数据存储盘的反转光学母盘的制造技术

文档序号:6749414阅读:274来源:国知局
专利名称:数据存储盘的反转光学母盘的制造技术
方法
技术领域
本发明总体上涉及数据存储光盘的制造领域,尤其是用在能够压制含高密度信息的数据存储盘的盘片模压工艺中的光学母盘制造方法。
背景技术
光盘是通过先制作母盘而制造的,在母盘上形成有所需的表面凹凸结构。所述表面凹凸结构是通过一个曝光步骤(例如通过激光刻录)和随后的冲洗步骤形成的。所述母盘用来制作压模,接下来用压模压制出母光盘基底形式的拷贝。这样,单张母盘上的表面凹凸结构、信息和精度就可以被转录到许多廉价的光盘基底拷贝上。
在制作母盘的曝光步骤,母盘制作系统使精细聚焦的光点的平动位置与母基底的旋转同步,以便在盘上形成理想道间距的总体上同心的结构或者螺旋结构。母盘制作过程所形成的,构成所需表面凹凸结构的所述总体上呈螺旋状的记录道,可以由称作“平台”的高区和相邻的称为“槽”和/或“凹点”(就是间断的槽)的较低区域形成。记录功率和聚焦光点的大小/形状(点径),以及感光材料的参数,决定了在随后的冲洗步骤中形成在母盘上的最终几何结构。一般的母盘制作使用高对比度的正性光致抗蚀剂作为所述感光材料。
传统的母盘制作一般使用波长λ为350nm<λ<460nm的激光,通过一个数值孔径(NA)为0.75nm<NA<0.90nm的物镜聚焦,以形成下述值的理论高斯点径(theoretical gaussian spot size)SS=0.57λ/NA(半高宽(FWHM))。
这样,350nm波长的激光,用NA=0.9的数值孔径,可得到0.22μm的理论点径(FWHM)。这是传统光学器件的实际极限。
在刻录了母盘之后,用冲洗液浸泡母盘,显露出母盘刻录系统形成的曝光图纹。所述光致抗蚀剂在冲洗液中的溶解是与刻录过程中预先接受的曝光度成比例的。对于给定的曝光和冲洗条件,光致抗蚀剂的溶解比例是可以模拟的(见Trefonus,P.,Daniels,B.,″New PrincipalFor Imaging Enhancement In Single Layer Positive Photoresist″(单层正性光致抗蚀剂成像增强的新原理),Proc.Of SPIE vo1.771p.194(1987),并见Dill F.et al.,″Characterization of PositivePhotoresists″(正性光致抗蚀剂的特性表征),IEEE Transactions onElectronic Devices(电气与电子工程师协会会刊电子器件卷),vol.ED-22 p.445(1975))。在这些引证的技术文献中所阐释的表达式可用来模拟记录在光致抗蚀剂中然后冲洗出来的若干相邻记录道的曝光效果。光致抗蚀剂在冲洗液中的溶解与其先前接受的曝光成比例(正性抗蚀剂)。更准确地说,溶解率(R)由下列Trefonas模型给出R[nm/sec]=R0x(1-M)q+Rb其中,R0和Rb是完全曝光和未曝光的光致抗蚀剂各自的溶解率,q是与抗蚀剂对比度有关的抗蚀剂参数,M是光致抗蚀剂中未转化的感光化合物的比例。对于商业上一般出售的抗蚀剂来说,在正常的冲洗液浓度下,取值一般是这样的q=3,10<R0<200[nm/sec],Rb=0。其中的M项逐点地取决于抗蚀剂接受的曝光多少(E(x,y,z))和抗蚀剂在下述Dill经验方程(Dill convention)中的敏感度参数“C”M(x,y,z)=exp{-CxE(x,y,z)}。
由于母光盘的制作使用的一般仅是50-200nm厚的光致抗蚀剂,z方向上的曝光完全可以忽略,因此上述两方程可以合并为R=R0(1-exp{-CE(x,y)})q;或者,如果曝光截面大致为圆形高斯面(circular gaussian),则可简化为R=R0(1-exp{-CkPexp[-r2/SS2]})q;其中,r表示点中央算起的径向距离(r2=x2+y2),P是记录功率,k是高斯方程的归一化常数。该溶解率乘以冲洗时间(td),即可给出光致抗蚀剂从其初始覆盖厚度(T0)减少的深度。因此,最终的抗蚀剂厚度(T(t))由方程式T(td)=T0-tdR0(1-exp{-CkPexp[-r2/SS2]})q给出;从该表达式可以看出,曝光度(P)、冲洗(td,R0)和光致抗蚀剂厚度(T0)是如何决定最终的表面凹凸结构的。
在某些方面,所述曝光冲洗工艺与传统的照相术类似。在照相术中,无论是曝光还是冲洗都可以根据需要加以控制和调节,以获得所需的最终冲洗图案。在这个意义上,可以将曝光冲洗强度当作一种可变的过程,其另外还可以通过记录功率、冲洗时间和冲洗液浓度等加以控制。
在母盘制作过程中,希望同时获得宽的平台(用于用户记录特征)和用于提供充分的跟踪信号的合适的槽深(例如大于50nm)。更高密度的数据存储盘经常需要在同样的或者更小的盘片面积上存储更大量的信息,这就需要更小的道间距(即记录道之间的距离)设计尺度。
已有一些努力试图满足这样的设计尺度。在

图1到图3的现有技术中,举例示出了用传统的母盘制作技术制造的母盘的表面凹凸结构,并用前述表达式模拟了记录于光致抗蚀剂层中然后冲洗的相邻记录道的曝光效果。这些比较假定了以下条件(1)普通的光致抗蚀剂和冲洗剂参数,(2)恒定的冲洗时间(=40sec),(3)SS=0.23μm,(4)0.375μm的道间距和100nm的光致抗蚀剂初始厚度。随着为获得更深的槽而提高记录功率(或者增加冲洗时间),剩余平台宽度逐渐减小,由于相邻记录道的曝光重叠,平台逐渐变得更圆。部分冲洗的感光材料与最初覆盖在光盘上的感光材料相比,具有更高的颗粒粗糙度(granular roughness)。随着槽的加深,平台的粗糙度恶化,从而导致数据回放时产生额外的噪声。
当道间距逼近母盘制作点径的极限时,会出现更多的问题。对于所需道间距远远大于(大于二倍的)母盘制作点径(ss)的极限的格式,平台感光材料的被侵蚀是可以忽略的,传统的母盘制作方法在槽深大于50nm时仍能提供宽的平台。但是,对于道间距小于两倍的点径时,传统的母盘制作方法要么就要牺牲平台宽度,要么要牺牲槽深,或者是二者折衷(原因是相邻记录道的曝光重叠)。
在图4中,示出了利用传统的母盘制作方法时,平台宽度和槽深之间的一种必然关联的例子。(记录点径为0.22μm时,道间距分别为0.375μm和0.425μm的例子)。随着槽深增加,平台宽度递减。对于给定的道间距和母盘制作点径条件,母盘表面凹凸结构的几何结构(也就是平台宽度和槽深)是有限制的。这意味着,设计者不可能独立地确定拷贝盘平台宽度和槽深的参数。
传统的母盘制作的另一个问题是,平台宽度的精度受机械道间距精度(即母盘记录系统的机械精度)的限制,随着道间距变小,所述机械道间距精度就越难以控制。
发明方案概述本发明提供了一种数据存储母盘及制作数据存储母盘的方法,其中,用户可以单独地确定拷贝盘平台宽度和槽深的参数。数据存储母盘用来在数据存储盘的模压工艺中制作能够用各种盘片格式存储大容量信息的拷贝盘。
在第一种实施例中,本发明提供一种制作用在数据存储盘模压工艺中的数据存储母盘的方法。所述数据存储盘模压工艺制作的拷贝盘具有由拷贝平台和拷贝槽形成的表面凹凸结构。该方法包括一个提供母基底的步骤。母基底覆盖有一层特定厚度的感光材料。在所述数据存储母盘中刻录由母平台和母槽构成的表面凹凸结构,这其中包括所述感光材料的曝光和冲洗步骤。控制特定厚度感光材料的曝光和冲洗,使形成的母槽一直延伸到母基底和感光材料层之间的基底界面上,并使母槽在基底界面处的宽度对应于拷贝平台所需的宽度。
确定和控制感光材料的厚度,使之对应于拷贝槽所需的深度。另一方面,根据母盘记录系统点径、所需的道间距、所需的拷贝槽深来确定和控制感光材料的厚度。控制数据存储母盘的曝光和冲洗的步骤可以包括控制感光材料的曝光和冲洗以获得平坦的母槽底的步骤。另一方面,控制数据存储母盘的曝光和冲洗的步骤包括控制感光材料的曝光和冲洗以获得光滑的、平坦的母槽底的步骤,所述光滑度由母基底确定。
控制感光材料的曝光和冲洗的步骤可以包括控制用来使感光材料曝光的光能的步骤,以使得在经过冲洗和去除感光材料后足以获得所需的母槽底宽。另一方面,控制感光材料的曝光和冲洗的步骤可以包括控制感光材料的冲洗的步骤,以使得在经过冲洗和去除感光材料后足以获得所需的母槽宽度。
数据存储母盘的曝光和冲洗步骤可以包括形成槽底的步骤,其中,所述槽底相对于母平台来说是平坦的。数据存储母盘的曝光和冲洗步骤使得所述数据存储母盘形成由母平台和母槽构成的母盘表面凹凸结构,其中,拷贝盘上的表面凹凸结构的方向与数据存储母盘的表面凹凸结构相反。
本发明还可以包括将母基底抛光使之光学平滑的步骤,以及利用所述母基底形成平滑的母槽底的步骤。其中一方面,提供母基底的步骤包括形成由玻璃制成的母基底。所述玻璃最好被抛光。所述感光材料可以通过中间层或不通过中间层粘合到所述母基底上。
本发明还可以包括用所述数据存储母盘形成第一代压模。然后利用所述第一代压模制作拷贝盘。用数据存储母盘制作拷贝盘的步骤可以用多世代压模工艺(multiple generation stamper process)完成。
在另一个实施例中,本发明提供了一种用反转压模工艺从母盘制作拷贝盘的方法。所述拷贝盘能够存储高容量的信息。所述拷贝盘具有由拷贝平台和拷贝槽形成的表面凹凸结构。该方法包括提供母盘的步骤。母基底的至少一部分覆盖有一层感光材料,从而形成母盘。在该母盘上刻录有母平台和母槽构成的表面凹凸结构,这包括下列步骤用激光束刻录机按所需的一定道间距的记录道结构使感光材料曝光,然后冲洗所述感光材料。控制感光材料的曝光和冲洗,使形成的母槽一直延伸到母基底和感光材料层之间的基底界面上,从而使母槽在基底界面处的宽度相应于拷贝平台所需的宽度。从该母盘制得第一代压模。然后从第一代压模制得第二代压模。从该第二代压模制得拷贝盘,拷贝盘具有的表面凹凸结构与母盘上的方向相反。
本发明还可以包括控制感光材料层的厚度,使之相应于所需的拷贝槽深的步骤。确定的受控制的感光材料厚度取决于母盘记录系统点径、所需的道间距以及所需的拷贝槽深。
控制感光材料的曝光和冲洗的步骤可以包括控制感光材料的曝光和冲洗以获得平坦的母槽底的步骤。在感光材料中刻录所需的道间距的步骤还可以包括点径大于道间距一半的聚焦激光束的使用。
制作母基底的步骤可以包括提供一个用玻璃制成的母基底。而且,该母基底可以被抛光。
在本发明的一个方面,所需的记录道结构是由相邻的母平台和母槽形成的螺旋形记录道,其中,母盘的曝光冲洗步骤包括形成一个由盘片基底构成的宽而平坦的母槽底。刻录母盘的步骤包括母槽底的形成,对于所需的道间距来说,所述槽底的宽度并不必然取决于母盘的槽深。这样所得到的母槽深取决于为感光材料规定的厚度,以及在两相邻记录道之间正中的位置感光材料层所受到的累积曝光量。具体来说,这取决于所需的槽底宽度以及母盘记录点径与所需道间距的比例。
在另一个实施例中,本发明提供了一种母盘。该母盘包括一个母基底。母基底的至少一部分覆盖有一层感光材料。所述感光材料包括一种表面凹凸结构,这种结构为记录道纹路的形式,由相邻的母平台和母槽构成。母盘的槽一直向下延伸到盘的基底,母盘的槽包括母槽底,母平台包括母平台顶,其中,母槽底比母平台顶要宽。
母槽底通常是平坦的。具体来说,母槽底相对于母平台顶来说是平坦的。更具体来说,母槽底相对于母平台顶来说可以宽而平。母槽底的角落最好是锐角。另外,经过曝光冲洗的母盘上的所有槽底在母基底平坦度的精度范围内都是相齐的。这一点对于浮动光头媒介的应用,比如对于近场记录技术来说,是很重要的,在所述技术中,微小的透镜在拷贝盘表面附近浮动。
在道间距大于点径的约1.6倍时,母槽的槽深可以接近感光材料的厚度。在一种情况下,母槽的槽深大于50nm,道间距小于母盘制作系统点径的两倍,母槽底宽大于所需道间距的25%。在另一种情况下,母槽底宽大于所需道间距的50%。
在另一个实施例中,本发明提供一种具有一个拷贝基底的盘,该基底具有一个主表面和一个副表面。主表面上具有记录道图纹形式的表面凹凸结构,由相邻的平台和槽构成。所述记录道图纹的道间距小于425nm,其中,所述槽向下延伸至盘的基底。所述槽包括槽底,所述拷贝平台包括平台顶,其中,平台顶是平坦的。在近场记录技术中,这一点尤其重要。在近场记录技术中,透镜到介质表面的距离是极为关键的。
在一种情况下,平台顶的宽度大于道间距的25%。在道间距小于或等于400nm的一种优选的情况下,槽深大于80nm,平台宽度大于160nm。最好,平台顶光滑而有锐边。在一种优选实施例中,平台顶在母基底平坦度的精度范围内是相齐的。平台顶是水平的并相对于副表面在同一高度。这一点对于浮动光头媒介的应用,比如对于近场记录技术来说,是很重要的,在所述技术中,微小的透镜在拷贝盘表面附近浮动。
图面的简要说明所附图面用来进一步理解本发明,系本说明书的不可分割的一部分。所述附图用来说明本发明的实施例,并同文字说明一起用来阐释本发明的原理。由于联系着附图阅读下文的详细说明有助于更好地理解本发明的其它实施例和所要实现的优点,这些实施例和优点变得相当容易领会。在所有的附图中,相同的标记代表相同的部分。这些附图中图1是用来图解一种现有技术的已刻录母盘上的表面凹凸结构的局部剖面图;图2是用来图解利用现有技术的记录方法获得的另一个母盘上的表面凹凸结构的局部剖面图;图3是用来图解利用现有技术的记录方法获得的另一个母盘上的表面凹凸结构的局部剖面图;图4是一个曲线图,用来说明在一个用现有的母盘制作和记录技术获得的母盘中母槽深与母平台宽度之间的关系;图5是一个剖面图,用来说明本发明的利用数据存储盘母盘制作工艺制造的已刻录母盘的一种实施例;图6是图5中沿6-6线的局部放大剖面图;图7是一个放大的局部剖面图,用来说明按照本发明制作母盘的一个步骤;图8的示意图用来说明按照本发明制作母盘的另一个步骤;图9的图表用来说明用本发明的方法制作的母盘的表面几何结构的一种实施例;图10的图表用来说明用本发明的方法制作的母盘的表面几何结构的另一种实施例;图11的图表用来说明用本发明的方法制作的母盘的表面几何结构的另一种实施例;图12的曲线图用来说明用本发明的母盘制作方法获得的母盘实施例中母盘最大槽深与母槽底宽之间的关系;图13到图18图解了用本发明的母盘制作方法获得的记录道间距为0.375和0.425μm的母盘的几种不同表面凹凸几何结构通过实验获得的原子力显微轨迹(atomic force microscope traces);图19的示意图用来说明按照本发明用多世代光盘模压/复制工艺从一个母盘获得的拷贝盘的槽纹取向;图20是用来说明本发明的数据存储盘母盘制作工艺的框图;图21是用来说明按照本发明用母盘制作拷贝盘的方法的框图。
详细说明本发明包括一个数据存储母盘和用来制作单个数据存储母盘的母光盘制作方法。本发明的所述方法所实现的数据存储母盘的槽一直向下延伸至母基底,形成深、平、宽的母盘槽纹。所述母盘可以用在光盘模压工艺中,这种工艺包括反转母盘的制作过程和反转模压的过程,从而获得具有宽而平的具有锐边的平台,并具有比用传统的母盘制作工艺获得的拷贝盘更深的槽纹的拷贝盘。因此,在含高密度信息的模压数据存储盘的表面凹凸几何结构能够实现灵活设计方面,本发明尤其有用。这方面,本发明的方法即使在道间距小于两倍的母盘制作系统激光束点径的拷贝盘中,也能够获得宽而平的平台结构。
在图5中,示出了本发明的一个数据存储母盘20的全部。母盘20可以用作制作各种格式的数据光盘的盘复制工艺(即光盘模压工艺)的一部分。数据光盘上的数据记录形式可以包括数据凹点、槽、凸起或螺纹、平台或平台区。这包括当前的音频CD、CD-ROM和视盘比如DVD的格式,以及将来的使用在此说明的数据记录形式的格式。数据光盘的定义可以包括各种类型的可记录光盘(例如CDR、磁光盘或者相变盘格式),这些光盘通常使用表面凹凸结构,比如槽或者凹点,来进行跟踪和地址识别,即使用户后来刻录数据也是如此。
母盘20具有“数据道”(data tracks)22形式的表面凹凸结构(即表面几何结构)(为清晰起见,图中放大显示),该结构可以包括代表编码在其中的数据的凹凸特征,或者可以允许在该凹凸结构上存储、读取和跟踪数据。光盘上的数据道22可以设计为起始于盘中央26、终止于盘外沿28的螺旋记录道24,或者相反地,所述螺旋记录道24可以起始于盘的外沿28而终止于盘中央26。数据也可以记录在一系列同心的记录道中,这些记录道从盘中央26开始,在径向上相互间隔设置。母盘20可以包括也可以不包括中央孔,可以有或者没有盘心。
图6是一个局部剖面图,图解的是本发明的母盘20的一个实施例。母盘20包括一个数据层30和母基底32(图中示出了其一部分)。数据层30具有一种表面凹凸结构,这在图中示为数据道22。数据道22由形成于数据层30中的一系列相邻的母平台34和母槽36形成(例如形成螺旋记录道24)。母盘槽纹的侧面38、40是由相邻的母平台34形成的,母槽并包括一个由母基底32形成的母槽底42。母基底32提供了一个宽、平、光滑的母槽底42。
数据层30是感光材料组成的,最好是由光聚合物或者是光致抗蚀剂组成。母槽36的深度44等于母平台34相对于母基底32的高度,并与数据层30的初始厚度有关。母槽深44还可能受母盘制作点径、道间距以及光致抗蚀剂的对比度的影响。母槽36的深度最好大于50nm,其一般在50nm到120nm之间。母槽底42最好如母基底32那样平坦而光滑,其宽度46最好大于所需道间距的35%。
在一种优选实施例中,母基底32是由玻璃制成的,最好是抛光的和/或光学平滑的。母基底32的厚度一般在5mm到6mm之间。数据层30可以粘到母基底32上。具体地,数据层30可以直接镀到母基底32上,或者可以包括一个中间层(该中间层可以是一个粘合层)。
本发明的母盘制作方法提供的母盘20具有相对较深的母槽36,并具有宽而平坦的母槽底42。因此,当将母盘20用在反转光学母盘制造工艺中时,转换到拷贝盘上的母平台和母槽就具有相对较深的槽和宽而平的平台。对于许多高密度的可擦写光盘格式来说,这种特性是很有用处的。
按照本发明的母盘制作工艺形成的母槽底是平坦的(而不是象在传统工艺中那样是圆的),并具有母基底所形成的光滑度(例如抛光玻璃),并具有锐边角。当与反转模压工艺结合使用时,就可使所实现的拷贝盘具有锐边角的、宽而平坦且光滑的平台,以及深的槽。对于盘上的用户记录的数据来说,宽而平坦的平台是有利于定位的。锐边角为用户记录数据提供了域约束(domain confinement)(例如在数据以磁光方式记录在平台顶部的应用中)。宽而平且具有锐边角的平台和深槽使记录介质基底的跟踪或者跟踪能力得到改善。由于母基底32(其最好是光学抛光的玻璃)形成的槽底42是光滑的,拷贝盘的平台顶部非常光滑。平台顶部的光滑度是由母基底32和感光材料层30之间的基底界面确定的。平台顶部的光滑度可减少以后从盘片读出数据时的噪声。
另外,由于槽底42是由母基底32形成的,所述宽而平的平台是相互平齐的。平坦的平台是相互平齐的,且在同一高度,从而,对于应用浮动光头的情况,增强了盘片基底的可扫描性(flyability)。
现在看图7和图8。图中示出了本发明用在数据存储盘模压工艺中的制作母光盘的一种方法。在图7中,提供了母基底32,其最好是由玻璃制成的。母基底32的厚度一般在5mm到6mm之间。母基底32具有一个主表面50。主表面50最好光学抛光。主表面50至少部分地覆盖有(例如镀有)数据层30。数据层30也可以镀在一个中间层(例如粘合层)60(图中未示出)上。
见图8,母盘20被放置在一个母盘录制系统(例如激光录制器或者掩膜录制系统)上。在一种实施例中,母盘录制系统60包括控制器61、线性平移系统62、母盘录制器64以及录制台66。母盘录制系统60用来以聚焦的点状激光来对母盘20进行受控曝光,以在母盘中刻入所需的表面凹凸结构(即几何结构)或者数据道。
母盘20被放置在录制台66上,可以利用现有技术,例如使用转轴或者有盘心的母盘20,将母盘相对于母盘录制器64关于一个中心轴68定位(例如对中)。录制台66可关于所述中心轴68旋转,如图中旋转箭头70所示,以在盘片录制过程中旋转母盘20。母盘录制器64调制并聚焦激光束72,使数据层30以所需的图形曝光。另外,母盘录制器64与线性平移系统62机械耦合,以实现母盘录制器64相对于中心轴68的轴向运动,如图中方向箭头76所示。
控制器61与线性平移系统62和母盘录制器64相连(以61A表示),并连接到录制台66(以61B表示)。控制器61的工作将最终聚焦的激光束72的平动位置与母盘20的旋转70同步,以在数据层30中曝光形成螺旋形记录道24。另外,控制器61可以调制激光束72,在盘片上的光头区曝光形成凹点区(间断的槽)。控制器61可以是基于微处理器的可编程逻辑控制器、计算机或者逻辑门序列,或者是其它的能够执行一系列逻辑运算的设备。
按照本发明,控制器61控制母盘录制系统60的光能,使母盘20的感光材料曝光到在冲洗和去除已曝光的感光材料后足以获得所需的母槽底宽的程度。光能的控制可包括控制录制功率,或者控制录制速度,以使感光材料曝光到足够的程度,以便在将曝光的感光材料冲洗和去除后获得所需的母槽底宽。例如,控制器61可以提高记录功率或者降低录制速度,从而增强感光材料的曝光。
激光录制的母盘20从录制台66取下后浸入冲洗剂溶液中,将母盘录制系统60所形成的曝光图案“显影”。数据层30溶解到冲洗液中的量与录制过程中其接受的光能成比例。另外,数据层30溶解到冲洗液中的量还与冲洗过程的参数成比例,所述参数包括冲洗液的浓度、冲洗时间以及温度。冲洗液的类型可以类似于本领域技术人员所知的用在传统录制工艺中的冲洗液。因此,通过控制曝光和冲洗过程,就可以在感光材料中实现所需的表面凹凸结构。由于母盘录制系统60受到了控制,使得数据层30的有关部分完全溶解,直抵母基底32,所以,尤其是对于录制的记录道间距小于母盘制作点径之2倍的情况,所得到的母槽(此前示于图6中者)包括由母基底32形成的母槽底。上述母盘制作工艺使得母平台具有圆形的峰,而母槽则具有平坦的、宽的,并且最好是平滑的母槽底。
在图9到图11中,示出的实施例用来说明在本发明的母盘录制方法中被过度曝光或过度冲洗的母盘20A、20B、20C的表面凹凸结构或者说数据道。在每个附图(也就是图9到图11)中,数据层30的曝光量或者冲洗量被增加了。见图9,母盘录制/冲洗过程导致形成母槽36A的母平台34A被一直曝光到母基底32A。母槽36A的槽深为92nm,相应的平坦的母槽底42的宽度为120nm。类似地,图10图示了表面凹凸结构或者数据道22B,其母平台34B确定的母槽36B一直深入到母基底32B。母槽36B的槽深为88nm,相应的平坦母槽底42为160nm宽。图11示出的母盘32C的母平台34C确定的母槽36C的母槽底42C是由母基底32C确定的。母槽36C的槽深为82nm,平坦的母槽底42为200nm宽。母盘20在盘的录制过程中过度曝光得越厉害,对母平台的侵蚀就越多,所形成的母槽底就越宽。
图12中的曲线图说明了使用本发明的母盘录制方法时母平台宽度和母槽深之间的对应关系。用传统的母盘制作方法,对于给定的数据层厚度,母槽深和母槽底宽是相互关联的(见图4)。用本发明的母盘制作方法,通过选择数据层的初始厚度以及曝光冲洗强度,可以各自独立地确定平台宽和槽深。换句话说,母槽深不依赖于母槽底宽,母槽底宽也不依赖于母槽深。这两个参数是可分的。并且,通过选择所需的数据层厚度,并控制曝光和冲洗标准,即可达到所需的母盘设计尺度。
在所示的实施例中,曲线图示出了通过提高初始感光(数据)层(曲线78)并/或增强感光层的曝光能量/冲洗(曲线79)所获得的设计尺度。在所有的实施例中,假定点径为0.22μm。曲线80的初始数据层厚度为120nm,曲线82的初始数据层厚度为100nm,曲线84的初始数据层厚度为80nm,曲线86的初始数据层厚度为60nm。如图中所示,母盘表面几何结构不再受到传统母盘制作工艺中母平台宽度与母槽深之间的关联的限制。以各种不同的初始数据层厚度为起始条件,通过控制曝光冲洗强度,用本发明的母盘制作方法可以获得宽度-深度参数空间中任何一点的值。尽管图12示出了从不同的初始感光材料厚度出发如何可以获得宽度-深度参数空间中任何一点的值,图13到图18仍然示出了支持性的实验结果,所述实验结果是利用本发明的母盘制作方法获得的道间距为0.375μm和0.425μm的几种不同几何结构的原子力显微(AFM,atomic force microscope)轨迹。
本发明的母盘录制方法(最好)用在反转母盘或者反转压模制作工艺中,用来制造具有宽而平(且光滑)的平台凸起且道间距小于两倍的母盘制作系统点径的拷贝盘。图19的示意图示出了从第一代压模模压而得的光盘基底(即拷贝盘)的“槽”的取向,以及按照本发明从母盘获得的第二代或者第三代压模。该示意图包括用来说明母盘90、第一代压模92、第二代压模94、第三代压模96、拷贝盘基底1、拷贝盘基底2、拷贝盘基底3的数据道的取向的放大的局部剖面图。数据道刻录在母盘90上,其取向取决于拷贝盘基底是从第一、第二还是第三代压模压制。
具体来说,母盘90包括具有母平台106和母槽108的母盘数据层104。第一代压模92的第一代压模数据层110具有第一代压模平台112和第一代压模槽114。第二代压模94的第二代压模数据层116具有第二代压模平台118和第二代压模槽120。第三代压模96的第三代压模数据层122具有第三代压模平台124和第三代压模槽126。类似地,拷贝盘基底1的基底1数据层128具有基底1平台130和基底1槽132;拷贝盘基底2的基底2数据层134具有基底2平台136和基底2槽138;拷贝盘基底3的基底3数据层140具有基底3平台142和基底3槽144。
从第一代压模92模压而得的基底1数据层128的取向对应于母盘数据层104的取向。具体来说,第一代压模数据层110是母盘层104的反转。类似地,拷贝盘基底1数据层128是第一代压模数据层110的反转。
第二代压模94数据层116是第一代压模92数据层110的反转,因此拷贝盘基底2数据层134是第二代压模94数据层116和母盘数据层104的反转。类似地,第三代压模96数据层122是第二代压模94数据层116的反转。因此,盘基底3数据层140是第三代压模数据层122的反转,与母盘数据层104的取向相应或者说具有相同的取向。
我们知道,母盘数据层104所需的取向取决于拷贝盘基底针对其用途所需的取向。对于道间距小于两倍的母盘制作系统点径的高密度拷贝盘(并且是空气入射媒介(air incident media))的例子来说,需要使用用本发明的母盘录制方法得到的母盘,并需要使用第二代模压工艺,这样得到具有宽、平而光滑的平台和深槽的拷贝盘。或者,对于透过基底读的盘来说,用本发明的母盘录制方法形成的母盘可能被用在第一代模压或者第三代模压工艺中,希望模压出具有平坦的凹点或者凹槽的拷贝盘。
或者可以使用其它的模压工艺。例如,在另一种实施例中,使用了金字塔式系列电铸法(electroforming pyramiding family process)。这种方法包括从用本发明的方法形成的母盘电铸形成“父”压模或者第一代压模。将该父压模清洗、处理,然后送回镍浴(nickel bath)中刻(plate)“母”(mother)压模或者第二代压模。这种工艺循环可重复多次,形成从单个父压模或者第一代压模制得的多个“母”压模或者第二代压模。可以用所述“母”压模重复同样的电铸过程,从而从每个“母”压模制得若干“儿”(“daughter”)压模或者说第三代压模。
图20的框图说明了用按照本发明制得的母盘制得拷贝盘的一种方法110。所述母盘的用途是用在数据存储盘模压工艺中。数据存储盘模压工艺制得的拷贝盘的表面凹凸结构具有拷贝平台和拷贝槽。在所示的实施例中,该方法110的第一个步骤是提供一个母基底(112)。该母基底至少部分地覆盖有一种感光材料,后者最好是由光致抗蚀剂组成的(114)。然后在数据存储母盘中录制包括母平台和母槽的表面凹凸结构,这个过程包括将感光材料曝光并冲洗的步骤(116)。进行控制,曝光并冲洗特定厚度的感光材料,形成直达母盘基底和感光材料层之间的基底界面的母槽,并使得母槽在基底界面处的宽度等于拷贝平台所需的宽度(118)。
这样,就可以在盘片模压工艺中使用所述母盘了。具体来说,从所述母光盘制作一个压模(120)。再从该压模制作拷贝盘(122)。该拷贝盘能够存储高容量的信息。在一种应用中,本发明对于刻录小于两倍的母盘录制器点径的道间距尤其有用。
图21的框图说明了依照本发明在多世代盘片模压工艺中使用母盘的一种实施例130。所述母盘是用本说明书前文所述的单一方法制造的(132)。所述方法包括将所述数据层曝光并冲洗,直达所述母盘基底。从该母盘制得第一代压模(134)。从该第一代压模即可制得拷贝盘(136)。
或者,从所述第一代压模制得第二代压模(138)。然后从该第二代压模(140)制得拷贝盘。进一步,可以从第二代压模制得第三代压模(142)。从该第三代压模可制得拷贝盘(144)。
感光材料包括光聚合物或者光致抗蚀剂,或者其它的具有类似的感光特性的材料或材料混合物。合适的感光材料包括可从销售商Shipley、OCG等买到的标准正性高分辨率光致抗蚀剂。在阅读了本说明书之后,对于本领域技术人员来说,可以很清楚有其它什么样的合适感光材料。
可用在本说明书所说的成形层、拷贝层或者粘合层中的合适的光聚合物包括HDDA(4x6x)聚乙烯非饱和单体(polyethylenicallyunsaturated monomer)-二丙烯酸己二酯(hexanediol diacrylate);chemlink 102(3x)单乙烯非饱和单体(monoethylenically unsaturatedmonomer)-丙烯酸二甘-乙酯(diethylene glycol monoethyl etheracrylate),elvacite 2043(1x3x)有机聚合物-聚甲基丙烯酸乙酯,以及irgacure 651(.1x.2)惰性基团接触剂(latent radical initiator)-2,2-二甲氧基-2-甲基二苯酮(2,2-diamethhoxy-2-phenylacetophenone)。另一种合适的光聚合物包括HHA(hydantoin hexacryulate)1x,HDDA(hexanediol diacrylate)1x,以及irgacure 651(.1x.2)惰性基团接触剂-2,2-二甲氧基-2-甲基二苯酮(2,2-diamethhoxy-2-phenylacetophenone)。在阅读了本说明书之后,对于本领域技术人员来说,可以很清楚有其它什么样的合适感光材料。
权利要求
1.一种制作用在数据存储盘模压工艺中的数据存储母盘的方法,其中,所述数据存储盘模压工艺制得的拷贝盘具有由拷贝平台和拷贝槽构成的表面凹凸结构,该方法包括下列步骤提供母基底;用一层感光材料覆盖所述母基底;在所述数据存储母盘中刻录由母平台和母槽构成的表面凹凸结构,包括所述感光材料的曝光和冲洗步骤;控制特定厚度的感光材料的曝光和冲洗,使形成的母槽一直延伸到母基底和感光材料层之间的基底界面上,并使母槽在基底界面处的宽度相应于拷贝平台所需的宽度。
2.一种用反转压模工艺从母盘制作拷贝盘的方法,所述拷贝盘能够存储高容量的信息,具有由拷贝平台和拷贝槽形成的表面凹凸结构,该方法包括下列步骤提供母基底;将母基底的至少一部分覆盖一层感光材料而形成母盘;在该母盘上刻录由母平台和母槽构成的表面凹凸结构,这包括下列步骤用激光束刻录机按所需的一定道间距的记录道结构使感光材料曝光,然后冲洗所述感光材料;控制感光材料的曝光和冲洗,使形成的母槽一直延伸到母基底和感光材料层之间的基底界面上,并使母槽在基底界面处的宽度相应于拷贝平台所需的宽度;从该母盘制得第一代压模;从第一代压模制得第二代压模;从第二代压模制得拷贝盘,拷贝盘具有的表面凹凸结构与母盘上的方向相反。
3.如权利要求1或2所述的方法,还包括控制感光材料的厚度使之相应于所需的拷贝槽宽度的步骤。
4.如权利要求1或2所述的方法,还包括下述步骤根据母盘记录系统点径、所需的道间距、所需的拷贝槽深来确定和控制感光材料的厚度。
5.如权利要求1或2所述的方法,其中,控制感光材料的曝光和冲洗的步骤包括控制感光材料的曝光和冲洗以获得光滑的、平坦的母槽底的步骤,所述光滑度由母基底确定。
6.如权利要求1或2所述的方法,其中,控制感光材料的曝光和冲洗的步骤包括控制感光材料的冲洗的步骤,以使得在经过冲洗和去除感光材料后足以获得所需的母槽宽度。
7.如权利要求1或2所述的方法,其中,感光材料的曝光和冲洗步骤包括形成槽底的步骤,其中,所述槽底相对于母平台来说是平坦的。
8.如权利要求1或2所述的方法,还包括下列步骤将母基底抛光使之光学平滑;利用所述母基底形成平滑的母槽底。
9.如权利要求2所述的方法,其中,所述激光束刻录机使用具有一点径的聚焦激光束,对所述母盘的刻录包括刻录小于两倍的聚焦激光束点径的所需道间距。
10.一种母盘,包括一个母基底;一层感光材料,其覆盖所述基底的至少一部分,所述感光材料包括一种表面凹凸结构,这种结构为记录道纹路的形式,由相邻的母平台和母槽构成,其中,所述槽一直向下延伸到所述基底,所述槽具有槽底,所述平台具有平台顶,其中,槽底比平台顶要宽。
11.一种压模,其包括一个压模基底,该基底具有一个主表面和一个副表面,主表面上具有记录道图纹形式的表面凹凸结构,由相邻的平台和槽构成,其中,所述槽向下延伸至盘的基底,所述槽包括槽底,所述平台包括平台顶,其中,槽底比平台顶宽。
12.如权利要求10或11所述的物品,其中,槽底总体上是平坦的,并相互平齐。
13.如权利要求11或12所述的物品,其中,槽底相对于平台顶来说宽而平。
14.如权利要求11或12所述的物品,其中,槽底具有锐角。
15.如权利要求11或12所述的物品,其中,槽的槽宽大致等于感光材料的厚度。
16.如权利要求11或12所述的物品,其中,槽深大于100nm。
17.如权利要求16所述的物品,其中,道间距小于425nm。
18.如权利要求11或12所述的物品,其中,母槽底宽大于250nm。
19.如权利要求17所述的物品,其中,槽底的宽度大于道间距的35%。
20.一种从如权利要求10到19之任何一项所述物品制得的盘。
全文摘要
一种数据存储母盘以及制作数据存储母盘(20)的方法。数据存储母盘用在数据存储盘的复制工艺中。数据存储盘模压工艺制得的拷贝盘具有由拷贝平台和拷贝槽构成的表面凹凸结构。所述方法包括下列步骤:提供母基底(32);用一层感光材料(30)至少部分地覆盖所述母基底;在所述数据存储母盘中刻录由母平台(34)和母槽(36)构成的表面凹凸结构,包括所述感光材料的曝光和冲洗步骤;控制特定厚度的感光材料的曝光和冲洗,使形成的母槽一直延伸到母基底和感光材料层之间的基底界面上,并使母槽在基底界面处的宽度等于拷贝平台所需的宽度。
文档编号G11B7/007GK1295711SQ99804611
公开日2001年5月16日 申请日期1999年4月2日 优先权日1998年4月6日
发明者贾塞恩·D·爱德华 申请人:伊美申公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1