算 结果如下表所示。
[0070] 表1可靠性计算结果表
[0072]通过上表可以看出,与随机生产模拟的可靠性计算结果相比,采用蒙特卡罗模拟 法计算得到的可靠性指标结果与其基本相同。采用本发明提出的快速评估算法获得的LOLP 指标与随机生产模拟计算结果相差为0.98%,EPNS指标与随机生产模拟计算结果相差 0.49%,计算误差均控制在1%以内,同时计算时间大大缩短,可以验证本发明提出的快速 评估算法应用在更大规模电力系统中,能够在保证计算结果准确性的条件下大幅减少计算 工作量,提高计算效率。
[0073]未详细说明的均为现有技术。
【主权项】
1. 一种基于状态聚类的发电系统可靠性快速评估方法,其特征在于,包括以下步骤: 步骤1,输入参数,输入系统机组参数、系统负荷数据; 步骤2,采用蒙特卡罗非序贯抽样法对系统内机组的运行状态进行抽样,生成Ns个系统 状态,并计算每个系统状态下的系统可用发电容量; 步骤3,建立系统可用发电容量概率模型,对抽样生成的系统状态进行聚类,聚类算法 采用K-means聚类算法,获得系统的典型可用发电容量场景及每个典型可用发电容量场景 对应的概率; 步骤4,对聚类获得的系统每个可用发电容量典型场景依次进行可靠性计算,结合每个 典型可用发电容量场景相应的概率,计算系统的概率可靠性指标,主要计算的系统可靠性 指标包括停电功率期望值、电力不足概率。2. 根据权利要求1所述的基于状态聚类的发电系统可靠性快速评估方法,其特征在于, 步骤2的具体步骤如下: 步骤2-1,根据输入参数确定系统内所有常规机组的台数为Ng,并确定抽样样本数为Ns; 步骤2-2,模拟产生Ns组Ng个服从[0,1]均匀分布的随机数Xlj,对于第i组中第j个随机 数XI」,将其与第j台机组的强迫停运率的数值进行比较,若大于机组的强迫停运率 FORj,则第i组状态中第j台机组的状态为开机,否则第i组状态中第j台机组的状态为停机, 即,则具有Ng台常规机组的系统的状态为: $ - 1(?'气2 ,…,A 广气Λ。A 1' ''J ' …' C'Vv1' [''S ^ ^ (2 ): 步骤2-3,根据每组状态下的所有机组的开停机状态,按照式(3)计算第i组抽样状态下 的系统可用容量为Pc,i,故所有抽样状态下的系统可用发电容量可表示为, _ 丨ι?η'·…仏?…,'(;.'si (4) 〇3. 根据权利要求1所述的基于状态聚类的发电系统可靠性快速评估方法,其特征在于, 步骤3的具体步骤如下: 步骤3-1,在对系统内的所有发电机组的可用发电容量进行聚类时,聚类数的大小对最 终的计算结果产生很大的影响,常规的聚类算法中,对聚类数的选取具有盲目性和随意性, 故会对最终结果产生较大影响,因此本步骤中采用斯特杰斯(Sturges)经验公式确定最终 可用发电容量的聚类数为Nz,计算公式如下式所示,计算时对结果进行四舍五入取整数,步骤3-2,采用K-means聚类算法,获得系统内常规机组的典型可用发电容量概率模型 Gt,其中第i个可用发电容量场景为GT,i,该场景对应出现的概率为p(GT,i),如式所示,4.根据权利要求1要求所述的基于状态聚类的发电系统可靠性快速评估方法,其特征 在于,步骤4的具体步骤如下:步骤4-1,对每类系统的可用发电容量Gt,:l,对应系统负荷曲线Pl的第t小时的负荷值分 别判断每小时的系统电力平衡情况,并计算电力不足值DNSt,若该时段负荷值与系统可用 容量之差小于等于零,则系统供电充裕,不存在缺电的情况;若该时段负荷值与系统可用容 量之差大于零,则存在系统供电不足的情况,步骤4-2,计算GT,i下的系统可靠性指标LOLPi、EPNSi,计算公式如下所示,步骤4-3,将每类可用发电容量场景下计算出的系统可靠性指标汇总,结合每个可用发 电容量场景的概率,加权计算即可得出,
【文档编号】G06Q10/06GK106056305SQ201610413919
【公开日】2016年10月26日
【申请日】2016年6月14日
【发明人】钟胜, 李泰军, 田昕, 吴耀武, 娄素华, 肖汉, 李彬
【申请人】中国电力工程顾问集团中南电力设计院有限公司, 华中科技大学, 中国电力工程顾问集团西南电力设计院有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1