磁记录介质和磁存储单元的制作方法

文档序号:6775643阅读:201来源:国知局
专利名称:磁记录介质和磁存储单元的制作方法
技术领域
本发明总体上涉及适合于进行高密度记录的磁记录介质和磁存储单元,更具体地说,涉及一种具有由多个磁性层形成的记录层的磁记录介质,并涉及包括该磁记录介质的磁存储单元。
背景技术
磁记录介质(近年来其记录密度已快速增大)具有100%的年增长率。预期纵向记录中的表面记录密度(这是当前的主流记录方法)的极限为250Gbit/平方英寸。在进行纵向记录的磁记录介质中,试图降低介质噪声,以确保高密度记录中的信噪比(S/N比)。为了降低介质噪声,将形成磁化区的磁性粒子的尺寸减小,从而减小磁化区之间的边界(即,磁过渡区)的曲折。然而,使磁性粒子小型化会减小其体积,由此导致剩余磁化热稳定性问题,即,剩余磁化由于热涨落而减小。
为了实现高密度记录,已经提出了以降低介质噪声并同时确保剩余磁化的热稳定性为目标的磁记录介质(例如,见美国专利申请公报No.US2002/0098390的图7)。根据图1所示的磁记录介质100,记录层101具有在基板(未图示出)上依次淀积有以下层的结构由第一磁性层103与第二磁性层105通过非磁性耦合层104反铁磁地交换耦合而形成的交换耦合层102;间隔物层106;以及第三磁性层108。磁记录介质100通过包含交换耦合层102来增强剩余磁化的热稳定性。
在进行记录时,通过来自布置在纸面上位于第三磁性层108的上方的记录头(未图示出)的记录磁场,将信息记录在图1所示的磁记录介质100中。第二磁性层105距记录头的磁极比第三磁性层108距记录头的磁极更远。因此,施加于第二磁性层105的记录磁场的强度相对较低。此外,由于第二磁性层105与第三磁性层108不是交换耦合的,因此交换耦合磁场不会从第三磁性层108作用于第二磁性层105。这使得难以出现第二磁性层105的磁化反转,从而导致使诸如改写特性的写性能劣化的问题。改写特性的劣化导致SN比的劣化,因而使得难以实现更高的记录密度。
另一方面,可以通过减小第二磁性层105的各向异性磁场来改进改写特性。然而,各向异性磁场的减小会降低剩余磁化的热稳定性。

发明内容
本发明的实施例可以解决或减少以上多个问题中的一个或更多个。
根据本发明的一个实施例,提供了一种消除了上述多个问题的磁记录介质,和一种包括该磁记录介质的磁存储单元。
根据本发明的一个实施例,提供了一种磁记录介质和包括该磁记录介质的磁存储单元,该磁记录介质在确保了剩余磁化的热稳定性的同时具有良好的改写特性,并且能够实现高记录密度。
根据本发明的一个方面,提供了一种磁记录介质,该磁记录介质包括基板;和按下述次序叠置在该基板上的底层、第一磁性层、非磁性耦合层、第二磁性层、第三磁性层、非磁性分隔层以及第四磁性层,其中所述第一磁性层与所述第二磁性层是反铁磁地交换耦合的,所述第二磁性层与所述第三磁性层是铁磁地交换耦合的,并且所述第三磁性层具有比所述第二磁性层的各向异性磁场更小的各向异性磁场,并具有比所述第二磁性层的饱和磁化更大的饱和磁化。
根据本发明的上述磁记录介质,将具有比所述第二磁性层更小的各向异性磁场和更大的饱和磁化的所述第三磁性层设置在所述第二磁性层的记录元件侧(与所述基板相对的侧)。由于所述第三磁性层具有比所述第二磁性层更小的各向异性磁场,因此所述第三磁性层的磁化被较小的记录磁场反转。作为所述第三磁性层的磁化的反转的结果,向与所述第三磁性层铁磁地交换耦合的所述第二磁性层的磁化施加了平行于所述第三磁性层的交换耦合磁场。结果,沿相同的方向向所述第二磁性层施加了记录磁场并另外施加了交换耦合磁场,使得所述第二磁性层的磁化变得可易于反转。因此,与没有所述第三磁性层的情况相比,根据本磁记录介质,改进了诸如改写特性的写性能。此外,由于设置了与所述第二磁性层反铁磁地交换耦合的所述第一磁性层,因此确保了剩余磁化的热稳定性。因此,本磁记录介质可以享有高记录密度。
根据本发明的另一方面,提供了一种磁存储单元,该磁存储单元包括上述磁记录介质,以及被构造成向该磁记录介质写入信息并从该磁记录介质读取信息的记录和再现部。
上述磁存储单元包括在确保了剩余磁化的热稳定性的同时享有良好的改写特性的磁记录介质。因此,该磁存储单元可以实现高密度记录。
由此,根据本发明的实施例,可以提供一种磁记录介质并提供一种具有该磁记录介质的磁存储单元,该磁记录介质在确保了剩余磁化的热稳定性的同时享有良好的改写特性,并且可以实现高密度记录。


根据结合附图来阅读的以下详细说明,本发明的其他目的、特征以及优点将变得明了,在附图中图1是常规磁记录介质的记录层的剖面图;图2是根据本发明第一实施例的磁记录介质的剖面图;图3是根据本发明第一实施例的另一磁记录介质的剖面图;图4是根据本发明第一实施例的示例和比较示例的磁记录介质的特性表;图5是示出根据本发明第一实施例的示例和比较示例中的每一个的改写特性与tBr之间的关系的曲线图;以及图6是根据本发明第二实施例的磁存储单元的一部分的平面图。
具体实施例方式
以下参照附图给出对本发明实施例的描述。
图2是根据本发明第一实施例的磁记录介质10的剖面图。在图2中,每个箭头都表示在没有施加外部磁场的情况下的剩余磁化的方向。图3也是如此。
参照图2,本实施例的磁记录介质10包括基板11、底层12、记录层13、保护膜20以及润滑层21。将底层12、记录层13、保护膜20以及润滑层21依次叠置在基板11上。记录层13包括从底层12侧起依次叠置的第一磁性层14、非磁性耦合层15、第二磁性层16、第三磁性层17、非磁性分隔层18以及第四磁性层19。
基板11并不受特殊限制。可以使用诸如玻璃基板、镀NiP铝合金基板、硅基板、塑料基板、陶瓷基板以及碳基板的基板作为基板11。
可以在基板11的表面上形成由沿记录方向(如果磁记录介质10是磁盘,则该记录方向对应于周向方向)的许多槽所形成的纹理,如机械纹理。这种纹理使得可以使记录层13的磁性层14、16、17以及19的晶体(尤其是c-轴(磁晶体容易轴))沿记录方向取向。这改进了磁特性,进而改进了磁记录介质10的诸如再现输出和分辨率的记录和再现特性。
底层12从具有体心立方(bcc)晶体结构的Cr和Cr-M1合金中选择,其中M1是从包括Mo、Mn、W、V以及B的组中选择的至少一个。通过使用Cr-Ml合金,改进了底层12与其上的记录层13的晶格匹配,从而可以改进记录层13的各磁性层的结晶度和晶体取向。此外,底层12可以是Cr或Cr-M1合金的多个层。这种层结构可以防止底层12中的晶粒的尺寸增大,进而,可以防止记录层13的晶粒的尺寸增大。
底层12的膜厚度并不受特殊限制。然而,从充分改进磁性层16的面内取向的角度来说,底层12的膜厚度大于或等于3nm是优选的,并且该膜厚度小于或等于30nm是优选的,以防止磁性层16的磁性粒子的尺寸过度增大。
如上所述,记录层13包括从底层12侧起依次叠置的第一磁性层14、非磁性耦合层15、第二磁性层16、第三磁性层17、非磁性分隔层18以及第四磁性层19。第一磁性层14与第二磁性层16通过非磁性耦合层15反铁磁地交换耦合。即,在没有施加外部磁场的情况下,第一磁性层14的磁化与第二磁性层16的磁化相互反平行。此外,第二磁性层16与第三磁性层17铁磁地交换耦合。即,在没有施加外部磁场的情况下,第二磁性层16的磁化与第三磁性层17的磁化相互平行。
第一到第四磁性层14、16、17以及19中的每一个都由从包括CoCr、CoPt以及CoCr-X1合金的组中选择的铁磁材料形成,其中X1是从包括B、Cu、Mn、Mo、Nb、Pt、Ta、W以及Zr的组中选择的至少一个。磁性层14、16、17以及19中的每一个的铁磁材料都具有六角形密堆积(hcp)晶体结构。
第一磁性层14由从包括CoCr和CoCr-X2合金的组中选择的铁磁材料形成是优选的,其中X2是从包括B、Cu、Mn、Mo、Nb、Pt、Ta、W以及Zr的组中选择的至少一个。如果第一磁性层14由此不含有Pt,则其各向异性磁场相对较低。因此,可以防止对改写特性的不利影响。适合作为第一磁性层14的铁磁材料包括CoCr、CoCrB、CoCrTa、CoCrMn以及CoCrZr。
此外,第一磁性层14的膜厚度在0.5nm到20nm的范围内。如上所述,第一磁性层14与第二磁性层16反铁磁地交换耦合,以增加与记录在第二磁性层16(和第三磁性层17)中的数据的位相对应的磁化区的磁化(剩余磁化)的热稳定性,从而有助于提高作为记录介质的长期可靠性。
非磁性耦合层15从例如Ru、Rh、Ir、Ru基合金、Rh基合金以及Ir基合金中选择。从与第一磁性层14和第二磁性层16的良好的晶格匹配的角度来说,非磁性耦合层15是Ru或Ru基合金是优选的,因为Ru具有hcp晶体结构。Ru基合金的示例包括Ru-M2,其中M2包括从包括Co、Cr、Fe、Ni以及Mn的组中选择的一个。此外,非磁性耦合层15的膜厚度在0.4nm到1.0nm的范围内。通过将非磁性耦合层15的膜厚度设置在该范围内,第一磁性层14与第二磁性层16通过非磁性耦合层15反铁磁地交换耦合。
第二磁性层16由从包括CoPt、CoCrPt以及CoCrPt-X3合金的组中选择的铁磁材料形成是优选的,其中X3是从包括B、Cu、Mo、Nb、Ta、W以及Zr的组中选择的至少一个。适合作为第二磁性层16的铁磁材料包括CoCrPt、CoCrPtB、CoCrPtTa、CoCrPtBCu、CoCrPtBTa以及CoCrPtBZr。第二磁性层16的膜厚度在0.5nm到20nm的范围内。第二磁性层16用于通过使得在其中形成与记录的数据的位相对应的磁化区来存储信息。
第三磁性层17由从包括CoCr和CoCr-X1合金的组中选择的铁磁材料形成是优选的,其中X1是从包括B、Cu、Mn、Mo、Nb、Pt、Ta、W以及Zr的组中选择的至少一个。适合作为第三磁性层17的铁磁材料包括CoCr、CoCrB、CoCrTa、CoCrPt以及CoCrPtB。此外,第三磁性层17的膜厚度在0.5nm到5nm的范围内是优选的,并且该膜厚度在1.0nm到2.0nm的范围内是更优选的。如果第三磁性层17的膜厚度小于0.5nm,则第三磁性层17与第二磁性层16的体积比太低。结果,由于第三磁性层17的低各向异性磁场而产生的改写特性改进效果不会充分地产生。另一方面,如果第三磁性层17的膜厚度大于5nm,则第三磁性层17与第二磁性层16的体积比太高。结果,记录层13的静态矫顽力减小了。
如下所述,在进行记录时,第三磁性层17使其磁化被在强度上低于第二磁性层16的磁化的记录磁场反转,以向第二磁性层16施加促进第二磁性层16的磁化反转的交换耦合磁场。
非磁性分隔层18的材料并不受特殊限制,但是从与第三磁性层17和第四磁性层19的良好的晶格匹配的角度来说,该材料是从包括Ru、Cu、Cr、Rh、Ir、Ru基合金、Rh基合金以及Ir基合金的组中选择的非磁性材料是优选的。优选的Ru基合金包括非磁性材料Ru和从包括Co、Cr、Fe、Ni以及Mn的组中选择的至少一个。
非磁性分隔层18具有使得基本上防止第三磁性层17与第四磁性层19的交换耦合的膜厚度。具体来说,非磁性分隔层18的膜厚度在1.0nm到3nm的范围内。如果非磁性分隔层18的膜厚度小于1.0nm,则反铁磁交换耦合可能会起作用。如果非磁性分隔层18的膜厚度大于3nm,则第三磁性层17远离记录元件,使得更不容易进行记录。结果,改写特性被劣化了。此外,非磁性分隔层18停止了第二磁性层16和第三磁性层17的晶粒的生长,以防止晶粒的尺寸增大,并避免晶粒的粒度分布的宽度的增大。结果,改进了磁记录介质10的SN比。
第四磁性层19是从与用于第二磁性层16的铁磁材料相同的铁磁材料中选择的。此外,第四磁性层19的膜厚度在0.5nm到20nm的范围内。第四磁性层19用于通过使得在其中形成与记录的数据的位相对应的磁化区来存储信息。
以下给出对在记录层13的多层之间的关系的描述。第一到第四磁性层14、16、17以及19的各向异性磁场分别是Hk1、Hk2、Hk3以及Hk4。第一到第四磁性层14、16、17以及19的饱和磁化分别是Ms1、Ms2、Ms3以及Ms4。
第三磁性层17具有比第二磁性层16更小的各向异性磁场和更大的饱和磁化。即,将第二磁性层16和第三磁性层17的铁磁材料确定为满足以下关系Hk3<Hk2并且Ms3>Ms2。 …(1)结果,改进了诸如改写特性的写性能。其作用发生。
第三磁性层17具有比第二磁性层16更小的各向异性磁场。因此,在进行记录时,由来自记录元件的在强度上低于第二磁性层16的记录磁场将第三磁性层17的磁化沿记录磁场的方向反转。作为第三磁性层17的磁化反转的结果,向第二磁性层16的磁化施加了在使第二磁性层16的磁化反转的方向上的交换耦合磁场,以及记录磁场。因此,第二磁性层16的磁化是可易于反转的。此外,由于第三磁性层17具有比第二磁性层16更大的饱和磁化(Ms3>Ms2),因此第三磁性层17具有大的交换耦合能量,使得大的交换耦合磁场作用在第二磁性层16上。结果,第二磁性层的磁化变得可更易于反转。
如果第二磁性层16和第三磁性层17的铁磁材料是CoCrPt或CoCrPt-X3合金,则在按原子浓度表示各元素的含量的情况下,第三磁性层17具有比第二磁性层16更低的Pt含量和更高的Co含量是优选的。该选择使得可以满足上述关系Hk3<Hk2并且Ms3>Ms2。可以通过Pt含量来控制各向异性磁场。例如,可以通过降低Pt含量来减小各向异性磁场。此外,可以通过Co含量来控制饱和磁化。例如,可以通过提高Co含量来增大饱和磁化。第三磁性层17可以由不包括Pt的混合物的铁磁材料形成。
此外,如果第二磁性层16和第三磁性层17优选地满足以下关系Hk3+2000(Oe)≤Hk2,…(2)并且更优选地满足以下关系Hk3+5000(Oe)≤Hk2,…(3)其中Hk2和Hk3的单位是Oe,则会显著提高改写特性。
此外,如果第二磁性层16和第三磁性层17优选地满足以下关系Ms3>Ms2+200emu/cm3, …(4)其中Ms3和Ms2的单位是emu/cm3,则会充分确保第三磁性层17的各向异性能量。此外,第二磁性层16和第三磁性层17同时满足上述各向异性磁场关系(2)或(3)和上述饱和磁化关系(4)是尤其优选的。
在第二磁性层16和第三磁性层17中,当可以确保各向异性磁场关系或饱和磁化的上述优选差异时,应用上述优选的差异。
此外,第二磁性层16和第四磁性层19由相同的材料形成是优选的。如上所述,第二磁性层16和第四磁性层19具有对记录的数据的每个位进行记录的功能。因此,通过由相同的材料形成第二磁性层16和第四磁性层19,磁性层16和19均可以具有大致相同的磁特性和大致相同的磁化过渡宽度和位长度。
此外,第四磁性层19可以由具有比第二磁性层16的各向异性磁场更大的各向异性磁场的铁磁材料形成。由于不将第四磁性层19交换耦合到另一磁性层,因此通过由具有较大各向异性磁场的铁磁材料形成第四磁性层19,可以增大其剩余磁化的热稳定性。第四磁性层19比第二磁性层16更靠近记录元件。因此,向第四磁性层19施加了具有比向第二磁性层16施加的记录磁场的强度更大的强度的记录磁场。因此,可以防止改写特性的劣化。
第一磁性层14和第二磁性层16满足关系Hk1≤Hk2是优选的。这在以下方面是优选的。作为由具有小于或等于第二磁性层16的各向异性磁场的各向异性磁场的铁磁材料形成第一磁性层14的结果,第一磁性层14的磁化可易于反转,以确保在没有施加外部磁场的情况下形成与第二磁性层16的磁化反平行的磁化。
各向异性磁场是铁磁材料固有的物理特性值。可以使用能够对两个轴向上的磁化进行检测的转矩磁强计或振动样品磁强计来测量各向异性磁场。
令第一到第四磁性层14、16、17以及19的剩余磁化分别为Br1、Br2、Br3以及Br4,并且令第一到第四磁性层14、16、17以及19的膜厚度分别为t1、t2、t3以及t4,由于在没有施加外部磁场的情况下第一磁性层14的剩余磁化的方向与其他磁性层16、17以及19的剩余磁化的方向相反,因此根据记录层13的上述结构将记录层13的膜厚度-剩余磁通密度积表示为Br4×t4+Br3×t3+Br2×t2-Br1×t1。在记录密度相对低的区域中,再现输出与记录层13的剩余磁化-膜厚度积成比例。因此,通过对Br1到Br4和t1到t4进行设置,将记录层13的膜厚度-剩余磁通密度积确定为使得获得适合于磁存储单元的再现输出。在记录层13中设置第一磁性层14可以增大第一到第四磁性层14、16、17以及19的总膜厚度,使得可以提高整个记录层13的剩余磁化的热稳定性。
保护膜20的厚度例如是0.5nm到15nm,并由从非晶碳、氢化碳、氮化碳以及氧化铝中选择的材料形成。保护膜20的材料并不受特殊限制。
润滑层21例如由膜厚度为0.5nm到5nm的具有全氟聚醚(perfluoropolyether)的主链的润滑剂形成。例如,可以使用端羟基或端胡椒基全氟聚醚作为润滑剂。取决于保护膜20的材料,可以设置或不设置润滑层21。
接下来,参照图2,给出对根据第一实施例的磁记录介质10的制造方法的描述。
首先,在对基板11的表面进行清洁和干燥之后,基板11经受热处理。通过该热处理,在真空气氛下用加热器将基板11加热到预定温度,例如,150℃。在进行热处理之前,可以在基板11的表面上执行纹理处理。如果基板11呈盘形,则该纹理处理可以是在基板11的表面上沿其周向方向形成多个槽的机械纹理处理。通过形成这种纹理,可以使记录层13的c-轴沿周向方向取向。
接着,用诸如DC(直流)磁控管溅射设备或RF(交流)溅射设备的溅射设备使用由上述对应材料形成的其各自的溅射对象,依次形成底层12和记录层13的各层14到19。具体来说,使用其中相继设置有用于通过DC磁控管溅射形成对应多个层的多个膜形成室的溅射设备,并向这些膜形成室中送入Ar气,用预定输入电源在例如0.67Pa的压强下执行膜形成。优选的是,在进行膜形成之前预先将溅射设备抽空到10-7Pa,其后送入诸如Ar气的大气气体。
接着,利用溅射法、CVD(化学汽相淀积)法或FCA(过滤阴极弧)法在记录层13上形成保护膜20。在形成底层12的处理与形成保护膜20的处理之间,在这两个处理之间保持真空或惰性气体气氛是优选的。这使得可以保持各已形成层的表面的清洁性。
接着,在保护膜20的表面上形成润滑层21。利用浸渍法或旋涂法涂敷通过用溶剂对润滑剂进行稀释而形成的稀释溶液,从而形成润滑层21。由此,形成了根据本实施例的磁记录介质10。
如上所述,在磁记录介质10中,在形成记录层13的第二磁性层16的记录元件侧(与基板11相对的侧)设置有具有比第二磁性层16更小的各向异性磁场和更大的饱和磁化的第三磁性层17。由于第三磁性层17具有比第二磁性层16更小的各向异性磁场,因此第三磁性层17的磁化被比独立地使第二磁性层16的磁化反转的记录磁场更小的记录磁场反转。作为第三磁性层17的磁化反转的结果,向第二磁性层16(其与第三磁性层17铁磁地交换耦合)的磁化施加了平行于第三磁性层17的交换耦合磁场。结果,在相同的方向上向第二磁性层16施加了记录磁场并另外施加了交换耦合磁场,使得第二磁性层16的磁化变得可易于反转。因此,与没有第三磁性层17的情况相比,改进了诸如改写特性的写性能。同时,设置了第二磁性层16以及与第二磁性层16反铁磁地交换耦合的第一磁性层14,从而确保了剩余磁化的热稳定性。因此,本实施例的磁记录介质10可以享有高记录密度。
图3是根据第一实施例的另一磁记录介质30的剖面图。在图3中,由相同的标号表示与上述要素相同的要素,并略去对它们的描述。
参照图3,磁记录介质30包括基板11,并具有依次叠置在基板11上的种子层31、底层12、非磁性中间层32、记录层13、保护膜20以及润滑层21。
种子层31由非晶非磁性合金材料形成。种子层31从CoW、CrTi、NiP以及使用CoW、CrTi或NiP作为其主成分的三元或更多元合金中选择是优选的,这是因为这些合金在减小底层12的晶粒的粒度方面尤其优异。此外,种子层31的膜厚度在5nm到100nm的范围内是优选的。由于种子层31是非晶的,因此种子层31的表面在结晶学(crystallographically)上是均匀的。因此,与在基板11的表面上直接形成底层12的情况相比,可以避免对底层12造成结晶学各向异性。因此,底层12可能形成其自己的晶体结构,从而改进了可结晶性和晶体取向。此外,改进了在底层12上外延地生长的非磁性中间层32和记录层13的可结晶性和晶体取向。结果,改进了记录层13的磁性层14、16、17以及19中的每一个(以下,除非另外指出,否则简称为“记录层13”)的磁性粒子的c-轴面内取向和面内矫顽力,使得改进了记录和再现特性。
此外,由于种子层31是非晶的,因此可以缩小底层12的晶粒的大小并且使底层12的晶粒的粒度离差变窄。这减小了记录层13到非磁性中间层32的粒度并使得其粒度离差变窄,从而改进了SN比。此外,可以在种子层31的表面上沿周向方向形成纹理。在此情况下,可以略去基板11的表面上的纹理。
非磁性中间层32由具有hcp晶体结构的Co-M3合金形成,其中M3是从包括Cr、Ta、Mo、Mn、Re以及Ru的组中选择的一个。非磁性中间层32还改进了记录层13的c-轴面内取向。即,非磁性中间层32协同地增强了对底层12的面内取向改进效果,以进一步改进记录层13的c-轴面内取向。
此外,在于基板11或种子层31上形成纹理的情况下,将纹理的效果与底层12和非磁性中间层32的效果结合起来,使得记录层13在形成纹理的方向上(即,在记录方向上)具有极好的c-轴取向。非磁性中间层32的膜厚度为0.5nm到10nm是优选的。
如上所述,根据磁记录介质30,种子层31和非磁性中间层32增大了记录层13的c-轴面内取向和面内矫顽力,同时,减小了记录层13的粒度并使其粒度离差变窄了,从而改进了SN比。
制成了根据本发明第一实施例的示例的磁记录介质以及不根据本发明的比较示例的磁记录介质。
图4是根据所述示例和所述比较示例的磁记录介质的特性表。图4示出了记录层的改写特性、记录层的各磁性层的膜厚度、以及整个记录层的膜厚度-剩余磁通密度积tBr和矫顽力。
如下地制作该示例的磁记录介质。首先,在盘形玻璃基板的表面上沿其周向方向形成纹理。进而,在对玻璃基板进行了清洁和干燥之后,使用DC磁控管溅射设备如下地形成该磁记录介质的各层。在真空中将玻璃基板加热到200℃。然后,在氩气气氛下,按以下次序依次形成充当底层的Cr合金膜(7nm)、充当记录层的第一磁性层的CoCr膜、充当记录层的非磁性耦合层的Ru膜(0.7nm)、充当记录层的第二磁性层的CoCrPt13B膜、充当记录层的第三磁性层的CoCrPt5B膜、充当记录层的非磁性分隔层的Ru膜(1.3nm)、充当记录层的第四磁性层的CoCrPt13B膜以及充当保护膜的碳膜(4nm)。此外,通过浸渍法在该保护膜的表面上形成全氟聚醚的润滑层(1.5nm)。由此,制成了所述示例的磁记录介质。第二磁性层与第四磁性层在成分上相同。以上加括弧的数值表示膜厚度。以上成分中的数值表示按原子浓度(%)的Pt含量。
第一到第四磁性层的各向异性磁场(Oe)和饱和磁化(emu/cm3)如下第一磁性层50Oe,600emu/cm3;第二磁性层9400Oe,260emu/cm3;第三磁性层4400Oe,480emu/cm3;以及第四磁性层9400Oe,260emu/cm3。
如下地获得第一到第四磁性层的各向异性磁场(Oe)和饱和磁化(emu/cm3)。在与所述示例的磁记录介质相同的条件下,通过使第一到第四磁性层中的每一个独立地淀积在底层上的单个层中来形成样品。使用转矩磁强计测得其各向异性磁场,并使用振动样品磁强计测得其饱和磁化。
如图4所示,所述示例的第1号样品到第6号样品的膜厚度-剩余磁通密度积tBr是不同的。具体来说,第1号样品到第6号样品的第二磁性层和第四磁性层中的一个或二者的CoCrPt13B膜的厚度是不同的。
另一方面,除了不形成CoCrPt5B膜作为第三磁性层以外,按与所述示例的方式相同的方式制作比较示例的磁记录介质。比较示例的第7号样品到第9号样品的膜厚度-剩余磁通密度积tBr是不同的。具体来说,第7号样品到第9号样品的第二磁性层和第四磁性层的厚度是不同的。
图5是示出图4所示的示例和比较示例中的每一个的改写特性与tBr之间的关系的曲线图。
图4和5表明在具有相同的膜厚度-剩余磁通密度积tBr的情况下所述示例的改写特性比该比较示例的改写特性好约5dB。这表明通过在第二磁性层与非磁性分隔层之间设置第三磁性层可以显著改进改写特性。
在将磁记录介质安装在磁存储单元中的情况下,膜厚度-剩余磁通密度积tBr是必要的特性。因此,基于膜厚度-剩余磁通密度积tBr对改写特性进行比较是极其有效的。通过用使用了市售自旋支架(spin stand)的组合型磁头(具有记录元件和再现元件)执行测量,来获得改写特性。首先,以90kFCI的线记录密度来执行记录和再现,然后以360kFCI的线记录密度来执行进一步的记录。然后对首先记录的90kFCI信号的剩余电平进行测量,从而获得改写特性。
以下给出对包括根据本发明第二实施例的磁记录介质的磁存储单元的描述。
图6是示出根据本发明第二实施例的磁存储单元50的一部分的图。参照图6,磁存储单元50包括壳51。在壳51中,磁存储单元50还包括由主轴(未图示出)旋转的毂52、可旋转地固定于毂52的磁记录介质53、致动单元54、附着于致动单元54并可以沿磁记录介质53的径向方向移动的臂55和悬架(suspension)56、以及由悬架56支持的磁头58。磁头58是组合型的,包括MR元件(磁阻元件)、GMR元件(巨型磁阻元件)或TMR元件(隧道磁阻元件)的记录头和感应型记录头。
磁存储单元50的基本结构是公知的,因此,略去对其的详细描述。
磁记录介质53可以是根据第一实施例的磁记录介质10或30。磁记录介质53在诸如改写特性的写性能方面很优异。因此,磁存储单元50可以实现高记录密度。
磁存储单元50的基本结构并不限于图6所示的基本结构。磁存储单元50可以具有两个或更多个磁记录介质。此外,磁头58并不限于上述结构,可以使用公知的磁头作为磁头58。
由此,根据本发明的一个方面,提供了一种磁记录介质,该磁记录介质包括基板;和按下述次序叠置在该基板上的底层、第一磁性层、非磁性耦合层、第二磁性层、第三磁性层、非磁性分隔层以及第四磁性层,其中第一磁性层与第二磁性层是反铁磁地交换耦合的,第二磁性层与第三磁性层是铁磁地交换耦合的,并且第三磁性层具有比第二磁性层的各向异性磁场更小的各向异性磁场,并具有比第二磁性层的饱和磁化更大的饱和磁化。
根据本发明的另一方面,提供了一种磁存储单元,该磁存储单元包括上述磁记录介质,和被构造成向该磁记录介质写入信息并从该磁记录介质读取信息的记录和再现部。
本发明并不限于具体公开的实施例,而是可以在不脱离本发明的范围的情况下进行变化和修改。
例如,在对第二实施例的以上描述中,采用磁盘作为磁记录介质的示例。然而,磁记录介质可以是磁带。该磁带使用诸如PET、PEN或聚酰亚胺的带形塑料膜的带形基板来代替盘形基板。
本申请基于在2006年5月25日提交的日本专利申请2006-145672号的优先权,通过引用将其全部内容合并于此。
权利要求
1.一种磁记录介质,该磁记录介质包括基板;和按下述次序叠置在该基板上的底层、第一磁性层、非磁性耦合层、第二磁性层、第三磁性层、非磁性分隔层以及第四磁性层,其中所述第一磁性层与所述第二磁性层是反铁磁地交换耦合的,所述第二磁性层与所述第三磁性层是铁磁地交换耦合的;并且所述第三磁性层具有比所述第二磁性层的各向异性磁场更小的各向异性磁场,并具有比所述第二磁性层的饱和磁化更大的饱和磁化。
2.根据权利要求1所述的磁记录介质,其中,所述第四磁性层具有大于或等于所述第二磁性层的各向异性磁场的各向异性磁场。
3.根据权利要求1所述的磁记录介质,其中,所述第二磁性层和所述第三磁性层满足Hk3+2000(Oe)≤Hk2的关系,其中Hk2是所述第二磁性层的各向异性磁场,Hk3是所述第三磁性层的各向异性磁场。
4.根据权利要求1所述的磁记录介质,其中,所述第二磁性层和所述第三磁性层满足Ms3>Ms2+200(emu/cm3)的关系,其中Ms2是所述第二磁性层的饱和磁化,Ms3是所述第三磁性层的饱和磁化。
5.根据权利要求1所述的磁记录介质,其中,所述第一磁性层到第四磁性层中的每一个都由从包括CoCr、CoPt以及CoCr-X1合金的组中选择的铁磁材料形成,其中X1是从包括B、Cu、Mn、Mo、Nb、Pt、Ta、W以及Zr的组中选择的至少一个。
6.根据权利要求1所述的磁记录介质,其中,所述第二磁性层和第四磁性层中的每一个都由从包括CoPt、CoCrPt以及CoCrPt-X3合金的组中选择的铁磁材料形成,其中X3是从包括B、Mo、Nb、Ta、W、Zr以及Cu的组中选择的至少一个。
7.根据权利要求1所述的磁记录介质,其中,所述第二磁性层与所述第四磁性层由具有相同成分的铁磁材料形成。
8.根据权利要求1所述的磁记录介质,其中,所述第三磁性层由从包括CoCr和CoCr-X1合金的组中选择的铁磁材料形成,其中X1是从包括B、Mo、Mn、Nb、Ta、W、Cu、Zr以及Pt的组中选择的至少一个。
9.根据权利要求1所述的磁记录介质,其中,所述第三磁性层的膜厚度在0.5nm到5nm的范围内。
10.根据权利要求1所述的磁记录介质,其中,所述第二磁性层和所述第三磁性层由CoCrPt和CoCrPt-X3合金中的一个形成,其中X3是从包括B、Mo、Nb、Ta、W以及Cu的组中选择的至少一个;并且所述第三磁性层具有按原子浓度比所述第二磁性层更低的Pt含量和更高的Co含量。
11.根据权利要求1所述的磁记录介质,其中,所述非磁性耦合层由从包括Ru、Rh、Ir、Ru基合金、Rh基合金以及Ir基合金的组中选择的材料形成;并且所述非磁性耦合层的膜厚度在0.4nm到1.0nm的范围内。
12.根据权利要求1所述的磁记录介质,其中,所述非磁性分隔层由非磁性合金形成,并且所述非磁性分隔层的膜厚度在1.0nm到3nm的范围内。
13.根据权利要求1所述的磁记录介质,其中,所述底层从具有体心立方晶体结构的Cr和Cr-M1合金中选择,其中M1是从包括Mo、Mn、W、V以及B的组中选择的至少一个。
14.根据权利要求1所述的磁记录介质,该磁记录介质还包括位于所述基板与所述底层之间的种子层,其中所述种子层由非晶非磁性合金材料形成。
15.根据权利要求1所述的磁记录介质,该磁记录介质还包括位于所述底层与所述第一磁性层之间的非磁性中间层,其中所述非磁性中间层由具有六角形密堆积晶体结构的Co-M3合金形成,其中M3是从包括Cr、Ta、Mo、Mn、Re以及Ru的组中选择的至少一个。
16.一种磁存储单元,该磁存储单元包括根据权利要求1所述的磁记录介质;以及被构造成向所述磁记录介质写入信息并从所述磁记录介质读取信息的记录和再现部。
全文摘要
本发明提供一种磁记录介质和磁存储单元。所公开的该磁记录介质包括基板;和按下述次序叠置在该基板上的底层、第一磁性层、非磁性耦合层、第二磁性层、第三磁性层、非磁性分隔层以及第四磁性层。所述第一磁性层与所述第二磁性层是反铁磁地交换耦合的,并且所述第二磁性层与所述第三磁性层是铁磁地交换耦合的。所述第三磁性层具有比所述第二磁性层的各向异性磁场更小的各向异性磁场,并具有比所述第二磁性层的饱和磁化更大的饱和磁化。
文档编号G11B5/70GK101079269SQ20061016043
公开日2007年11月28日 申请日期2006年11月16日 优先权日2006年5月25日
发明者高星英明, 远藤敦, 村尾玲子, 佐藤伸也, 菊池晓 申请人:富士通株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1