专利名称:具有自屏蔽一体化导体磁通道阵列的磁头支承机构的制作方法
技术领域:
本发明与题为“Suspension with Integrated Conductors havingTrimmed Impedance(序列号为08/720,836,申请日为1996年10月3日)的待批美国专利申请有关,所述申请是序列号为08/621,437申请日为1996年3月25日的美国专利申请的部分继续申请,这里将其公开内容列为参考文献。本发明还与题为“Suspension with Mulit-Layered Integrated Conductor Trace Array for Optimized ElectricalParameters”(序列号为08/720,833,申请日为1996年10月3日)的待批美国专利申请有关,其公开内容也被列为这里的参考文献。
总体上说,本发明涉及用于把与磁头支承组件的挠性件形成一体的磁通道导体阵列的选择工作回路对与有害的干扰隔离的结构和方法,更具体地说,本发明涉及一种一体化支承和导体结构,其中支承磁通道被设计和制造成至少能对一个信号对提供自屏蔽,屏蔽掉不希望的电磁噪声(EMI)或射频干扰(RFI)。
当前的磁盘驱动器通常包括一个旋转的刚性存储盘和一个磁头定位器,用于相对磁盘旋转轴把数据换能器定位在不同的径向位置处,从而在磁盘的每个记录面上形成多个同心数据存储磁通道。磁头定位器通常称为调节器。虽然这个领域内已有许多公知的调节器结构,但是多个有序排列的旋转音圈调节器现在是最常使用的,原因在于它们结构简单、性能好、及关于它们的转轴的质量平衡能力,后一点对于制造对扰动不敏感的调节器尤为重要。在磁盘驱动器中常采用闭环伺服系统来操纵音圈调节器,并因此相对磁盘表面而使磁头定位。
读/写换能器可以是单元件或双元件设计,通常放置在具有空气支撑面的陶瓷滑动结构上,用于在离开运动媒体表面的一小段距离处支撑换能器。单一的写/读元件设计通常需要两条导线连接,而双元件设计具有分开的读和写单元,需要四条导线连接。一般说来,磁阻(MR)磁头尤其需要四条导线。空气支撑滑动与读/写换能的结合也被公知地用作为读/写头或记录头。
磁阻感应单元可能另外具有所谓的“巨磁阻(giant magneto-resistive-GMR)”或“超磁阻(colossal magneto-resistive-CMR)”特性。这里所用的术语“磁阻”或“MR”包括GMR和CMR传感器。从实质上说,MR传感器附近通量变化的磁场引起传感器阻抗变化。在恒定电流的情况下这种阻抗变化造成电压变化,一个读前置放大电路感应此电压的变化。MR传感器的实际特性决定了响应磁通量变化的电压幅度变化值。
各滑块通常安装在带万能换向头的挠性结构上,该挠性结构附在支承加载臂结构的末端。一个弹簧将加载臂和磁头压向磁盘,而磁头下面的空气压力把磁头推离磁盘,一个平衡距离限定“空气支撑”并确定磁头空悬高度。利用空气支撑支承磁头离开磁盘表面,使磁头以磁头/磁盘界面的流体动力学方式工作在润滑状态下,而不是约束润滑状态。空气支撑使换能器和媒体之间保持一定间隔,降低了换能器的效率。然而,避免直接接触却大大改善磁头与磁盘组件的可靠性和使用寿命。不过表面密度的增加可能要磁头工作在伪接触或者竟至是表面润滑接触状态下。
目前,空悬高度在0.5至2微英寸量级。随着磁头接近磁盘存储表面,磁存储密度增加。因此,极低的空悬高度可以换取在整个磁盘驱动器合理使用寿命期间设备的可靠性。同时,使数据转移到存储表面和从存储表面转移的速率增加,每秒接近200兆位的数据速率是可行的。
磁盘驱动器制造业已经很有效地减小滑块结构的大小和质量,以便减小调节装置的运动质量,并使换能器能更接近磁盘表面工作,前者使搜寻性能得以改善,后者使换能器效率得以改善,从而得到更高的表面密度。滑动的大小(因而也是质量)通常参照所谓标准100%滑块即“小型滑块”(minislider)来标定。因此70%、50%和30%滑块(分别为“微滑块”(microslider)、“超小型滑块”(nanoslider)和“微微滑动”(picoslider))属于最近的低质量滑块,它们的线性尺寸相对标准100%滑块的线性尺寸按适当的百分比缩小。滑块结构越小通常需要更为协调的万向支架,因此,可使附在滑块上的导线的固有反电容产生明显的有害偏压效应。
磁盘驱动器中通常用直径非常小的盘绕固体导线,使滑块上形成的磁头元件与其他传输和处理信号的结构相连。盘绕线对运动回路的两个导体本身与诸如EMI和RFI等噪声的外部噪声源屏蔽,这是由于这些导体彼此盘绕的缘故。同轴传输线缆也有固有的自屏蔽特性,但是中心的导体相对外部的柱形屏蔽导体在电气上是不平衡的。
为了减小这种固有的导线反电容或偏压的影响,有人提出了制成一体的挠性件/导体结构,这种结构有效地把导线与绝缘柔性聚合树脂挠性件制成一体,以使导体被置于挠性件末端的连接片上,所述挠性件接近磁头。授予Matsuzaki的US5,006,946美国公开了这种结构的一个实例。授予Bennin等人的US5,491,597美国专利公开了这种结构的另一个实例。虽然这种导线结构具有某些性能和结构优点,在挠性件和向支架中使用已公开的柔性聚合树脂材料产生许多设计难题。例如,树脂材料的热膨胀特性与现有技术的不锈钢结构不同;而且包括各种必要的粘接剂层在内的这种树脂结构的长期耐久性都是未知的。因此,也有人提出了不锈钢挠性件和导体的混合结构,这种结构结合了一体化的导体折曲系统挠性结构的大部分优点,同时与现有技术制作和加载臂连接方法很大程度上保持协调一致。这种混合设计通常使用具有沉积绝缘层和导电磁通道层的不锈钢挠性件,用于磁头与相关驱动器电子部件的电连接,例如通常把一个靠近所设置的前置放大器集成块和下游处读通道电路放置在与磁头/磁盘组件相连的电路板上(以及其它电路)。
如授予Bennin等人的题为“Gimbal Fiexure and ElectricalInterconnect Assembly”的美国专利US5,491,597所述,它所公开的现有技术需在导体磁通道层中使用弹性材料,如铍一铜合金,这种合金的电阻比纯退火铜高。另一方面,纯的退火铜虽然在高频时可以有满意的导电性,也呈现出高的韧性,但没有象弹簧那样的机械弹性,因此,缺少磁通道连接材料所要求的机械弹性。采用Bennin等人的方法,在纯铜镀到或沉积到诸如镍基层上形成的磁通道提供了替代依赖铍铜合金的磁通道。
这些混合挠性件设计采用相对细长平行布置的导体磁通道对或四根导线,从末端结合片即挠性件的磁头固定端延伸到挠性件的近端,以便沿相连支承结构长度方向提供从读/写头到前置放大器或读通道集成块的导电通道。因为工作回路的导电磁通道通常以并列设置在磁通道阵列的绝缘层上,所以可将磁通道用为拾取天线,但是不能得到盘绕导线对布置所具有的自屏蔽优点。由两个并列形成或垂直对准的磁通道形成的工作回路对磁盘驱动器内或外的噪声源,如EMI或RFI敏感。
虽然上述Bennin等人的US5,491,597专利包括图6-8所示的实施例,该实施例需要使用磁通道堆叠形成多层磁通道阵列,以便处理大量信号,但是在Bennin等人专利中,在给出所需要屏蔽,使所选磁通道对信号回路屏蔽开噪声的方法中指示或建议设置多信号回路的导体磁通道。
本发明特别提供了一种用作磁驱动器的支承件的挠性件,它包括多层一体化的导体阵列设置,用以为所选的工作回路对提供对外部噪声源的自屏蔽。
本发明总的目的在于提供一种尺寸小、耐用、可靠性高的支承装置,该装置具有自屏蔽一体化的导体磁通道阵列,用于读/写头与相关读/写电路之间的电连接,该装置克服了现有技术的缺点和不足。
自屏蔽的一体化挠性体/导体结构支持临近存储媒体的多元读/写磁头/滑块装置,并使磁头的读元件与读电路电连接,以及使磁头的写元件与写电路电连接。挠性件/导体结构通常包括一个具有向支架的平面导电柔性元件,用于支撑读/写磁头/滑块结构,使之接近相对运动的数据存储盘位置,沉积在柔性元件的第一绝缘层;形成连接写元件与写电路的写信号通道的电磁通道,该磁通道沉积在第一电绝缘层上;形成连接读元件与读电路的读信号通道的电磁通道;以及磁通道屏蔽结构,它包括在一体化挠性件/导体结构中,用于在从存储媒体上读数据时在读数据过程中电屏蔽读通道。
按照本发明的一种情况,构成读通道的电磁通被形成于第一电绝缘层上,与构成写通道的磁通道大体呈平行纵向对准,磁通道屏蔽结构由包括在写通道内的电磁通道构成。在这种情况下,在读数据操作期间写电路把写通道有效接地。在这种情况下,构成读通道的电磁通道最好设置在构成写通道的电磁通道的内部绝缘层上。
按照本发明的另一种情况,在第一绝缘层上形成第二绝缘层,包括写通道和形成读通道的电磁通道的第二层磁通道形成在第二绝缘层上,并被相连且包含写通道的附加磁通道包围。作为另一种相关的情况,可以在第二绝缘层上形成第三绝缘层,包含写通道的第三层磁通道形成在第三绝缘层上,覆盖包含读通道的电磁通道。
按照本发明的再一种情况,用于存储和再现信息的磁盘驱动器包括一个磁盘驱动器基座;一个可旋转地安装在该基座上并由磁盘调节器旋转的存储磁盘;用于支承在存储磁盘数据存储面附近的滑块;一个双元磁阻读/感应写头用于从存储面上读取信息或把信息写到存储面上;一个安装在基座上的可动调节器,用于以选择方式把磁头相对存储面半径定位;一个安装在所述调节器上读前置放大器写驱动电路,用于与磁头通信;以及一个连接调节器上的一体化导体支承机构,用于把磁头支撑在靠近存储盘位置,并使磁头和信号处理装置电连接,所述支承机构包括一个大体呈平面状的导电加载臂结构,它具有靠近调节器固定端和在末端用于连接磁头的万向支架磁头安装区;一个电绝缘层,它沿磁通道连接区连接到加载臂结构上;以及至少四个导体磁通道,靠近加载臂沉积在电绝缘层上,在磁通道驱动器读操作期间,使各导电磁通道中的两个磁通道与双元磁头的写元件与电路连接,并为双元磁头的连接读元件与电路的另两个磁通道提供静电接地屏蔽。
通过下面结合附图详细描述的最佳实施例将更全面地理解和体会本发明的这些和其它目的、优点、方面及特性。
附图中,
图1是体现本发明原理的包括具有多层导体磁通道阵列的支承装置的磁盘驱动器放大平面示意图;图2是根据本发明原理的具有调频导体磁通道的一体化挠性体/导体加载臂结构最佳实施例的放大平面示意图;图3是图2中具有包括调频导体阵列的一体化导线加载臂结构的挠性件放大平面图;图3A是图3所示挠性件磁通道阵列的读/写头连接区的大比例放大平面图,其中虚线框中示出磁头滑块;图3B是图3中沿3B-3B线所取剖面的大比例放大的正视图,用于描述根据本发明原理,通过使用写工作磁通道对包围读工作回路对为MR读传感器工作回路提供自屏蔽的磁通道阵列结构;图4是与图3B实施例类似的本发明又一自屏蔽实施例的大比例放大的剖面正视图,但其中写磁通道位于读磁通道工作回路对所在中间层上方或下方的层上;图5是与图4实施例类似的本发明又一自屏蔽实施例的大比例放大的剖面正视图;其中写工作回路磁通道换成靠近挠性件,以便获得由挠性件提供的对地平面的平衡电容;图6是本发明磁通道连接结构的电路图,包括磁头和图1驱动器的前置放大器/驱动器电路。
参见附图,在所有附图中的类似符号表示类似或相应的部件。图1是硬盘驱动器30的磁头/磁盘装置(HDA)的顶示意图。硬盘驱动器30至少使用一个加载臂装置10,该装置10具有包括使本发明原理具体化的自屏蔽磁通道互连结构或阵列16的挠性件14。图1示出具有挠性件14和磁通道互连阵列16的加载臂装置10应用于它的预设工作环境中的情况。
本例中的磁盘驱动器30包括一个刚性基座32,用以支撑转轴34(及未示出的转轴电机),转轴34接弯曲箭头所示方向转动至少一个存储磁盘36。所述驱动器30还包括一个旋转传动装置40,它以可转动的方式安装在基座32的支点35上。所述传动装置40包括一个音圈42,当控制电路(未示出)以选择方式给音圈42通电时,音圈42移动,从而把传动装置E型块44和磁头臂46(以及加载臂装置10)置于位在存储磁盘36表面上的径向磁通道位置。在磁头臂46末端的临近端17处,用比如常规的球压模技术安装至少一个加载臂装置10。
通常(但非必须),在位于磁盘36之间,将两个加载臂装置10安装于磁头臂46上;并且把一个加载臂装置10安装在多个磁盘36组成的磁盘堆叠的最上磁盘上方和最下磁盘的下方的磁头臂上,所述多个磁盘36在转轴34上彼此分开。自屏蔽磁通道互连结构16与可变形的磁通道/薄膜片50相连,所述磁通道/薄膜片50伸向安装于E型块44一侧的陶瓷混合电路基底52。陶瓷混合电路52安装并连到读前置放大器/写驱动器集成块或集成电路54上。集成块54最好位于混合电路52的陶瓷基底与E型块一侧壁之间,并用适宜的导电粘接剂或导热化合物固定在该侧壁上,以便经传导而使集成块54工作时产生的热量消散于E型块中,以及经对流向外传至周围空气中。
如图2、3、3A和3B所示,加射射束装置10包括一个由不锈钢加载臂件12和挠性件14组成的平面。本例中的挠性件14由比如厚约20微米的薄不锈钢板制成。由厚约10微米的铜导体形成的西对导体磁通道60和62的阵列构成部分磁通道互连结构16,所述磁通道互连结构16自挠性件14的临近端17伸向另一连接垫片阵列22,所述连接垫片阵列22位于加载臂装置10的滑块支承端18处。换能头滑块20以适宜的粘合剂在加载臂装置10末端18处附着于框架15上。如图3B所示,在末端18处设置四个连接垫片22,采用比如超声焊接金球连接与滑块20主体末端形成的双元(四个导体)薄膜磁阻读/写头结构(未示出)的四个直线设置的连接垫片相连。虽然并非必须,但滑块20主体最好是一个30%滑块。
磁通道互连结构16包括绝缘性能高的聚酰亚胺膜基底25,它介于导体阵列16的两个导体磁通道对60A-60B和62A-62B与不锈钢挠性件14之间。运行的磁通道对60A-60B与MR读单元70相连,运行的磁通道对62A-62B与读/写头结构的薄膜电感写单元72相连。绝缘层25最好厚约10微米。依照本发明的原理,构成MR读单元工作回路的磁通道对60A-60B在单一磁通道平面内被写单元工作电路磁通道对62A和62B围绕。因为在MR读单元工作时,写磁通道不承载写电流,所以写磁通道可用以提供必要的屏蔽。按图3B的布置,在驱动器30的读工作模式期间,必须使读磁通道62A和62B相对挠性件14的电接地面保持低阻抗,以便对读单元工作回路对60A-60B提供有效的静电(法拉第)屏蔽。因此,在磁盘驱动器30读工作模式期间,前置放大器/驱动器集成块54在写磁通道62A和62B上提供对电接地面的低阻抗通道,以便当读通道磁通道60A-60B上的信号为低电平,且易于拾取不希望有的外部噪声信号时,在读数据操作期间写磁通道有效地接地。
如果磁通道导体组成多层磁通道阵列,则如图4和5所示,静电屏蔽变得更为容易。
图4的方案示出了写工作回路可被分为位于多层磁通道互连阵列16A的多层中的多个磁通道。多个写回路磁通道设在多层互连阵列16A中,用于围绕并静电屏蔽MR写单元工作回路对60A-60B。在图4的方案中,写回路导体62A分为四个并联磁通道62A1、62A2、62A3和62A4;另一个写工作回路导体62B也分为四个并联磁通道62B1、62B2、62B3和62B4。如果比如由挠性件14提供的接地面离开一段距离,例如使用上面提到的Bennin等人的专利US5,491,597中那么远的距离,则图4的设置就尤其有用。如果电接地面很近,而且如果电源及工作回路的返回线路对地面的电容需要平衡,那么图5中提出的多层磁通道互连阵列16B对读工作回路对60A-60B提供自屏蔽结构,同时还提供写回路对62A和62B对金属挠性件14所提供的接地面的平衡电容。
在图5和6的磁通道互连阵列16B中,由薄的钢挠性件14提供接地面。磁通道互连阵列16B形成于绝缘层25上,包括6个写回路磁通道,其中磁通道62A1、62A2和62A3并联形成导通通路62A;磁通道62B1、62B2和62B3并联形成导通通路62B。磁通道62B1和62B2位于最内层(或图6所示的最低层),与绝缘层25及挠性件14相临。磁通道62A3和62B2分别与62B1和62A1纵向及横向对准。因此,磁通道62A3在磁通道62B1的正上方,磁通道62B2在磁通道62A1的正上方。这种结构可以有效地产生两个写回路62A和62B对地的平衡电容。另外的写回路对磁通道单元62A2和62B3在中间磁通道层围绕读回路60A-60B。由图5可以看出,接近绝缘层25的最里层写磁通道对单元62A1、62B1和最外层或最上层的单元62A3和62B2的宽度约为读磁通道对60A-60B的两倍。可调整磁通道宽度,以达到所需的电阻抗特性,就像上述已授权专利中所述的那样。
对于图3的磁通道互连阵列16,图4和5的磁通道互连阵列16A和16B,各自需要读前置放大器/写驱动器集成块54在读数操作期间有效地接地写磁通道通道62A-62B,以使写磁通道起静电屏蔽作用保护读通道磁通道。图6表示一种接地设置。图6中的读磁通道导体60A-60B从MR读元件70伸向前置放大器/驱动器集成块54的前置放大器55a,写磁通道导体62A-62B从集成块54的驱动器55b伸向电感写元件72。当磁头70读取记录在存储磁盘36上的低电平磁通量时,在读操作过程中,集成块54中的开关结构74使写导体62A和62B有效接地。图6中示意地示出接地端66,还包括绕性件14。
磁通道互连阵列16通常采用任何适宜的图样成形方法被制成,或者通过光刻法和选择蚀刻法,或者通过选择用粘接剂将导体磁通道沉积压制或附着到绝缘层上等等。可在磁通道互连阵列16、16A和16B的最外层磁通道层上提供绝缘材料的保护膜,以防止磁通道被腐蚀或被氧化,和/或为结构提供所希望的机械性能。
虽然上面以目前的最佳实施例方式介绍了本发明,也即沉积的导体挠性件结构给出一个万向接头,但本领域的技术人员应能理解,本发明也可以结合起来使用,比如与一个一体化的万向接头加载臂结构,或其它具有类似安装、沉积或掩埋带或不带绝缘保护层的导体的导电支承元件结合使用。因此,应能理解,不可把本说明书解释为限定的方式。本领域的技术人员阅读上述公开之后,可以容易地想到各种改型和变化。因此,应将所附各权利要求解释为涵盖落入本发明精神实质和范围的各种变型和改进。
权利要求
1.一种自屏蔽一体化的挠性体/导体结构,用以将多元读/写磁头/滑块装置支撑于靠近存储媒体,使磁头读元件与读电路电连接,以及使磁头写元件与写电路电连接,所述挠性件/导体结构包括一个大致呈平面状的导电挠性件,它具有万向支架,用以将读/写磁头/滑块结构支撑于靠近相对运动的数据存储盘;沉积在所述挠性件上的第一绝缘层;多个电磁通道构成沉积的第一绝缘层上的连接写元件与写电路的写信号通道;多个电磁通道构成连接读元件与读电路的读信号通道;和磁通道屏蔽装置,它包括在所述一体化挠性件/导体结构中,用以在从存储媒体读取数据地情况下,于读取数据的操作过程中屏蔽读通道。
2.如权利要求1所述的自屏蔽一体化挠性件/导体结构,其特征在于,构成读通道的电磁通道形成于第一绝缘层上,与构成写通道的磁通道实质上平行地纵向对准;而且所述磁通道屏蔽装置由写通道中所包括的电磁通道构成,还包括在读数据操作过程中使写通道有效接地的装置。
3.如权利要求2所述的自屏蔽一体化挠性件/导体结构,其特征在于,构成读通道的电磁通道被布置在构成写通道的电磁通道的绝缘层内侧。
4.如权利要求1所述的自屏蔽一体化挠性件/导体结构,其特征在于,还包括第二绝缘层,它形成于第一绝缘层上;还包括由写通道构成的第二层磁通道;构成读通道的电磁通道形成于第二绝缘层上,并被与附带包含写通道相连的附加磁通道封闭。
5.权利要求4所述的自屏蔽一体化挠性件/导体结构,其特征在于,还包括第三绝缘层,它形成于第二绝缘层上,而且包含写通道的第三层磁通道被形成于覆盖构成读通道的电磁通道的第三绝缘层上。
6.一种存储和再现信息的磁盘驱动器,它包括磁盘驱动器基座;一个存储磁盘,它可转地安装在所述基座上,并由磁盘电机转动;一个滑块,它空悬于双元磁阻读/电感写磁头内,用以自存储磁盘读取信息和将信息写于其上;一个安装在基座上的可动传动装置,它以选择方式相对存储磁盘半径定位磁头;一个读前置放大器/写驱动器电路,它安装在所述传动装置上,用以与磁头通信;和一个一体化的导体支承机构,它连到所述传动装置上,用以将磁头支撑于靠近存储磁盘的位置处并以选择方式使磁头与信号处理装置相连,所述支承机构包括一个大体呈平面状的导电加载臂结构,它有一个靠近传动机构安装的端头和在末端装附磁头用的万向支架磁头安装区;一个绝缘层,它沿磁通道互连区附着于加载臂结构上,以及至少四个导电磁通道,它们沉积于临近加载臂的电绝缘层上,使导电磁通道中的两个磁通道将双元磁头的写元件与电路相连,并对在磁盘驱动器工作期间使双元磁头的读元件与电路相连的另外两个磁通道提供静电接地屏蔽。
7.如权利要求6所述的磁盘驱动器,其特征在于,所述读前置放大器/写驱动电路被装于可动传动装置一侧。
8.如权利要求6所述的磁盘驱动器,其特征在于,所述读前置放大器/写驱动器电路包括耦合装置,在磁盘驱动器读操作期间用于耦接被连接到写元件以接地的各导电磁通道。
9.如权利要求6所述的磁盘驱动器,其特征在于,所述加载臂结构包括一个大体呈平面状的导电挠性件,它有一万向支架,用以将磁头支撑在靠近相对运动的数据存储盘;沉积在所述挠性件上的第一绝缘层;和沉积在第一绝缘层上的电磁通道。
10.如权利要求9所述的磁盘驱动器,其特征在于,在第一绝缘层上形成与读元件相连的电磁通道,基本上平行地与连接到写通道上的磁通道纵向对准。
11.如权利要求10所述的磁盘驱动器,其特征在于,构成读通道的电磁通道设在形成写通道的电磁通道内侧的绝缘层上。
12.如权利要求9所述的磁盘驱动器,其特征在于,还包括第二绝缘层,它形成于第一绝缘层上方,还包括由使写元件连至电路的写通路组成的第二层磁通道,使读元件连到电路的电磁通道形成于第二绝缘层上,并被使写元件连至电路的附加磁通道所围绕。
13.如权利要求12所述的磁盘驱动器,其特征在于,还包括第三绝缘层,它形成于第二电绝缘层上方,使写元件连至电路的第三层磁通道形成于第三绝缘层上,此第三绝缘层覆盖使读元件连至电路的各电磁通道。
全文摘要
本发明提供了一种磁头支承机构,它有一体化的自屏蔽磁通道导体阵列,用以支撑双元读/写磁头,并使之与磁盘驱动器内的电路电气上互连。写磁通道位于靠近读磁通道处,并在读数据操作期间接地,以便在读数据操作期间静电屏蔽读磁通道。
文档编号G11B5/11GK1197267SQ9712628
公开日1998年10月28日 申请日期1997年9月30日 优先权日1996年10月3日
发明者阿鲁·巴拉克里舍纳 申请人:昆腾公司