薄膜形成器件,形成薄膜的方法和自发光器件的制作方法

文档序号:6858075阅读:208来源:国知局
专利名称:薄膜形成器件,形成薄膜的方法和自发光器件的制作方法
技术领域
本发明涉及一种自发光器件,其具有EL元件,所述EL元件被形成在绝缘体上,并被构成具有阳极、阴极和被夹在所述阳极和阴极之间的用于提供电发光的有机发光材料(以后称为有机EL材料),一种以这种自发光器件作为显示装置(显示器或监视器)的电气设备,以及用于制造所述自发光器件的方法。应当说明,这种EL显示器件有时被称为OLED(有机发光二极管)。
近来,使用ELY作为利用有机发光材料的电发光的自发光器件的显示器件(EL显示器件)得到了积极的发展。因为EL显示器件是自发光类型的,不像液晶显示器件一样,不需要背景光。此外,因为其具有宽的视角,所以EL显示器件有希望作为电气设备的显示装置。
EL显示器件被分为两种无源型的(简单阵列型);和有源型的(有源阵列型),它们都有了积极的发展。尤其是,有源阵列型的EL显示器件近来更有吸引力。关于作为EL元件的核心的EL层的EL材料,已经研制出了低分子量有机EL材料和大分子(聚合物)有机EL材料。
通过墨喷、蒸发、旋涂或类似工艺制成EL材料的膜。关于蒸发,使用掩模控制形成膜的位置。其中存在的问题是,EL材料虽然不通过掩模,但是仍然被淀积在掩模上。
本发明就是根据上述问题作出的,因此,本发明的目的在于提供一种方法,用于选择地形成EL材料的膜,而不会由于蒸发而造成浪费,其中EL材料通过使用掩模借助于电场被控制。本发明的另一个目的在于改善控制形成膜的位置的精度。本发明还有一个目的在于,使用这种措施提供一种自发光器件,并提供用于制造所述自发光器件的方法。本发明还有一个目的在于,提供一种利用这种自发光器件作为显示装置的电气设备。
为了实现上述目的,按照本发明,对所述掩模和在其上要形成膜的一个像素电极施加电压。
按照本发明,EL材料被提供在一个船形的试样器皿中。通过使所述EL材料蒸发和充电,由于蒸发作用,EL材料从船形试样器皿的开口被排出,并且,在其到达衬底之前,由借助于对掩模施加的电压产生的电场控制EL材料的行进方向,因而,可以控制EL材料的淀积位置。
可以使用多个掩模。例如,电场由对第一掩模和第二掩模分别施加的电压产生,借以控制EL材料行进的方向,并控制EL材料淀积的位置。
在附图中

图1A和1B是表示按照本发明通过蒸发淀积有机EL材料的方法的示意图;图2以截面图表示像素部分的结构;图3A到3C表示像素部分的结构和像素部分的顶视图;图4A到4E表示用于制造EL显示器件的步骤;图5A到5D表示用于制造EL显示器件的步骤;图6A到6C表示用于制造EL显示器件的步骤;图7A和7B表示EL显示器件的像素部分中的TFT的截面结构;图8A和8B表示EL显示器件的像素部分中的TFT的截面结构;图9表示EL显示器件的外观;图10表示EL显示器件的电路方块结构;图11A和图11B表示有源阵列EL显示器件的截面结构;图12A和12B分别表示通过蒸发淀积的有机EL材料的图形;图13A和13B分别表示掩模的图形;图14表示无源EL显示器件的截面结构;图15A到15F表示电气设备的具体例子;图16A和16B表示电气设备的具体例子;以及图17A和17B表示按照本发明通过蒸发淀积有机EL材料的方法。
下面参照图1A和1B说明本发明的实施方式。
图1A示意地表示按照本发明EL材料的膜是如何被形成的。在图1A中,在衬底110上的像素电极和地电位相连。船形试样器皿111中装有EL材料。
应当注意,当形成红色的EL材料时,船形试样器皿111中装有发红光的EL材料(以后称为红色EL材料)。当形成绿色的EL材料时,船形试样器皿111中装有发绿光的EL材料(以后称为绿色EL材料)。当形成蓝色的EL材料时,船形试样器皿111中装有发蓝光的EL材料(以后称为蓝色EL材料)。
按照本发明,在船形试样器皿111中的EL材料通过电极120的电阻加热而被蒸发和排出。当被排出时,EL材料由于施加于电极112上的负电压而成为带负电的颗粒。带负电的颗粒通过由导电材料制成的掩模113的间隙,并被淀积在衬底110上的像素电极上。在电极112和120之间提供有绝缘体,对所述电极施加不同的电压。
应当说明,如图1B所示,该图是117的放大图,当EL材料通过掩模113时,EL材料的行进方向由掩模113的阻挡部分118控制。在掩模113中,阻挡部分118是由导电材料例如铜、铁、铝、钽、钛或钨制成的多个相互并列(条状)设置的导线,呈网状结构或板状结构。处于蒸汽状态的EL材料排斥由施加于阻挡部分118的负电压产生的电场,因而通过阻挡部分118之间的间隙被淀积在衬底上。
虽然图1A和1B所示的是阻挡部分118的截面是圆形的情况,但是本发明不限于此,其截面可以是矩形的,椭圆形的或多边形的。
需要说明,给予处于蒸汽状态的EL材料一定电位使得EL材料排斥掩模113的阻挡部分118的电压被提供给掩模113的阻挡部分118。这使得EL材料能够通过掩模113的阻挡部分118之间的间隙。此处应当说明,处于蒸汽状态的EL材料由被施加有负电压的电极112产生的电场充电,同时由电极115对掩模113的阻挡部分118施加负电压,从而产生电场。这使得处于蒸汽状态的EL材料的带电的颗粒在电性上排斥阻挡部分,从而通过阻挡部分之间的间隙。
借助于形成图1A所示的结构,并通过正确地控制被施加有阻挡部分118的负电压,使所述电压在等于或大于10V和等于或小于10kV的范围内,可以用高的精度控制淀积的位置。
应当说明,掩模113和衬底之间的距离,阻挡部分118之间的距离,以及其它类似距离,可以由实施本发明的人员合适地设定。例如,阻挡部分118之间的距离可以是在衬底上形成的像素电极的像素间距。
此外,为了精确地定位掩模113,可以这样制造掩模113通过层叠两个导电板并利用电子放电方法同时切割所述两个导电板,使得形成槽状或环状的孔。
此外,虽然此处说明的是使用一个掩模的情况,但是电压可以被施加于两个或多个掩模上,以便控制EL材料的行进方向。此外,电压可被施加于在一个平面内的两个或多个掩模上,以便控制处于蒸汽状态的EL材料的行进方向。
首先,把红色EL材料放入船形试样器皿111中并通过蒸发被淀积,从而在像素上形成条状的红色EL层。
在把掩模沿着箭头k的方向移动一个像素列之后,通过蒸发从船形试样器皿111中淀积绿色EL材料,从而形成绿色EL层。再把掩模沿着箭头k的方向移动一个像素列,以类似方式通过蒸发进行淀积,从而形成蓝色EL层。
换句话说,随着掩模沿箭头k的方向移动,通过在3个部分分别淀积发红、绿和蓝光的像素列,形成条状的3种颜色的EL层。应当说明,此处形成的EL层的厚度最好是10nm-10μm。
此处使用的像素列指的是通过被岸119进行分割而形成的像素的列。岸119在像素列的源极引线的上方被形成,从而作为填充像素列之间的间隙的岸。换句话说,因为这些岸分割像素的列,所以EL层可以在各个像素列中的像素上被形成,同时用于区分一个像素列和其相邻的像素列。因此,像素列也可以被表示为沿着源极引线排成一行的多个像素。虽然此处说明了岸在源极引线的上方被形成,但是岸也可以在栅极引线的上方被形成。在这种情况下,沿着栅极引线排成一行的多个像素被称为像素列。
因此,在像素电极上的像素部分(未示出)可以认为是被提供在多个源极引线上方或被提供在多个栅极引线上方的条状岸分割的多个像素列的集合。像素电极上的像素部分也可以认为由在其上形成有发红光的条状EL层的像素列、在其上形成有发绿光的条状EL层的像素列以及在其上形成有发蓝光的条状EL层的像素列构成。
因为条状岸被提供在多个源极引线或多个栅极引线的上方,实际上,像素部分也可以认为是由多个源极引线或多个栅极引线实际分割的多个像素列的集合。
此外,在本实施方式中,最好对被形成在衬底110上的像素电极(阳极)施加电压,从而产生用于进一步控制呈蒸汽状态已经通过掩模的EL材料的电场,并选择地把呈蒸汽状态的所述EL材料淀积在需要的位置。
此外,通过借助于电极114对其内具有船形试样器皿111,掩模113和衬底110的蒸发室121的内侧表面施加负电压,可以使呈蒸汽状态的被负充电的EL材料排斥蒸发室的内侧表面,因此,呈蒸汽状态的EL材料可被淀积而不会附着在蒸发室的内侧表面上。
(实施例1)在本实施例中,参照图1A和1B说明使用电场控制在船形试样器皿中被蒸发的EL材料(以后称为蒸该状态的EL材料)并在衬底上形成膜的方法。
在图1A和1B中,标号110表示衬底。船形试样器皿111装有用于EL层的材料。
应当说明,当要形成红色EL层时,船形试样器皿111装有发红光的EL材料(以后称为红色EL材料)。当要形成绿色EL层时,船形试样器皿111装有发绿光的EL材料(以后称为绿色EL材料)。当要形成蓝色EL层时,船形试样器皿111装有发红光的EL材料(以后称为蓝色EL材料)。
应当说明,在本实施例中,其中掺杂有红色荧光色素DCM的并作为基质材料的Alq被用作形成红色EL层的红色EL材料,作为铝和8-羟基喹啉的合成物的Alq被用作用于形成发绿光的EL层的绿色EL材料,锌和苯唑的合成物(Zn(oxz)2)被用作用于形成发蓝光的EL层的蓝色EL材料。
应当说明,上述的EL材料仅仅是一些例子,也可以使用其它的常规的EL材料。此外,虽然被选择的EL材料用于发红、绿和蓝光,但是本发明不限于此,也可以使用例如发黄、桔红和灰色光的EL材料。
在本实施例中,首先,船形试样器皿装有红色EL材料。在衬底上形成红色EL层之后,使用装有绿色EL材料的船形试样器皿,在衬底上形成绿色EL层。然后,使用装有蓝色EL材料的船形试样器皿,在衬底上形成蓝色EL层。
通过蒸发红、绿和蓝色EL材料,通过在3个部分上淀积,如上所述,可以形成EL层。
使用电极120利用电阻加热使船形试样器皿中的每种颜色的EL材料蒸发。当EL材料从船形试样器皿111中排出时,其被由电极112产生的电场充电。此处,EL材料借助于由蒸发而获得的较高的动能被排出,从而到达掩模113。
因为对掩模113施加电压,所以在掩模113周围产生电场。已经到达掩模113的用于EL层的处于蒸汽状态下的材料在被掩模113产生的电场控制之后,通过掩模113,从而被淀积在衬底110上。
借助于通过蒸发船形试样器皿111中的红色EL材料进行淀积,在像素上形成条状红色EL层。此时,沿箭头k的方向把掩模移动一个像素列,并以类似方式通过从船形试样器皿111中蒸发进行淀积绿色EL材料形成和红色EL层相邻的绿色EL层。再沿箭头k的方向把掩模移动一个像素列,通过从船形试样器皿111中蒸发进行淀积蓝色EL材料形成和绿色EL层相邻的蓝色EL层。换句话说,随着掩模沿箭头k的方向移动,通过在3个部分淀积分别淀积发红、绿和蓝光的像素列,形成3种颜色的条状的EL层。应当说明所形成的EL层的厚度最好在100nm到1μm。
应当注意,此处使用的像素列指的是通过被在源极引线的上方形成的岸119进行分割而形成的像素的列。因此,像素列也可以被表示为沿着源极引线排成一行的多个像素。虽然此处说明了岸在源极引线的上方被形成,但是岸也可以在栅极引线的上方被形成。在这种情况下,沿着栅极引线排成一行的多个像素被称为像素列。
因此,像素部分(未示出)可以认为是被提供在多个源极引线上方或被提供在多个栅极引线上方的条状岸分割的多个像素列的集合。像素电极上的像素部分也可以认为由在其上形成有发红光的条状EL层的像素列、在其上形成有发绿光的条状EL层的像素列以及在其上形成有发蓝光的条状EL层的像素列构成。
因为条状岸被提供在多个源极引线或多个栅极引线的上方,实际上,像素部分也可以认为是由多个源极引线或多个栅极引线实际分割的多个像素列的集合。
此外,最好对被形成在衬底110上的像素电极(阳极)施加电压,从而产生用于进一步控制呈蒸汽状态已经通过掩模的EL材料的电场,并选择地把所述呈蒸汽状态的EL材料淀积在需要的位置。
(实施例2)
图2是按照本实施例的EL显示器件的像素部分的截面图。图3A是所述像素部分的顶视图,图3B表示其电路结构。实际上,多个像素被排列成阵列的形状,从而形成像素部分(图像显示部分)。应当说明,图2是从图3A的线A-A’取的截面图。因而,因为在图2和图3A,3B以及图3C中使用相同的标号,所以可以方便地参看这些图。在图3A的顶视图中示出了两个像素,并且所述两个像素具有相同的结构。
在图2中,标号11和12分别表示作为基底的绝缘膜(以后称为底膜)。作为衬底11,可以使用玻璃、玻璃陶瓷、石英、硅、陶瓷、金属或塑料。
尤其当使用含有可动离子的衬底或导电衬底时,使用底膜12是有效的,而石英衬底则可以不提供底膜12。作为底膜12,可以使用含有硅的绝缘膜。应当说明,此处使用的术语“含有硅的绝缘膜”指的是含有预定百分数的硅以及氧或氮的绝缘膜,例如氧化硅膜,氮化硅膜,或氮氧化硅膜(表示为SiOxNy)。
为了阻止TFT的劣化和EL元件的劣化,使底膜12具有热辐射作用从而辐射由TFT产生的热是有效的。可以使用任何常规的材料制造具有热辐射作用的底膜12。
此处在一个像素中形成有两个TFT。作为开关的TFT 201由n沟道TFT构成,而用于控制电流的TFT 202由沟道TFT构成。
不过,不必限制用作开关的TFT是n沟道TFT和用于控制电流的TFT是沟道TFT。用作开关的TFT可以是沟道TFT,用于控制电流的TFT可以是n沟道TFT,或者两个TFT可以由n沟道TFT构成,或者两个TFT可以由沟道TFT构成。
用作开关的TFT 201被这样构成,使得其具有有源层,所述有源层包括源极区域13,漏极区域14,LDD区域15a-15d,大量掺杂杂质的区域16和沟道形成区域17a、17b,以及栅极绝缘膜18,栅极19a、19b,第一中间层绝缘膜20,源极引线21,和漏极引线22。
如图3A到图3C所示,用作开关的TFT 201具有双栅极结构,其中栅极19a,19b通过由不同材料(电阻比栅极19a,19b的电阻低的材料)制成的栅极引线211彼此电气相连。当然,代替双栅极结构,用作开关的TFT 201也可以具有单栅极结构或多栅极结构(一种包括具有两个或多个串联的沟道形成区域的有源层的结构)例如三栅极结构。多栅极结构对于减少截止电流值是非常有效的。此处,通过使像素的开关元件201具有多栅极结构,实现了具有小的截止电流值的开关元件。
有源层由含有晶体结构的半导体膜构成。有源层可以是单晶半导体膜,多晶半导体膜,或微晶半导体膜。栅极绝缘膜18可以是含有硅的绝缘膜。作为栅极电极、源极引线和漏极引线,可以使用任何导电膜。
此外,在用作开关的TFT 201中,提供有LDD区域15a-15d,使得不会由栅极绝缘膜18覆盖栅极电极19a,19b。这种结构对于减少截止电流是非常有效的。
应当说明,在沟道形成区域和LDD区域之间提供偏置区域(由和沟道形成区域的成分相同的成分构成的半导体层形成的一个区域,对该区域不施加控制电压)对于减少截止电流值是更好的。此外,在具有两个或多个栅极电极的多栅极结构的情况下,在沟道形成区域的元件之间提供的大量掺杂杂质的区域对于减少截止电流是有效的。
用于控制电流的TFT 202被这样形成,使得其具有有源层,所述有源层包括源极区域31,漏极区域32,和沟道形成区域34,以及栅极绝缘膜18,栅极电极35,第一中间层绝缘膜20,源极引线36,和漏极引线37。应当说明,虽然图中所示的栅极电极35是单栅极结构,但是也可以使用多栅极结构。
如图2所示,作为开关的TFT 201的漏极和用于控制电流的TFT202的栅极相连。更具体地说,用于控制电流的TFT 202的栅极电极35通过漏极引线(其可以是一个连接引线)22和用作开关的TFT 201的漏极区域14电气相连。源极引线36和电源线212相连。
用于控制电流的TFT 202是用于控制在EL元件203中流动的电流的元件。不过,考虑到EL元件203的劣化,在EL元件203中不应当流过大量的电流。因此,为了阻止大量电流流过用于控制电流的TFT202,最好沟道长度(L)被设计得较长。每个像素的沟道长度最好是0.5-2微米(最好1-1.5微米)。
在用作开关的TFT 201中形成的LDD区域的长度(宽度)可以是0.5-3.5微米,一般为2.0-2.5微米。
如图3A到3C所示,包括用于控制电流的TFT 202的栅极电极35的引线和用于控制电流的TFT 202的电源线212通过由50表示的区域中的绝缘膜重叠。其中,在区域50形成存储电容器。由半导体膜51,和栅极绝缘膜同一层的绝缘膜(未示出),以及电源线212形成的电容器也可以用作存储电容器。
存储电容器50用作存储施加于用于控制电流的TFT 202的栅极电极35的电压。
此外,由增加可流过的电流的观点来看,增加用于控制电流的TFT202的有源层(特别是沟道形成区域)的厚度是有效的(最好50-100nm,更好60-80nm)。与此相反,关于用作开关的TFT 201,从减少截止电流的观点看来,减少有源层(尤其是沟道形成区域)的厚度也是有效的(最好为20-50nm,更好为25-40nm)。
形成厚度为10nm-10微米(最好200-500nm)的第一钝化膜38。关于材料,可以使用含有硅的绝缘膜(尤其是氮氧化硅膜或者氮化硅膜较好)。
第二中间层绝缘膜(也可以称为校平膜)39被形成在第一钝化膜38上,使得覆盖各个TFT,拉平由TFT形成的高度差。作为第二中间层绝缘膜39,最好使用有机树脂膜,例如聚亚酰胺树脂,聚酰胺树脂,丙烯酸树脂或BCB(苯并环丁烯)。当然,也可以使用无机膜,如果其可以进行充分的校平。
借助于第二绝缘层膜39校平由TFT形成的高度差是非常重要的。因为后来要形成的EL层非常薄,存在的高度差可能引起发光故障。因此,最好在像素电极形成之前进行校平,以便使在其上形成EL层的表面尽可能是平面。
在接触孔(开口)在第二中间层绝缘膜39和第一钝化膜38中被形成之后,如此形成由透明的导电膜制成的像素电极40,使得在所述形成的开口和用于控制电流的TFT 202的漏极引线37相连。
按照本实施例,作为像素电极,使用由氧化铟和氧化锡的化合物形成的导电膜。在所述化合物中可以掺入少量的镓。此外,可以使用氧化铟和氧化锌的化合物,或者氧化锌和氧化镓的化合物。
在像素电极被形成之后,形成由树脂材料制成的岸(bank)。通过使用抗蚀剂材料,借助于形成具有不同的选择比的有机树脂膜的图形,形成岸a(41a)和岸b(41b)。应当说明,在岸a(41a)和岸b(41b)被层叠之后,通过对其进行刻蚀,由于刻蚀速度的不同可以形成图2所示的形状。应当说明,其中,建立(形成岸a的树脂的刻蚀速度)>(形成岸b的树脂的刻蚀速度)。岸a(41a)和岸b(41b)在图3C所示的像素之间被形成条状。应当说明,在图3C中h1为0.5-3微米,其厚度大于由层叠EL层、阴极和保护电极而形成的膜的厚度。虽然在本实施例中岸沿着源极引线21被形成,但是它们也可以沿着栅极引线211被形成。
然后,利用参照图1A和图1B所述的薄膜形成方法形成EL层42。应当说明,虽然其中只示出了一个像素,实际上,形成分别相应于红绿蓝(R,G,B)颜色的EL层,如图1A和图1B所示。
首先,装在船形试样器皿111中的EL材料利用电极120借助于电阻加热被蒸发。就在处于蒸汽状态的EL材料被从船形试样器皿111排出时,在由在船形试样器皿111的开口连接的电极112产生的电场的影响下,处于蒸汽状态的EL材料被充电而成为带电颗粒。当这些带电颗粒通过掩模113时,其行进方向由施加于阻挡部分118的电压产生的在掩模113周围的电场控制。
应当说明,在船形试样器皿111和掩模113之间可以提供一个电极,用于通过由所述电极产生的电场控制呈蒸汽状态的从船形试样器皿111排出的EL材料的充电。
因此,呈蒸汽状态的EL材料通过阻挡部分118之间的间隙,被淀积在其上要形成EL层的衬底的表面上。
应当说明,在本说明中使用的掩模的阻挡部分指的是由掩模的导电材料制成的部分,所述导电材料的例子包括钛,钽,钨和铝。此外,在掩模中的开口指的是在阻挡部分之间的间隙。
此外,在本说明中使用的其上要形成EL材料的表面指的是像素电极的表面的一部分,或其上要形成薄膜的有机膜。
被施加于掩模上的电压等于或大于几十伏,等于或小于10千伏,最好是10V-1kV。实施本发明的人员可以在这个范围内合适地设置施加于各个电极的电压。
在本实施例中,首先通过蒸发和淀积装在船形试样器皿111中的EL材料,在像素上形成发红光的像素列。此后,在掩模被沿横向(箭头k所示的方向)移动之后,通过蒸发淀积在船形试样器皿111中装有的绿色EL材料,从而形成发绿光的像素列。所述掩模被再次沿横向(箭头k所示的方向)移动,通过蒸发淀积在船形试样器皿111中装有的蓝色EL材料,从而形成发蓝光的像素列。
应当说明,每当EL材料的种类被改变时,其中装有EL材料的船形试样器皿111可以被改变,或者,选择地,只改变要被使用的EL材料,而不改变船形试样器皿111。
此外,所述的船形试样器皿111和掩模可以被单独地提供,或者,选择地,可以集中在一起而形成一个装置。
如上所述,随着掩模的移动,通过蒸发借助于在3个部分上分别淀积发红绿蓝光的像素列,形成3种颜色的条状EL层。
作为用于制造EL层的EL材料,可以使用低分子量材料。作为EL材料的代表性的低分子量材料包括3(8-羟基喹啉酯)铝合成物(tris(8-quinolinolate)aluminum complex)(Alq)和2(苯并羟基喹啉酯)铍合成物(bis(benzoquinolinolate)beryllium)(BeBq)。
应当说明,在本实施例中,其中掺杂有红色荧光色素DCM的并作为基质材料的Alq被用作形成红色EL层的EL材料,作为铝和8-羟基喹啉的合成物的Alq被用作绿色EL材料,锌和苯唑的合成物(Zn(oxz)2)被用作蓝色EL材料。
不过,上面仅是可以用作本实施例中的EL层的EL材料的一些例子,本发明决不限于这些材料。
换句话说,可以利用涂敷方法使用此处没有列出的大分子有机EL材料,并且,除去低分子量材料之外,可以使用大分子材料形成EL层。
此外,当形成EL层42时,因为所述EL层易于因湿气和氧的存在而劣化,最好在含有少量的湿气和氧的惰性气体例如氮或氩中进行处理。
在按照上述形成EL层42之后,形成由光屏蔽导电膜制成的阴极43,保护电极44和第二钝化膜45。在本实施例中,使用由MgAg制成的导电膜作为阴极43,使用由铝制成的导电膜作为保护电极44,并使用厚度为10nm-10微米(最好200-500nm)的氮化硅膜作为第二钝化膜45。
应当说明,如上所述,因为EL层易于受热的影响,所以阴极43和第二钝化膜45最好在尽可能低的温度(最好在从室温到120℃的温度范围)下被制成。因此,在这种情况下,等离子增强的CVD,真空蒸发,或者旋转涂敷是优选的膜形成方法。
在本阶段完成的器件被称为有源阵列衬底。提供一个相对的衬底(未示出),使其和有源阵列衬底相对。在本实施例中,使用玻璃衬底作为相对衬底。应当说明,也可以使用由塑料或陶瓷制成的衬底作为相对衬底。
有源阵列衬底和相对衬底通过密封材料(未示出)相互连接,从而形成一个密封的空间(未示出)。在本实施例中,所述密封空间被充以氩气。当然,在所述密封空间内可以设置干燥剂例如氧化钡或抗氧化剂。
此外,本实施例的结构可以和实施例1的结构自由组合。
(实施例3)下面说明用于形成图3C所示的由岸a和岸b构成的岸的方法。岸a和岸b都是正型的。
首先,在形成像素电极之后,形成用于形成岸的密胺树脂的有机树脂膜,将一种染料混合在密胺树脂中,使有机树脂膜具有防反射膜的功能。这些可在被溶解于一种溶剂例如二甲基乙酰胺后被使用。应当说明,在选择染料时,需要选择其发射光谱位于在曝光时使用的光的光谱附近的染料。
然后,把聚酰亚胺膜层叠在密胺树脂膜上。其中,可以使用光敏聚酰亚胺或酚醛清漆代替聚酰亚胺。这是形成岸b的方法。
应当说明,此处形成的有机树脂膜具有两层。然后,有机树脂膜被曝光从而形成图形。作为形成图形的显影剂,最好使用可溶于水的一种显影剂。在本实施例中,可以使用四甲基铵氢氧化物,因为其可溶于水,并且是碱性的,因而适用于本实施例。不过,所述显影剂不限于此,也可以使用其它常规的显影剂。
通过使用显影剂进行显影,形成岸a和岸b,如图3C所示。这是因为,通过在岸a中掺入染料,其对于曝光的强度发生了改变,因而被显影剂等方性地刻蚀。应当说明,此处所示的h2最好是0.5-3微米。
应当说明,所述岸a和岸b不限于上述的有机树脂膜的层叠结构。这些岸可以这样被形成,使得在岸a由无机膜例如氧化硅膜或氮化硅膜制成之后,由有机树脂膜例如聚酰亚胺树脂,聚酰胺树脂,或光敏树脂制成岸b,或者使用于制造岸a和用于制造岸b的材料掉换。
应当说明,本实施例的结构可以和实施例1和实施例2的结构自由组合。
(实施例4)下面参照图4到图6说明同时形成像素部分和在所述像素部分周边形成的驱动电路部分的TFT的方法。注意为了使说明简化,示出了CMOS电路作为驱动电路的基本电路。
首先,如图4A所示,在玻璃衬底300上形成厚度为300nm的底膜301。作为底膜301,在本实施例中,厚度为100nm的氮氧化硅膜被层叠在厚度为200nm的氮氧化硅膜上。最好在和玻璃衬底300接触的膜中的氮的浓度被设置在10和25wt%之间。当然,元件可以被形成在石英衬底上而不提供底膜。
接着,利用已知的淀积方法在底膜301上形成厚度为50nm的无定形硅膜(图中未示出)。注意不必限制于无定形硅膜,可以使用含有无定形结构的半导体膜(包括微晶半导体膜)。此外,也可以使用含有无定形结构的化合物半导体膜,例如无定形硅-锗膜。此外,膜的厚度可以从20到100nm。
然后用已知的方法对无定形硅膜进行晶体化,形成晶体硅膜(也叫做多晶硅膜)302。在已知的晶体化方法中,包括使用电炉进行的热晶体化,使用激光进行的激光退火晶体化,和使用红外灯进行的红外灯退火晶体化。在本实施例中,使用利用XeCl气体的准分子激光进行晶体化。
注意在本实施例中使用被形成直线形的脉冲发射型准分子激光,但是也可以使用矩形的,并且也可以使用连续发射的氩激光和连续发射的准分子激光。
在本实施例中,虽然使用晶体硅膜作为TFT的有源层,但是也可以使用无定形硅膜。此外,可以利用无定形硅膜形成用作开关的TFT的有源层,其中有必要减少截止电流。利用晶体硅膜形成用于控制电流的TFT的有源层。电流在无定形硅膜内难于流动,因为其中的载流子迁移率低,因而截止电流不容易流动。换句话说,可以最有利地利用其中电流不容易流动的无定形硅膜和其中电流容易流动的晶体硅膜。
接着,如图4B所示,在由厚度为130nm的氧化硅膜制成的晶体硅膜302上形成保护膜303。所述厚度可以在100-200nm(最好在130-170nm)的范围内选择。此外,也可以使用其它膜,例如含有硅的绝缘膜。保护膜303被这样形成,使得在杂质添加期间晶体硅膜不会直接暴露于等离子体,并且使得能够实现精确的杂质浓度控制。
然后在保护膜303上形成抗蚀剂掩模304a,304b,并通过保护膜303加入给予n型导电性的杂质元素(以后叫做n型杂质元素)。一般使用周期表第15类元素作为n型杂质元素,一般可以使用磷或砷。使用其中磷化氢(PH3)被等离子激发而不发生质量分离(separationof mass)的等离子掺杂方法,在本实施例中被添加的磷的浓度为1×1018原子/cm3。当然也可以使用其中进行质量分离的离子注入方法。
如此调节剂量,使得在按照这一步骤形成的n型杂质区域305中包含的n型杂质元素的浓度为2×1016-5×1019原子/cm3(一般在5×1017和5×1018原子/cm3之间)。
接着,如图4C所示,除去保护膜303,抗蚀剂掩模304a、304b,并对添加的周期表中第15类元素的进行激活。可以使用已知的激活技术作为激活方法,在本实施例中使用准分子激光进行激活。当然,可以使用脉冲发射型准分子激光器和连续发射型准分子激光器,不必限制于使用准分子激光。目的是激活添加的杂质元素,并且最好是在不致使晶体硅膜熔化的能级下进行激活。可以在存在保护膜303的情况下进行激光激活。
也可以和用激光激活杂质元素同时通过热处理进行激活。当利用热处理进行激活时,考虑到衬底的耐热性,最好在大约450-550℃的温度下进行热处理。
和n型杂质区域305的端部之间的边界部分(连接部分),即在n型杂质区域周边上的其中不添加n型杂质元素的区域,未通过这一处理被刻划,这意味着,在后来完成TFT的时刻,在LDD区域和沟道形成区域之间可以形成极好的连接。
接着,除去晶体硅膜的不需要的部分,如图4D所示,并形成岛状半导体膜(以后被称为有源层)306-309。
然后,如图4E所示,形成栅极绝缘膜310,从而覆盖住有源层306-309。形成厚度为10-200nm,最好为50-150nm的含有硅的绝缘膜作为栅极绝缘膜310。可以使用单层结构或多层结构。在本实施例中使用厚度为110nm的氮氧化硅膜。
此后,形成厚度为200-400nm的导电膜,并被成形从而形成栅极电极311-315。这些栅极电极311-315的各个端部可以是锥形的。在本实施例中,栅极电极和与栅极电极电气相连以便提供引出线的引线(以后称为栅极引线)由互不相同的材料制成。更具体地说,栅极引线由具有比栅极电极的电阻率低的材料制成。因而,使用能够进行精加工的材料制造栅极电极,而利用可以提供较小的引线电阻而不适合于精加工的材料制造栅极引线。当然可以利用相同的材料制造栅极电极和栅极引线。
虽然栅极电极可以由单层的导电膜制造,但如果需要最好使用两层、三层或更多层的导电膜制造。可以使用任何已知的导电材料制造栅极电极。不过,应当说明,最好使用能够进行精加工的材料,更具体地说,最好使用可以形成2微米或更小的线宽的材料。
一般地说,可以使用从下列元素中选择的元素制造的膜,这些元素是钽(Ta),钛(Ti),钼(Mo),钨(W),铬(Cr),和硅(Si),以及上述元素的氮化物膜(一般为氮化钽膜,氮化钨膜,或氮化钛膜),上述元素的组合的合金膜(一般为Mo-W合金,Mo-Ta合金),或者上述元素的硅化物膜(一般为硅化钨,或硅化钛膜)。当然,所述的膜可以作为单层膜或多层膜使用。
在本实施例中,使用厚度为50nm的氮化钽膜(TaN)和厚度为350nm的钽膜(Ta)。这可以利用溅射方法被形成,当作为溅射气体添加Xe,Ne或类似惰性气体时,可以阻止由于应力而引起的膜的剥落。
在此时,如此形成栅极电极312,使得重叠并夹住n型杂质区域305和栅极绝缘膜310的一部分。这个重叠的部分以后成为覆盖栅极电极的LDD区域。此外,栅极电极313和314根据截面看似乎是两个电极,实际上它们彼此电气相连。
接着,利用栅极电极311-315作为掩模以自调整的方式添加n型杂质元素(在本实施例中是磷),如图5A所示。所述的添加被这样调节,使得磷被加入杂质区域316-323中,其浓度为n型杂质区域305的浓度的1/10-1/2(一般在1/4和1/3之间)。明确地说,其浓度最好为1×1016-5×1018原子/cn3(一般为3×1017-3×1018原子/cm3)。
接着形成抗蚀剂掩模324a-324d,使得它们具有能够盖住栅极电极等的形状,如图5B所示,并加入n型杂质元素(在本实施例中使用磷),从而形成含有高浓度的磷的杂质区域325-329。此处也进行使用磷化氢实现的离子掺杂,并且被这样调节,使得在这些区域中的磷的浓度为1×1020-1×1021原子/cm3(一般为2×1020-5×1021原子/cm3)。
n沟道型TFT的源极区域或漏极区域借助于这一处理被形成,在用作开关的TFT中,保留由图5A的处理而形成的n型杂质区域319-321的部分。这些保留的区域相应于图5中用作开关的TFT201的LDD区域15a-15d。
接着,如图5C所示,除去抗蚀剂掩模324a-324d,并形成新的抗蚀剂掩模332。然后,添加p型杂质元素(在本实施例中使用硼),从而形成具有高浓度的硼的杂质区域333-336。其中通过使用乙硼烷(B2H6)进行离子掺杂添加硼而形成的杂质区域333-336中硼的浓度为3×1020-3×1021原子/cm3(一般为5×1020-5×1021原子/cm3)。
注意已经以1×1020-1×1021原子/cm3的浓度把磷加入杂质区域333-336中,但是此处加入的硼的浓度至少不少于磷的浓度的3倍。因此,已经形成的n型杂质区域完全被改变为p型的,因而作为p型杂质区域。
接着,在除去抗蚀剂掩模332之后,以各自的浓度加入有源层的n型和p型杂质元素被活化。电炉退火、激光退火或灯退火可以用作活化的方法。在本实施例中,在电炉中在550℃下在氮气中进行4小时的热处理。
此时,重要的是尽可能除去周围环境中的氧气。这是因为即使有少量的氧气存在时,栅极电极的暴露的表面也被氧化,这导致电阻的增加,电阻的增加使得难于和栅极电极形成欧姆接触。因而,在用于活化处理的周围环境中氧气的浓度被设置为1ppm或更少,最好为0.1ppm或更少。
在完成活化处理之后,形成厚度为300nm的栅极引线337,如图5D所示。作为栅极引线337的材料,可以使用含有铝(Al)或铜(Cu)为其主要成分(在组成中占50-100%)的金属。如图3所示,设置栅极引线211用于提供开关TFT的栅极电极19a,19b(相应于图4E的栅极电极313和314)的电连接。
上述结构可以使得栅极引线的引线电阻被大大减小,因此,可以形成具有大面积的图像显示区域(像素部分)。更具体地说,按照本实施例的像素结构对于实现具有对角线尺寸为10英寸或更大(或30英寸或更大)的显示屏的EL显示器件是有利的。
接着形成第一中间层绝缘膜338,如图6A所示。使用含有硅的单层绝缘膜作为第一中间层绝缘膜338,虽然可以使用包括两种或多种硅的绝缘膜的组合的多层膜。此外,膜的厚度可以在400nm和1.5微米之间。在本实施例中使用在厚度为200nm的氮氧化硅膜上设置厚度为800nm的氧化硅膜的层叠结构。
此外,在含有3和100%之间的氢的环境中在300-450℃下进行1-12小时的热处理,从而进行氢化。这种处理是一种利用热激发的氢对在半导体膜中的悬挂键进行氢终结的处理。作为另一种氢化方法,也可以使用等离子氢化(使用由等离子激发的氢)。
注意在第一中间层绝缘膜338的形成期间也可以插入氢化处理。即,可以在形成200nm厚的氮氧化硅膜后,按照上述进行氢处理,然后可以形成剩余的800nm厚的氧化硅膜。
接着,形成在第一中间层绝缘膜338和栅极绝缘膜310中的接触孔,以及源极引线339-342和漏极引线343-345。在本实施例中,所述电极由3层结构的层叠膜制成,其中利用溅射方法连续地形成厚度为100nm的钛膜,厚度为300nm的含钛的铝膜和厚度为150nm的钛膜。当然,可以使用其它的导电膜。
接着形成厚度为50-500nm(一般200-300nm)的第一钝化膜346。在本实施例中使用厚度为300nm的氮氧化硅膜作为第一钝化膜346。这也可以用氮化硅膜代替。
注意在形成氮氧化硅膜之前使用含有氢的气体例如H2或NH3等进行等离子处理是有效的。由这种预处理激发的氢被提供给第一中间层绝缘膜338,通过进行热处理可以改善第一钝化膜346的膜的质量。与此同时,被添加到第一中间层绝缘膜338中的氢扩散到较低的一侧,因而使有源层被有效地氢化。
接着,如图6B所示,形成由有机树脂制成的第二中间层绝缘膜347。作为有机树脂,可以使用聚酰亚胺,聚酰胺,丙烯酸树脂,BCB(苯并环丁烯)或其类似物。特别是,因为第二中间层绝缘膜347主要用作校平,最好使用校平性能良好的丙烯酸树脂。在本实施例中,形成足够厚的丙烯酸树脂膜,以便校平由TFT形成的有台阶的部分。其合适的厚度为1-5微米(最好2-4微米)。
此后,在第二中间层绝缘膜347和第一钝化膜346中形成接触孔,然后形成和漏极引线345电连接的像素电极348。在本实施例中,形成厚度为110nm的氧化铟锡膜(ITO),并通过成形而形成像素电极。此外,可以使用2-20%的氧化铟和氧化锌(ZnO)的化合物或氧化锌和氧化镓的化合物作为透明电极。所述像素电极作为EL元件的阳极。
然后,如图6C所示,形成由树脂材料制成的岸a(349a)和岸b(349b)。岸a(349a)和岸b(349b)通过层叠总厚度为1-2微米的丙烯酸树脂膜,聚酰亚胺膜或其类似物并进行成形而被制成。应当说明,用于形成岸a(349a)的膜的材料要求对于相同的刻蚀剂而言和用于形成成岸b(349b)的膜的材料相比具有较高的刻蚀速度。如图6所示,岸a(349a)和岸b(349b)被在像素之间形成,从而成为条状。虽然在本实施例中它们沿着源极引线341被形成,但是它们也可以沿着栅极引线337被形成。
然后,利用参照图1所述的薄膜形成方法形成EL层350。应当说明虽然此处只示出了一个像素,实际上,形成如图1所示的分别相应于红、绿和蓝色的EL层。
首先,使用电极借助于电阻加热使装在船形试样器皿中的EL材料被蒸发而成为蒸汽状态的EL材料。处于蒸汽状态的EL材料在被特意地充电之后被排出。被排出的处于蒸汽状态的EL材料在通过施加有电压的掩模之后淀积在衬底110的像素部分上。应当说明,当处于蒸汽状态的EL材料通过掩模时,处于蒸汽状态的EL材料的行进方向被掩模周围的电场所控制。
在本实施例中,首先通过从船形试样器皿中排出作为处于蒸汽状态的EL材料的红色EL材料,在像素上形成发红光的像素列。然后,在掩模沿横向被移动之后,从船形试样器皿中通过蒸发淀积绿色EL材料,从而形成发绿光的像素列。掩模沿横向被进一步移动,从船形试样器皿中通过蒸发淀积蓝色EL材料,从而形成发蓝光的像素列。
如上所述,通过在移动掩模的同时在3个部分分别淀积发红绿蓝光的像素列,形成3种颜色的条状EL层。
应当说明,虽然在本实施例中只示出了一个像素,但是此处同时形成发相同颜色的EL层。
应当说明,在本实施例中,其中掺杂有红色荧光色素DCM的并作为基质材料的Alq被用作形成红色EL层的红色EL材料,作为铝和8-羟基喹啉的合成物的Alq被用作用于形成发绿光的EL层的绿色EL材料,以及锌和苯唑的合成物(Zn(oxz)2)被用作用于形成发蓝光的EL层的蓝色EL材料,这些EL层的厚度都是50nm。
可以使用已知的材料作为EL材料350。考虑到驱动电压,所述已知材料最好是有机材料。应当说明,虽然在本实施例中EL层350是只具有上述的EL层的单层结构,但是,如果需要,其可以具有电子注入层,电子发射层,空穴发射层,空穴注入层,电子阻挡层,或空穴元素层。此外,虽然在本实施例中说明的是使用MgAg电极作为EL元件的阴极351的情况,但是也可以使用其它已知的材料。
此外,虽然通过淀积形成关于每种颜色的EL层,但是也可以例如借助于旋涂或蒸发各个颜色的EL层的相同材料,同时形成电子注入层,电子发射层,空穴发射层,空穴注入层,电子阻挡层,或空穴元素层。
在形成EL层350之后,通过真空蒸发形成阴极(MgAg电极)351。应当说明,EL层350的厚度最好是80-200nm(一般为100-120nm),阴极351的厚度最好是180-300nm(一般为200-250nm)。
此外,保护电极352被提供在阴极351上。作为保护电极352,可以使用包括铝为主要成分的导电膜。保护电极352可以使用掩模通过真空蒸发被形成。
最后,形成厚度为300nm的由氮化硅膜制成的第二钝化膜353。实际上,虽然保护电极352保护EL层免受湿气之类的影响,但是通过进一步形成第二钝化膜353,可以进一步提高EL元件的可靠性。
图7说明用在像素部分中的用作开关的n型沟道TFT的截面图。
首先,关于图7所示的用作开关的TFT,图7A说明一种这样的结构,其中如此提供LDD区域15a-15d,使得通过栅极绝缘膜18不会覆盖栅极电极19a和19b。这种结构对于减少截止电流值是非常有效的。
在另一方面,这些LDD区域15a-15d在图7B所示的结构中没有被提供。在形成图7B所示的结构的情况下,因为和形成图7A所示的结构相比,可以减少处理步骤的数量,因而可以提高生产效率。
在本实施例中,可以使用图7A和7B所示的结构作为用作开关的TFT。
图8表示用在像素部分中的用于控制电流的n型沟道TFT的截面图。
在图8A所示的用于控制电流的TFT中,在漏极区域32和沟道形成区域34之间提供有LDD区域33。虽然此处说明的是其中LDD区域33通过栅极绝缘膜18和栅极电极35重叠的结构,但是所述结构也可以如图8B所示,其中不提供LDD区域33。
用于控制电流的TFT不仅提供用于使EL元件发光的电流,而且控制所提供的电流的数量,从而能够控制灰度显示。因此,需要采取措施防止由于热载流子的注入而引起劣化,使得即使在流过电流时也能阻止所述劣化。
关于阻止由于热载流子的注入引起的劣化,已知其中LDD区域和栅极电极重叠的一种结构是非常有效的。因此,如图8A所示的其中LDD区域通过栅极绝缘膜18和栅极电极35重叠的结构是合适的。其中,作为用于减少截止电流的一种措施,示出了其中LDD区域的一部分不和栅极电极重叠的结构。不过,不必要求LDD区域的一部分不和栅极电极重叠。此外,根据情况,如图8B所示,可以不提供LDD区域。
在本实施例的情况下,如图6C所示,n沟道TFT205的有源层包括源极区355,漏极区356,LDD区域357,和沟道形成区域358。LDD区域357通过栅极绝缘膜310和栅极电极312重叠。
LDD区域只在漏极区域的一侧上被形成,因而不会降低操作速度。此外,关于n沟道TFT205,虽然不需要过多地考虑截止电流,但是操作速度是重要的。因此,最好LDD区域357完全和栅极电极重叠,以便使得电阻分量尽可能小。换句话说,最好没有所谓的偏置。
用这种方式,具有如图6C所示的结构的有源阵列衬底便被制成。应当说明,在形成岸490之后直到形成钝化膜353,继续执行处理步骤,通过使用多室型或在线型薄膜形成装置不使器件暴露于大气中是有效的。
附带说明,通过设置使得不仅像素部分的TFT具有优选的结构,而且驱动电路部分的TFT也具有优选的结构,可以使按照本发明的有源阵列衬底极其可靠,并且可以改善其性能。
首先,具有能够减少热载流子注入同时尽可能不降低操作速度的结构被用作构成驱动电路部分的CMOS电路的n沟道TFT 205。应当说明,此处所称的驱动电路包括移位寄存器,缓冲器,电平移动器,采样电路(采样和保持电路)等。在进行数字驱动的情况下,可以进一步包括信号转换电路,例如D/A转换器。
应当说明,实际上,在完成图6C所示的处理步骤之后,器件最好利用封装材料例如气密玻璃,石英或塑料被封装(密封),使得器件不暴露于外部空气中。在这种情况下,最好在封装材料内部设置吸湿剂,例如氧化钡,或者设置抗氧化剂。
在例如通过封装处理提高气密性之后,连接一个连接器(柔性印刷电路FPC),用于连接从被形成在绝缘体上的元件或电路引出的端子和外部信号端子,从而制成作为产品的器件。在这种状态下的器件,即在可交货状态下的器件,此处被称为EL显示器件(或者EL模块)。
下面参照图9的透视图说明按照本实施例的有源阵列EL显示器件。按照本实施例的有源阵列EL显示器件包括被形成在玻璃衬底601上的像素部分602,栅极侧驱动电路603,和源极侧驱动电路604。在像素部分中用作开关的TFT 605是n沟道TFT,并被设置在连接栅极侧驱动电路603的栅极引线606和用于连接源极侧驱动电路604的源极引线607的交叉点上。用作开关的TFT 605的漏极和用于控制电流的TFT 608的栅极相连。
此外,用于控制电流的TFT 608的源极侧和电源线609相连。在本实施例的结构中,电源线609具有地电位(地电位)。此外,用于控制电流的TFT 608的漏极和EL元件610相连。一个预定的电压(3-12V,最好3-5V)被施加于EL元件610的阳极上。
此外,作为外部输入/输出端子的FPC 611具有连接引线612和613,用于向驱动电路部分传递信号,还具有和电源线609相连的连接引线614。
图10说明图9所示的EL显示器件的电路结构的一个例子。按照本实施例的EL显示器件具有源极侧驱动电路801,栅极侧驱动电路(A)807,栅极侧驱动电路(B)811,和像素部分806。应当说明,此处使用的驱动电路部分是一个统称,并且包括源极侧驱动电路和栅极侧驱动电路。
源极侧驱动电路801具有移位寄存器802,电平移动器803,缓冲器804,和采样电路(采样和保持电路)805。栅极侧驱动电路(A)807具有移位寄存器808,电平移动器809,和缓冲器810。栅极侧驱动电路(B)811具有类似的结构。
其中移位寄存器802和808的驱动电压是5-16V(一般为10V)。对于在形成所述电路的CMOS中使用的n沟道TFT,图6C中以205表示的结构是合适的。
和移位寄存器的情况类似,对于电平移动器803和809以及缓冲器804和810,包括图6C所示的n沟道TFT 205的CMOS电路是合适的。应当说明,使栅极引线具有多栅极结构例如双栅极结构或三栅极结构对于改善各个电路的可靠性是有效的。
在像素部分806中,排列着具有图5所示的结构的像素。
应当说明,上述结构可以通过按照图4-6所示的制造工艺制造TFT容易地被实现。此外,虽然在本实施例中只说明了像素部分和驱动电路部分,按照本实施例的制造工艺,也可以在同一绝缘体上形成其它逻辑电路,例如信号分离电路,D/A转换器电路,运算放大器电路,和γ校正电路。此外,期望也可以形成存储器部分,微处理器部分,以及类似的部分。
此外,参照图11A和11B说明按照本实施例的包括覆盖材料的EL模块。其中如果需要,也使用图9和图10使用的标号。
图11A是附加于图9所示的状态下的密封结构的顶视图。由虚线表示的标号602,603,和604分别表示像素部分,栅极侧驱动电路和源极侧驱动电路。按照本实施例的密封结构是具有覆盖材料1101和用于图9所示的状态的密封材料(未示出)的一种结构。
图11B是沿图11A的线A-A’取的截面图。应当说明,在图11A和11B中,相同的标号表示相同的部件。
如图11B所示,像素部分602和栅极侧驱动电路603被形成在衬底601上。像素部分602由多个像素构成,每个像素包括用于控制电流的TFT 202和与其电气相连的像素电极346。使用CMOS电路形成栅极侧驱动电路,其中n沟道TFT 205和p沟道TFT 206被互补地组合。
像素电极348作为EL元件的阳极。在像素电极348之间,形成有岸a(349a)和岸b(349b)。EL层350和阴极351被形成在岸a(349a)和岸b(349b)的内部。此外,保护电极352和第二钝化膜353被形成在其上。当然,如上所述,EL元件的结构可以颠倒,像素电极可以是阴极。
在本实施例中,保护电极352还作为像素列的公共引线,通过连线612和FPC 611电气相连。此外,包括在像素部分602和栅极侧驱动电路603中的所有元件都被第二钝化膜353覆盖。虽然第二钝化膜353可以被省略,但是最好提供所述钝化膜,以便使各个元件和外部屏蔽。
覆盖材料1001被密封材料1004黏附。应当说明,可以提供由树脂膜制成的垫片,从而密闭覆盖材料1001和光发射元件之间所空间。应当说明,密封材料1004的内部1003是一个填充有惰性气体例如氮或氩的密封的空间。此外,在密封空间1103内部提供吸湿剂例如氧化钡也是有效的。
此外,在空间1103中可以提供填充剂。作为填充剂,可以使用PVC(聚氯乙烯),环氧树脂,硅树脂PVB(聚乙烯醇缩丁醛),或EVA(乙烯醋酸乙烯酯)。
在本实施例中,作为覆盖材料1101,可以使用玻璃,塑料或陶瓷。
作为密封材料1104,虽然最好使用可以用光固化的树脂,但是,如果EL层的耐热性允许,也可以使用热固树脂。应当说明,密封材料1104最好是一种尽可能少地透过湿气和氧气的材料。此外,可以在密封材料1104的内部加入吸湿剂。
借助于使用上述方法封装EL元件,可以使EL元件完全和外部隔离,因而可以阻止由于氧化而导致EL层劣化的物质例如湿气和氧气进入。因而,可以制造具有高的可靠性的EL显示器件。应当说明,虽然在本实施例中说明了沿纵向形成分别发红绿蓝光的3种条状EL层的情况,但是,它们可以沿横向被形成。
应当说明,本实施例的结构可以和实施例1-3的结构自由组合。
(实施例5)当有源阵列型EL显示器件如图11A所示那样放置时,可以沿纵向形成像素列,使得呈条状,或者可以呈Δ排列。
此处说明了其中红绿蓝像素在衬底上被这样形成,使得呈条状的情况。应当说明,像素的颜色的数量不必要求是3种,可以是一种或两种。此外,所述的颜色不限于红绿蓝,也可以使用其它的颜色例如黄,桔黄,和灰色。
应当说明,衬底、装有EL材料的船形试样器皿和用于控制呈蒸汽状态的EL材料的掩模之间的位置关系如图1A所示。
首先,装在船形试样器皿中的用于红色EL层的EL材料被蒸发,呈蒸汽状态的EL材料从船形试样器皿中被排出。其中,因为对掩模加有预定的电压,所以当呈蒸汽状态的被排出的EL材料到达掩模时便被电场控制,因而到达像素部分的所需的位置。用这种方式,可以控制在像素部分的所需位置进行淀积。施加于掩模的电压等于或大于数10V,或者等于或小于10kV。
首先,通过蒸发淀积红色EL材料。因为对掩模施加有电压,所以EL材料可以被选择地淀积在像素部分中的所需位置。
作为用于形成像素部分704中的条状EL层的掩模,可以使用如图12A所示的条形的掩模500。应当说明,作为掩模,也可以使用使像素呈Δ排列的掩模。
在本实施例中,首先,使用图12A所示的用于形成条状的掩模500通过蒸发淀积红色EL材料。然后,在用于形成条状的掩模500沿箭头i指示的横向移动一个像素列之后,淀积绿色EL材料。此后,掩模500再次沿箭头i指示的横向移动一个像素列之后,淀积蓝色EL材料。用这种方式,在像素部分形成条状的红绿蓝EL层。
应当说明,通过使用掩模在像素部分形成红绿蓝EL材料,可以在像素部分形成条状的像素,如图13A所示。
图12A所示的用于条状的掩模500可以用作在像素部分704中用于形成条状EL层的掩模,同时图12B所示的呈Δ排列的掩模501可以用作用于形成呈Δ排列的像素的掩模。
在图13A中,形成发红光的EL层704a,发绿光的EL层704b,和发蓝光的EL层704c。应当说明,在源极引线的上方沿着源极引线沿纵向通过绝缘膜形成岸(未示出),从而成为条状。
此处的EL层指的是用于提供发光的有机EL材料的层,例如EL层,电荷注入层,或电荷发射层。具有EL层是一层EL层的情况。在另一方面,例如,当空穴注入层和EL层被层叠时,所述层叠膜作为一个整体被称为EL层。
此处,需要使在一行中相同颜色的相邻像素的相互距离(D)是EL层的膜厚(t)的5倍或更多倍(最好是10倍或更多倍)。这是因为,如果D<5t,则可能在像素之间产生干扰问题。应当说明,因为如果距离(D)太大,则不能获得高清晰度的图像,所以最好满足5t<D<50t(最好10t<D<35t)的关系。
此外,EL层可以被这样形成,使得沿横向形成条状的岸,并沿横向分别形成发红绿蓝光的EL层。其中所述的岸(未示出)沿着栅极引线通过绝缘膜被形成在栅极引线的上方。
在这种情况下,希望在一行中的相同颜色的相邻像素的相互距离(D)是EL层的膜厚(t)的5被或更多倍(最好10倍或更多倍)。最好满足5t<D<50t(最好10t<D<35t)的关系。
在本实施例中,当通过蒸发形成EL层时,借助于电气控制呈蒸汽状态的EL材料,可以控制淀积的位置。
应当说明,本实施例的结构可以和实施例1-4的结构自由组合。
(实施例6)下面参照图14说明在实施例6在无源型(简单阵列型)EL显示器件中使用本发明的情况。在图14中,标号1301表示由塑料制成的衬底,标号1302是由透明导电膜制成的阳极。在实施例6中,通过蒸发方法形成氧化铟和氧化锌的化合物,作为透明导电膜。注意,虽然图14中没有示出,多个阳极沿着平行的方向以确定的间距被排列成条状。
此外,由岸a(1303a)和岸b(1303b)构成的岸被这样形成,使得填满在沿垂直于确定的空间的方向被排列成条状的阴极1305之间的空间。
因而,利用图1所示的蒸发方法形成由EL材料制成的EL层1304a-1304c。注意标号1304a是发红先的EL层,1304b是发绿光的EL层,1304c是发蓝光的EL层。使用的有机EL材料可以和实施例1中的材料类似。EL层沿着由岸a(1303a)和岸b(1303b)形成的槽被形成,因此沿着垂直于确定的空间的方向被排列成条状。
应当说明,在实施例6中,借助于使用掩模控制EL材料在阳极上涂覆的位置,并且通过对阳极施加电压可以对所述位置进一步控制。
接着,虽然在图14中没有示出,以和阳极1302垂直的条状设置多个阴极和多个保护膜,它们具有和确定的空间垂直的纵向。注意在实施例6中阴极1305由MgAg制成,保护膜1306是铝合金膜,两者都由蒸发方法被形成。此外,虽然图中没有示出,一条引线延伸到后来连接FPC的部分,使得对保护电极1306提供预定电压。
此外,在形成保护电极1306之后,可以在此处形成氮化硅膜作为钝化膜(未示出)。
这样便在衬底1301上形成了EL元件。注意在实施例6中下侧电极是透明的阳极,因此从EL层1304a-1304c发出的光被向下表面(衬底1301)发射。不过,EL元件的结构可以被颠倒,因而下侧电极作为光屏蔽阴极。在这种情况下,从EL层1304a-1304c发出的光照射到上表面(和衬底1301相对的一侧)。
接着,制备陶瓷衬底作为覆盖材料1307。使用陶瓷衬底是因为在本实施例的结构条件下这种覆盖材料具有光屏蔽的功能,但是,对于上述的EL元件的结构被颠倒的情况下,也可以使用由塑料或玻璃制成的衬底,因为此时覆盖材料应当是透明的。
在这样制备覆盖材料1307之后,其利用紫外线硬化树脂制成的密封材料1309被连接。应当说明,密封材料1309的内部1308是一个填充有惰性气体例如氮或氩的密封空间。此外,在密封空间1308内提供吸湿剂例如氧化钡也是有效的。最后,连接各向异性的导电膜(FPC)1311,便制成了无源型EL显示器件。
注意可以通过使实施例6和实施例1到5的任何一种组成自由组合来实施实施例6的构成。
(实施例7)当通过实施本发明制造有源阵列EL显示器件时,使用硅基片(硅晶片)作为衬底是有效的。在使用硅基片作为衬底的情况下,可以使用在常规的IC,LSI等产品中利用的M0SFET的制造技术,以便制造要在像素部分中被形成的开关元件和电流控制元件,或者要在驱动电路部分中被形成的驱动器元件。
MOSFET可以构成具有极小变化的电路,如在IC和LSI中其已经实现的那样。特别是,对于具有通过电流值进行灰度显示的模拟驱动器的有源阵列EL显示器件是有效的。
应当说明,硅衬底是不透光的,因此,所述的结构需要被这样构成,使得从EL层发出的光照射到和衬底相对的一侧。实施例7的EL显示器件的结构和图14的类似。不过,其区别在于,其中使用MOSFET代替TFT用于形成像素部分602和驱动电路部分603。
注意可以通过使实施例7和实施例1到6的任何一种组成自由组合来实施实施例7的构成。
(实施例8)和液晶显示器件相比,通过实施本发明形成的EL显示器件在亮的位置具有良好的可见度,这是因为它是一种自发光型器件,而且其具有宽的视野。因而,其可以用作各种电气设备的显示部分。例如,使用本发明的EL显示器件作为具有对角线尺寸等于或大于30英寸(一般等于或大于40英寸)的EL显示器(一种在其壳体内包括EL显示器件的显示器)的显示部分,用于以大屏幕观看电视广播是合适的。
注意,所有用于呈现(显示)信息的显示器例如个人计算机显示器,TV广播接收显示器,或者广告显示器,都属于EL显示器。此外,本发明的EL显示器件可以用作其它各种电气设备的显示部分。
下面给出这些电气设备的一些例子视频摄像机;数字照相机;护目镜型显示器(头戴显示器);汽车导航系统;音频重放装置(例如车载音频系统,音频合成系统);笔记本个人计算机;游戏设备;便携信息终端(例如易动计算机,便携电话、移动游戏设备或电子书籍);以及装有记录介质的图像播放装置(尤其是可以进行记录介质的回放并装有可以显示图像的显示器的装置,例如数字视频盘(DVD))。特别是,因为便携信息终端经常从对角线方向观看,所以视野的宽度是非常重要的。因而,最好使用EL显示器件。这些电气设备的例子如图15和16所示。
图15A一种EL显示器,其具有壳体2001,支撑部分2002,和显示部分2003。本发明可用作显示部分2003。因为EL显示器是不需要背景光的自发光型的装置,和液晶显示装置相比,其显示部分可以较薄。
图15B是一种视频摄像机,其具有主体2101,显示部分2102,声音输入部分2103,操作开关2104,电池2105,和图像接收部分2106。本发明的EL显示器件可以用于显示部分2102中。
图15C是连接在人的头部的EL显示装置的一部分(右侧),其具有主体2201,信号电缆2202,头固定带2203,显示部分2204,光学系统2305,和EL显示装置2206。本发明可以用于EL显示装置2206中。
图15D是装有记录介质的图像播放装置(特别是DVD播放装置),其具有主体2301,记录介质(例如DVD)2302,操作开关2303,显示部分(a)2304和显示部分(b)2305。显示部分(a)主要用于显示图像信息,显示部分(b)主要用于显示字符信息。本发明的EL显示器件可用于图像显示部分(a)和显示部分(b)中。注意家用游戏设备也作为具有记录介质的图像播放装置被包括在本说明中。
图15E是一种移动计算机,其具有主体2401,照相机部分2402,图像接收部分2403,操作开关2404和显示部分2405。本发明的EL显示器件可以用于显示部分2405中。
图15F是个人计算机,其包括主体2501,壳体2502,显示部分2503,和键盘2504。本发明的EL显示器件可用于显示部分2503中。
注意如果在将来有机EL材料能够发射较高强度的光,可以通过透镜等装置放大包括输出的图像的光的投影。此时可以在前方型或后方型的投射器中使用本发明的EL显示器件。
上述的电气设备正在被广泛地用于显示通过电信通路例如互联网或CATV(有线电视)提供的信息,特别是,用于显示动画信息的机会正在增加。有机EL材料的响应速度极高,因此EL显示器件有助于进行动画显示。不过,像素之间的边界模糊,因而使得整个动画也模糊。因而,在电气设备的显示部分中使用本发明的EL显示器件是极为有效的,因为其能够清楚地显示像素之间的边界。
此外,EL显示器件的发射部分消耗功率,因此最好这样显示信息,使得具有尽可能小的发射部分。因此,当在主要用于显示字符信息的显示部分中使用EL显示器件时,例如便携信息终端,特别是便携电话和音频再现装置,最好通过设置不发光的部分作为背景对其进行驱动,并在发光的部分形成字符信息。
图16A是一种便携电话,其包括主体2601,音频输出部分2602,音频输入部分2603,显示部分2604,操作开关2605,和天线2606。本发明的EL显示器件可用于显示部分2604中。注意通过在显示部分2604中用黑色背景显示白色字符,可以减少便携电话的功率消耗。
图16B是一种音频再现装置,特别是一种车载音频系统,其包括主体2701,显示部分2702,操作开关2703和2704。本发明的EL显示器件可用于显示部分2702中。此外,在实施例8中示出了车载的音频再现装置,但是其也可以用于移动式或家用的音频再现装置。注意通过在显示部分2704中用黑色背景显示白色字符,可以减少功率消耗。这对于移动型的音频再现装置尤其有效。
本发明的应用范围极为广泛,本发明可以用于所有领域的电气设备中。此外,实施例1到7所示的EL显示器件的任何结构都可以用于实施例8的电气设备中。
(实施例9)在本实施例中,参照图17A和17B说明使用在多个掩模周围的电场控制在船形试样器皿中蒸发的EL材料(以后称为呈蒸汽状态的EL材料)并在衬底上形成EL材料的膜的方法。
在图17中,标号1010表示衬底。船形试样器皿1011内具有EL材料。
此外,此处要说明的船形试样器皿1011,第一掩模和第二掩模可以被单独提供,或者,选择地,作为一个器件被集成地形成。
应当说明,当要形成红色EL层时,船形试样器皿1011装有发红光的EL材料(以后称为红色EL材料)。当要形成绿色EL层时,船形试样器皿1011装有发绿光的EL材料(以后称为绿色EL材料)。当要形成蓝色EL层时,船形试样器皿1011装有发蓝光的EL材料(以后称为蓝色EL材料)。
应当说明,在本实施例中,其中掺杂有红色荧光色素DCM的并作为基质材料的Alq被用作形成红色EL层的红色EL材料,作为铝和8-羟基喹啉的合成物的Alq被用作用于形成发绿光的EL层的绿色EL材料,锌和苯唑的合成物(Zn(oxz)2)被用作用于形成发蓝光的EL层的蓝色EL材料。
应当说明,上述的EL材料仅仅是一些例子,也可以使用其它已知的EL材料。此外,虽然被选择的EL材料用于发红、绿和蓝光,但是本发明不限于此,也可以使用例如发黄、桔红和灰色光的EL材料。
在本实施例中,首先,船形试样器皿装有红色EL材料。在衬底上形成红色EL层之后,使用装有绿色EL材料的船形试样器皿,在衬底上形成绿色EL层。然后,最后,使用装有蓝色EL材料的船形试样器皿,在衬底上形成蓝色EL层。
如上所述,通过蒸发红、绿和蓝色EL材料,在3个部分上淀积,可以形成EL层。
首先,使用电极1020利用电阻加热使船形试样器皿1011中装有的EL材料蒸发。当呈蒸汽状态的EL材料从船形试样器皿111中排出时,在被连接于船形试样器皿1011的开口处的电极1012产生的电场的影响下,呈蒸汽状态的EL材料被充电而成为带电颗粒。当这些带电颗粒通过掩模时,它们的行进方向由施加于第一阻挡部分1018和第二阻挡部分1019b的电压在掩模周围产生的电场控制。
应当说明,在船形试样器皿1011和掩模1013之间可以提供一个电极,通过该电极产生的电场,控制从船形试样器皿1011排出的呈蒸汽状态的EL材料的带电。
结果,呈蒸汽状态的EL材料经过第一和第二阻挡部分的空间被淀积在衬底的表面上。
在第一掩模1013中,第一阻挡部分1018是多个导线,它们被相互并列地设置(条状),由导电材料例如铜,铁,铝,钽,钛或钨制成,呈网状结构,或者呈板状结构。在第二掩模1019a中,第二阻挡部分1019b是多个导线,它们被相互并列地设置(条状),由导电材料例如铜,铁,铝,钽,钛或钨制成,呈网状结构,或者呈板状结构。呈蒸汽状态的EL材料排斥由施加于第一阻挡部分1018的负电压产生的电场,因而,通过第一阻挡部分1018之间的间隙。此外,呈蒸汽状态的EL材料排斥由施加于第二阻挡部分1019b的负电压产生的电场,因而,通过第二阻挡部分1019b之可的间隙,被淀积在衬底上。
虽然图17A和17B说明的是第一阻挡部分和第二阻挡部分的截面是圆形的情况,但是本发明不限于此,其截面可以是矩形、椭圆形或多边形的。
应当说明,用于给予呈蒸汽状态的EL材料一个排斥第一掩模1013的第一阻挡部分的电压被施加于第一掩模1013的第一阻挡部分上。这使得EL材料能够通过第一掩模1013的第一阻挡部分1018之间的间隙。应当说明,呈蒸汽状态的EL材料由施加有负电压的电极1012产生的电场带电,同时负电压被电极1015a施加于第一掩模1013的第一阻挡部分1018,从而产生电场。此外,负电压被电极1015b施加于第二掩模1019a的第二阻挡部分1019b,从而产生电场。这使得呈蒸汽状态的EL材料的带电颗粒在电性上排斥第一和第二阻挡部分,从而通过第一和第二阻挡部分的间隙。
通过形成一个图17A所示的结构,并在等于或大于几十伏和等于或小于10kV的范围内合适地控制施加于第一阻挡部分1018上的负的第一电压和被施加于第二阻挡部分1019b的负的第二电压,可以以高的精度控制淀积的位置。
应当说明,第一掩模1013和第二掩模1019a之间的距离,第二掩模1019a和衬底之间的距离,第一阻挡部分1018之间的距离,第二阻挡部分1019b之间的距离,以及类似距离可以由实施本发明的人员合适地设置。例如,第一阻挡部分1018之间的距离和第二阻挡部分1019b之间的距离可以是在衬底上方形成的像素电极的像素间距。
此外,掩模中的开口被称为第一或第二阻挡部分之间的间隙。
此外,其中要被形成EL材料的表面此处被称为像素电极表面的一部分,或其上要被形成薄膜的有机膜。
此外,通过利用电极1014对其内具有船形试样器皿1011、第一和第二掩模、以及衬底1010的蒸发室1021的内侧面施加负电压,可以使呈蒸汽状态的带负电的EL材料排斥蒸发室的内侧面,因此,呈蒸汽状态的EL材料可以被淀积而不会附着在蒸发室的内侧面上。
借助于通过蒸发船形试样器皿111中的红色EL材料进行淀积,在像素上形成条状红色EL层。此时,沿箭头k的方向把掩模移动一个像素列,类似地,通过从船形试样器皿1011中蒸发进行淀积绿色EL材料形成和红色EL层相邻的绿色EL层。再沿箭头k的方向把掩模移动一个像素列,通过从船形试样器皿1011中蒸发进行淀积蓝色EL材料形成和绿色EL层相邻的蓝色EL层。换句话说,随着掩模沿箭头k的方向移动,通过在3个部分淀积分别淀积发红、绿和蓝光的像素列,形成3种颜色的条状的EL层。应当说明,所形成的EL层的厚度最好在100nm到1μm。
应当说明,每当EL材料的种类被改变时,其中含有EL材料的船形试样器皿1011可以被改变,或者,选择地,只改变要被使用的EL材料,而不改变船形试样器皿1011。
应当注意,此处使用的像素列指的是通过被在源极引线的上方形成的岸(未示出)进行分割而形成的像素的列。因此,像素列也可以被表示为沿着源极引线排成一行的多个像素。虽然此处说明了岸在源极引线的上方被形成的情况,但是岸也可以在栅极引线的上方被形成。在这种情况下,沿着栅极引线排成一行的多个像素被称为像素列。
因此,像素部分(未示出)可以认为是被提供在多个源极引线上方或被提供在多个栅极引线上方的条状岸分割的多个像素列的集合。像素部分也可以认为由在其上形成有发红光的条状EL层的像素列、在其上形成有发绿光的条状EL层的像素列以及在其上形成有发蓝先的条状EL层的像素列构成。
因为条状岸被提供在多个源极引线或多个栅极引线的上方,实际上,像素部分也可以认为是由多个源极引线或多个栅极引线分割的多个像素列的集合。
此外,最好对被形成在衬底1010上的像素电极(阳极)施加电压,从而产生用于进一步控制呈蒸汽状态已经通过掩模的EL材料的电场,并选择地把所述呈蒸汽状态的EL材料淀积在需要的位置。
此外,为了精确地定位第一掩模1013和第二掩模1019a,它们可以通过层叠两个导电板并利用电子放电方法同时切割所述导电板,从而形成缝状或圆形的孔。
应当说明,本实施例的结构可以和实施例1-8的结构自由组合。
(实施例10)按照本发明,也可以使用来自三重激子的磷光的EL材料用于发光(也叫做三重化合物)。其中利用可以使用磷光进行发光的EL材料的自发光器件可以彻底改善外部光发射量子效率。这使得能够降低EL元件的功率消耗,延长寿命,和减轻重量。
以下论文报告了使用三重激子改善外部光发射效率的情况。
由T.Tsutsui,C.Adachi和S.Saito在PhotochemicalProcesses in Organized Molecular Systems(组织分子系统中的光化学工艺),ed.K.Honda(Elsevirt Sci.Pub.,Tokyo,1991),p.437报告的EL材料(豆香素颜料)的结构式如下(化学式1)由M.A.Baldo,D.F.O’Brien,Y.You,A.Shoustikov,S.Sibley,M.E.Thompson和S.R.Forrest在Nature 395(1998),p.151报告的EL材料(Pt合成物)的结构式如下(化学式2)由M.A.Baldo,S.Lamansky,P.E.Gurrows,M.E,Thompson和S.R.Forrest在Appl.Phys.Lett.,75(1999),p.4以及由T.Tsutsui,M.J.Yang,M.Yahiro,K.Nakamura,T.Watanabe,T.Tsuji,Y.Fukuda,T.Wakimoto和S.Mayaguchi在Appl.Phys.,38(12B)(1999)L1502中报告的EL材料(Ir合成物)的结构式如下(化学式3)如果可以使用上述的来自三重激子的磷光,原理上,可以实现的外部光发射量子效率高达当使用来自单一激子的磷光时的外部光发射量子效率的3到4倍。
应当说明,本实施例的结构可以和实施例1到9的任何结构自由组合。
按照本发明,当通过蒸发借助于掩模在要被形成EL材料的膜的表面上形成EL材料的膜时,可以避免其中EL材料不能通过掩模而被淀积在掩模上的情况。此外,按照本发明,通过使用多个掩模,可以改善膜形成位置的定位精度。
此外,因为借助于电排斥阻止EL材料被淀积在掩模上,所以所述掩模可以被使用多次。此外,可以精确地形成EL材料的膜而没有定位精度差的问题。因此,可以改善利用EL材料的EL显示器件的生产效率,从而降低成本。此外,因为呈蒸汽状态的EL材料的淀积位置刚好在淀积之前被控制,所以可以使用常规的淀积方法,因而本发明可以被广泛地应用。化学式1 化学式2 化学式3
权利要求
1.一种用于形成薄膜的方法,包括以下步骤提供其内装有EL材料的船形试样器皿,其上具有电极的衬底和在船形试样器皿与衬底之间的掩模,使在所述船形试样器皿中的EL材料成为蒸汽状态,使所述呈蒸汽状态的EL材料从船形试样器皿中朝向衬底排出,以及使所述呈蒸汽状态的EL材料通过对应于所述电极的掩模的开口,从而使EL材料淀积在所述衬底上的电极上,并形成薄膜。
2.如权利要求1所述的用于形成薄膜的方法,其中对所述掩模施加电压。
3.如权利要求1所述的用于形成薄膜的方法,其中当在船形试样器皿中的EL材料成为蒸汽状态并所述呈蒸汽状态的EL材料从船形试样器皿朝向衬底被排出时,所述呈蒸汽状态的EL材料被充电。
4.如权利要求1所述的用于形成薄膜的方法,其中在所述掩模中的开口是阻挡部分的间隙。
5.如权利要求1所述的用于形成薄膜的方法,其中具有多个掩模,并对多个掩模中的各个掩模施加不同的电压。
6.如权利要求1所述的用于形成薄膜的方法,其中所述电极是像素电极。
7.如权利要求1所述的用于形成薄膜的方法,其中所述EL材料是低分子量材料。
8.如权利要求1所述的用于形成薄膜的方法,其中所述薄膜的厚度是10nm到10微米。
9.如权利要求1所述的用于形成薄膜的方法,其中所述掩模是由导电材料制成的导线,由所述导线形成的网状结构,由导电材料制成的板状结构,或者相互平行排列的多个导线。
10.一种使用如权利要求1所述的方法制造的自发光器件。
11.一种薄膜形成装置,包括其中装有EL材料的船形试样器皿;用于使在所述船形试样器皿中的EL材料成为蒸汽状态的装置;其上具有电极的衬底;在所述船形试样器皿和所述衬底之间的掩模;以及对所述掩模施加电压的装置。
12.如权利要求11所述的薄膜形成装置,其中呈蒸汽状态的EL材料的行进方向或淀积位置通过对掩模施加电压进行控制。
13.如权利要求11所述的薄膜形成装置,还包括用于对所述呈蒸汽状态的EL材料充电的装置。
14.如权利要求11所述的薄膜形成装置,还包括被提供在衬底和掩模之间的另一个掩模,并对所述另一个掩模施加一个和被施加于所述掩模的电压不同的电压。
15.一种用于形成薄膜的方法,包括以下步骤提供其内装有EL材料的船形试样器皿,其上具有电极的衬底和在船形试样器皿与衬底之间的掩模,使在所述船形试样器皿中的EL材料成为蒸汽状态,使所述呈蒸汽状态的EL材料从船形试样器皿中朝向衬底排出,使所述呈蒸汽状态的EL材料通过对应于所述电极的掩模的开口,从而使所述EL材料淀积在所述衬底上的电极上,并形成薄膜,以及其中对所述掩模施加电压。
16.一种用于形成薄膜的方法,包括以下步骤提供其内装有EL材料的船形试样器皿,其上具有电极的衬底和在船形试样器皿与衬底之间的掩模,使在所述船形试样器皿中的EL材料成为蒸汽状态,使所述呈蒸汽状态的EL材料从船形试样器皿中朝向衬底排出,使所述呈蒸汽状态的EL材料通过对应于所述电极的掩模的开口,从而使所述EL材料淀积在所述衬底上的电极上,并形成薄膜,以及其中对所述呈蒸汽状态的EL材料充电。
17.一种薄膜形成装置,包括其中装有EL材料的船形试样器皿;用于使在所述船形试样器皿中的EL材料成为蒸汽状态的装置;其上具有电极的衬底;在所述船形试样器皿和所述衬底之间的掩模;对所述掩模施加电压的装置;以及用于对所述呈蒸汽状态的EL材料充电的装置。
全文摘要
本发明提供了一种通过蒸发借助于在所需位置选择地淀积用于形成EL层的材料从而形成EL层的方法。当用于形成EL层的材料被淀积时,在船形试样器皿(111)和衬底(110)之间提供一个掩模。通过对所述掩模(113)施加一个电压,用于形成EL层的EL材料的行进方向被控制,从而选择地使所述EL材料淀积在所需位置。
文档编号H01L51/40GK1312584SQ0111097
公开日2001年9月12日 申请日期2001年3月6日 优先权日2000年3月6日
发明者山崎舜平, 广木正明, 石丸典子 申请人:株式会社半导体能源研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1