本发明涉及山地灾害领域,特别涉及一种基于雨量监测的泥石流预警方法。
背景技术:
泥石流是指在山区或沟谷深壑等地势险峻的地区,由于地质特殊,多是含有砂石且松软的土质山体在经过大雨冲刷后经饱和稀释后形成的洪流,他的面积、体积和流量都很大。泥石流流动过程有的会是几个小时,短的只有几分钟,是一种广泛分布于世界各国一些具有特殊地形、地貌状况地区的自然灾害。泥石流的爆发一般都较为突然,来势都比较凶猛,因其高速前进,具有强大的能量,因而破坏性极大。
泥石流的发生一般需要三个条件:充足的固体物质、陡峭的沟床坡度以及大量高强度的降雨,而降雨是其中最活跃的因素。国内外的研究表明,降水量、降水强度及降水持续时间等因子与泥石流的活动有着极其密切的关系。因此,研究降水量与泥石流爆发之间的关系是对泥石流预警的至关重要的一点。雨量这一数据需要长时间对泥石流易发地雨量进行统计,通过大量数据计算得出该地区的泥石流预警的雨量阈值。但在实际中,绝大多数的泥石流流域没有长期的检测系统,非常缺乏雨量与灾害资料的长期观测数据。因此对这一类地区泥石流发生的预警工作由于基础数据的缺乏而无法适用通行的方法,其泥石流预警的雨量阈值计算也没有可以适用的方法。
技术实现要素:
本发明为了弥补现有技术的缺陷,提供了一种对缺乏降雨与灾害资料的地区进行基于雨量监测的泥石流预警方法。
本发明是通过如下技术方案实现的:
一种基于雨量监测的泥石流预警方法,其特征是,包括如下步骤:
第一步:对需要泥石流监测预警的地区进行地质勘查,确定泥石流可能发生的位置,根据所确定的泥石流易发地选定监测设备的位置,制定具体的监测方法,且安装多台雨量监测站;
第二步:进行设备的安装,并进行实时监测;进行数据传输并进行监测数据的收集;
第三步:经过试验对比,确定泥石流降雨临界值,根据监测到的降雨实时数据,以及泥石流发生的次数,开展数据统计分析,根据分析后的数据建立泥石流发生的概率模型;
第四步:对现场实测雨量进行实时监测,并与相应数据作对比,进行泥石流预警分级,对泥石流易发地降雨开展实时监测预警。
开展泥石流流域内部雨量的实时监测,通过gprs无线传输,将监测数据实时传送并储存到控制中心。
确定泥石流降雨临界值,采用如下方法,(1)蓄满产流原理耦合高桥临界水深方程计算方法确定;(2)泥石流启动物理模型试验确定。
所述第四步中泥石流预警分级指标,具体为:中雨10~25mm,大雨25~50mm,暴雨50~100mm和大暴雨大于100mm四个级别。
本发明的有益效果是:
采用此方法可对降雨过程泥石流进行预报预警,同时考虑到由于泥石流在发生发展的不确定性,常常在预报中会发生错、漏报和误报等现象,本发明根据泥石流发生条件概率,承认了泥石流发生发展的不确定性,同时给出在不同降雨条件下发生泥石流的具体概率大小,可谓预报和决策提供技术支持,因此相比单一降雨指标方法具备更高的可靠性与准确性。。
附图说明
下面结合附图对本发明作进一步的说明:
图1为本发明的具体实施流程图。
具体实施方式
附图为本发明的具体实施例。如图1所示,一种基于雨量监测的泥石流预警方法,其特征是,包括如下步骤:
第一步:对需要泥石流监测预警的地区进行地质勘查,确定泥石流可能发生的位置,根据所确定的泥石流易发地选定监测设备的位置,制定具体的监测方法,且安装多台雨量监测站;
第二步:进行设备的安装,并进行实时监测;进行数据传输并进行监测数据的收集;
第三步:经过试验对比,确定泥石流降雨临界值,根据监测到的降雨实时数据,以及泥石流发生的次数,开展数据统计分析,根据分析后的数据建立泥石流发生的概率模型;
第四步:对现场实测雨量进行实时监测,并与相应数据作对比,进行泥石流预警分级,对泥石流易发地降雨开展实时监测预警。
进一步的,开展泥石流流域内部雨量的实时监测,通过gprs无线传输,将监测数据实时传送并储存到控制中心。
进一步的,确定泥石流降雨临界值,采用如下方法,(1)蓄满产流原理耦合高桥临界水深方程计算方法确定;(2)泥石流启动物理模型试验确定。
进一步的,所述第四步中泥石流预警分级指标,具体为:中雨10~25mm,大雨25~50mm,暴雨50~100mm和大暴雨大于100mm四个级别。
实施例一
用本发明提供的方法,对四川某发生过泥石流地区进行了基于雨量监测的泥石流预警方法的实例分析。
步骤一:实地勘察了该地,该地为典型的中山峡谷地貌,泥石流流域面积2.0km2,主沟长度1.8km,全流域分为清水区、形成区、流通区和堆积区,根据现场地址勘察确定了泥石流灾害范围,开展现场观测,选定雨量监测站等设备的位置,制定监测方案。
步骤二:根据国家标准,在泥石流形成区安装一个雨量观测站,监测数据无线传输和存储到控制中心;
步骤三:根据前面提出的三种方法分别确定你是路降雨临界值,然后再确定泥石流的条件概率。
除说明书所述技术特征外,其余技术特征均为本领域技术人员已知技术。