专利名称:半导体器件用电容器、其制造方法及采用它的电子器件的制作方法
技术领域:
本发明涉及一种半导体器件用电容器,更具体地涉及一种半导体器件中使用的在形成薄介电层时有效地抑制了电极材料的氧化电容器、其制造方法、以及采用该电容器并因而可高度集成的电子器件。
背景技术:
存储器集成度越高,单位单元的尺寸越小且电容器的面积越小。因此,为了获得在有限区域内具有大的静电量的电容,进行了大量的对具有大介电常数的电容器电介质的使用的研究,该电容器电介质的使用激发了对高介电材料的需要,例如氧化钽(TaO)和钛酸锶(SrTiO3),这些材料具有比诸如SiO2和Si3N4等低介电材料高的介电常数。
然而,尽管使用了高介电材料,还需要三维电容器以获得具有大容量的电容器。为此,使用了一种原子层沉积方法(ALD)。
根据ALD方法,通过在衬底上化学吸附作为前体的金属有机化合物,并在氧气气氛中处理该薄膜,获得了所需的金属氧化物薄介电膜。ALD方法是有利的,其原因在于,该前体和强氧化剂分次引入,故而作为前体的有机物可通过该氧化物去除。
然而,如果在形成原子层时将要形成在薄介电层下方的下部电极由易于氧化的材料形成,例如钌(Ru),则Ru电极可能变形并且该薄介电层可能劣化,如图1所示。因此,该薄介电层难以高度集成。
图1是电容器的视图,其中,薄钛酸锶(SrTiO3)层通过传统的O3原子层沉积(ALD)方法形成在Ru下部电极上。参见图1,注意到电容器中导致了Ru下部电极的隆起。
如图2所示,在氧气气氛中,Ru易于变成RuO2或RuO4,这导致了Ru电极的变形。
发明内容
为了解决上述问题,本发明的第一个目的是提供一种半导体器件用电容器,其中电极材料的氧化在形成薄介电层时得以有效抑制。
本发明的第二个目的是提供一种制造这种电容器的方法。
本发明的第三个目的是提供一种采用这种电容器的电子器件,其中,薄介电层可以高度集成。
因此,为了实现第一个目的,提供一种半导体器件用电容器,该电容器包括上部和下部电极,每个电极由铂族金属形成;设置在上部和下部电极之间的薄介电层;以及设置在下部电极和薄介电层之间的缓冲层,该缓冲层包括第3、4或13族的金属氧化物。
另一方面,提供一种制造半导体器件用的这种电容器的方法,包括一种制造半导体器件用电容器的方法,该方法包括通过利用缓冲层前体实施原子层沉积(ALD)工艺,在铂族金属下部电极上形成缓冲层;通过利用薄介电层前体实施ALD工艺,在缓冲层上形成薄介电层;以及在薄介电层上形成铂族金属上部电极。
再一方面,提供一种制造半导体器件用的这种电容器的方法,包括一种制造电容器的方法,该方法包括在铂族金属下部电极的表面吸附CO;将下部电极放置在还原气氛中,以产生晶格氧(lattice oxygen);利用晶格氧,通过利用薄介电层前体实施ALD工艺,形成薄介电层;以及在薄介电层上形成铂族金属上部电极。
再一方面,提供一种采用这种半导体器件用电容器的电子器件。
通过参照附图详细描述本发明的优选实施例,本发明的以上目的和优点将更为清晰,附图中图1是通过传统O3原子层沉积(ALD)方法形成的电容器的视图;图2是一曲线图,图中示出了图1所示电容器中钌(Ru)氧化物的活化度(degree of activation)随温度的变化;图3为根据本发明的一视图,图中说明了吸附在Ru电极表面上的一氧化碳(CO)如何变成晶格氧的过程;图4A至4C是示出采用根据本发明的电容器的存储器实施例的横截面视图;图5是根据本发明一实施例的电容器的SrTiO3薄层的透射电镜(TEM)照片;图6是根据本发明另一实施例的电容器的SrTiO3薄层的扫描电镜(SEM)照片;以及图7A和7B是曲线图,图中说明了根据再一实施例的电容器的电特性。
具体实施例方式
本发明中,缓冲层形成在薄介电层和电极之间,以防止形成薄介电膜时作为电极材料的铂族金属(尤其是钌(Ru))的氧化。该缓冲层由第3、4或13族金属氧化物形成,优选地是从TiO2、Al2O3、Ta2O5和HfO2中选出的至少一种。这种缓冲层可由形成缓冲层的前体的原子层沉积(ALD)形成。该前体是一种金属有机化合物,其具有小尺寸的配合基,或者在吸附到衬底上时易于分解并导致副产物的化学吸附。这种金属有机化合物的使用允许更高堆积密度的原子层形成在电极上。
金属前体包括用于TiO2缓冲层的Ti(i-OPr)4或Ti(i-OPr)2(tmhd)2(tmhd表示四甲基庚烷二酮酸酯(tetramethylheptanedionate),i-OPr表示异丙氧基(isopropoxy));用于Al2O3缓冲层的Al(CH3)3或AlCl3;用于Ta2O5缓冲层的Ta(OEt)5(OEt表示氧乙基(etoxide));以及用于HfO2缓冲层的Hf(OBu)4。
如上所述,如果具有高堆积密度的原子层形成在电极上,则在形成薄介电层时Ru电极表面不直接接触臭氧(O3)或氧气。此外,可以防止电极氧化导致的电极变形或薄介电层特性的劣化。
缓冲层前体的气相沉积温度很大程度上取决于前体的特性,但优选地为200-500℃。这是因为前体和用作氧化剂的O3之间的反应性在沉积温度低于200℃时下降,且如果沉积温度高于500℃,则前体分解而不能利用ALD方法形成缓冲层。
以下,将说明半导体器件用电容器的制造方法。
首先,下部电极由铂族金属形成。作为铂族金属,从包括钌(Ru)、锇(Os)、铱(Ir)和铂(Pt)的组中选出至少一种元素。
然后,通过利用缓冲层前体实施ALD工艺,在下部电极上形成缓冲层。
其后,通过利用薄介电层前体实施ALD工艺,在缓冲层上形成薄介电层。优选地,该薄介电层由SrTiO3、BaTiO3、Pb(Zr,Ti)O3等形成。为了形成SrTiO3薄介电层,Sr(tmhd)2或Sr(methd)2(methd表示甲氧基乙氧基四甲基庚烷二酮酸酯(methoxyethoxy tetramethylheptanedionate))中的一种选作Sr源,TiO(tmhd)2或TiO(i-OPr)2(tmhd)2中的一种选作Ti源,然后所选的元素混合到一起。接着,利用薄介电层前体和氧气或热源进行ALD工艺。优选地,原子层的气相沉积温度为300-500℃。
然后,通过利用铂族金属在薄介电层上形成上部电极,根据本发明的半导体器件用电容器得以完成。
在本发明中,由吸附在电极材料上的一氧化碳(CO)获得的晶格氧用作氧化层。
图3是说明采用Ru电极时形成晶格氧的工艺的视图。参见图3,将Ru电极上吸附CO的部位放置在还原气氛中,并以CH4的形式将CO中的碳除去。于是,仅晶格氧保留在Ru电极表面上,该氧在后续工序中用作通过ALD工艺形成薄介电层时的氧化剂。
现在将说明利用晶格氧制造根据本发明的半导体器件用电容器的方法。
首先,在由铂族金属中的一种元素形成的下部电极表面上吸附CO。然后,将所得结构放置在还原气氛中以形成晶格氧。为此目的,温度可维持在100-150℃。这是因为温度低于100℃时CO难以还原,且处理温度高于500℃时CO易于从下部电极碳的表面上脱附。还原气氛利用诸如氢的还原气体形成。
其后,利用晶格氧,通过利用薄介电层前体实施ALD工艺,形成薄介电层。形成薄介电层的方法和所需材料如上所述。
然后,通过在薄介电层上形成铂族金属中的一种元素构成的上部电极,根据本发明的半导体器件用电容器得以完成。
这种电容器可用于各种电子器件,诸如动态RAM(DRAM)和非易失性存储器(FRAM)。
图4A至4C是采用根据本发明的电容器的多种存储器的横截面视图。更具体地,图4A是单晶体管型存储器的横截面视图,图4B是1Tr-1C型存储器的横截面视图;以及图4C是1Tr-1C COB型存储器的横截面视图。
图4A至4C中,附图标记40表示硅衬底;41表示有源区;42表示无源区;43表示下部结构;44表示栅电极;45表示多晶硅层;46表示下部电极;47表示TiO2缓冲层;48表示SrTiO3薄介电层;50表示上部电极;以及52表示电容器。
图4A至4C中,示出了采用本发明电容器的优选实施例的各种存储器,但是,这种电容器可用于其它具有薄介电层的电子器件。
以下,将通过下述示例性实施例具体描述根据本发明的电容器。
第一实施例在约325℃,利用0.1M溶解在四氢呋喃(THF)中的Ti(i-OPr)2(tmhd)2,并将O3用作氧化剂,进行原子层沉积(ALD)工艺,以在第一Ru电极上形成TiO2缓冲层。
然后,在约400℃,利用Sr(mdthd)2和Ti(i-OPr)2(tmhd)2作为前体,并利用O3作用氧化剂,在缓冲层上进行ALD工艺,以形成SrTiO3薄介电层。
接着,在SrTiO3薄介电层上形成第二Ru电极,从而完成电容器。
第二实施例以与第一实施例相同的方式制备电容器,不同之处在于,在约400℃,利用作为缓冲层前体的Al(CH3)3和作为氧化剂的O3,进行ALD工艺,以在第二Ru电极上形成Al2O3缓冲层。
第三实施例在第一Ru电极表面上吸附CO,并在氢气气氛中在约400℃进行处理,以形成晶格氧。然后,以与第一实施例相同的方式制备SrTiO3薄介电层。
然后,在SrTiO3薄介电层上形成第二Ru电极,从而完成一电容器。
用透射电镜(TEM)获得了第一实施例的形成在Ru薄层上的SrTiO3薄介电层的堆叠横截面,如图5所示。
参见图5,TiO2缓冲层形成在SrTiO3薄层下方,Ru电极位于TiO2缓冲层下。注意,在Ru电极上未形成突起。
图6是用扫描电镜(SEM)获得的根据第二实施例的形成在Ru薄层上的SrTiO3薄介电层的堆叠横截面的照片。
在图6中注意到,由于缓冲层,在Ru电极上未发生突起,且电容器表面粗糙度在沉积SrTiO3薄介电层时未增加。
图7A和7B是示出根据第三实施例的电容器的电特性的曲线图。更具体地,图7A示出了电流强度相对于电压的变化。图7A表明,通过第三实施例中制备的电容器,总体上满足了作为DRAM标准设置的1V时10-7A/cm2的要求。图7B显示了tox相对于偏压的变化。此处,“tox”表示薄介电层厚度计算成SiO2厚度时的值。tox的值越小,介电层的质量越好。参见图7B,在其刚沉积后,介电层的tox为6.8,且超过16G的DRAM所需的介电层的tox为7。
虽然本发明已经参照其优选实施例进行了具体描述,但是本领域技术人员应当理解的是,在不超出本发明的由所附权利要求确定的精髓和范围的情况下,可对其作形式和细节上的各种变化。
如上所述,在根据本发明的电容器中,即使在通过利用诸如O3的强氧化剂施行ALD工艺来形成薄介电层时,作为下部电极的Ru电极的氧化也可得以抑制,从而防止了Ru电极的变形和薄介电层的性能的劣化。因此,根据本发明的电容器可确保高度集成的存储器所需的薄介电层的优秀电性能,因此,其可用于诸如DRAM的电子器件。
权利要求
1.一种半导体器件用电容器,该电容器包括上部电极和下部电极,每个电极由铂族金属形成;设置在上部电极和下部电极之间的薄介电层;以及设置在下部电极和薄介电层之间的缓冲层,该缓冲层包括第3、4或13族的金属氧化物。
2.如权利要求1所述的电容器,其特征在于,第3、4或13族金属氧化物是选自包括TiO2、Al2O3、Ta2O5和HfO2的组中的至少一种。
3.如权利要求1所述的电容器,其特征在于,薄介电层包括SrTiO3、BaTiO3、或Pb(Zr,Ti)O3。
4.如权利要求1所述的电容器,其特征在于,铂族金属是选自包括Ru、Os、Ir和Pt的组中的至少一种。
5.一种制造半导体器件用电容器的方法,该方法包括通过利用缓冲层前体实施原子层沉积工艺,在铂族金属的下部电极上形成缓冲层;通过利用薄介电层前体实施原子层沉积工艺,在缓冲层上形成薄介电层;以及在薄介电层上形成铂族金属上部电极。
6.如权利要求5所述的方法,其特征在于,缓冲层前体包括Ti(i-OPr)2(tmhd)2、Al(CH3)3、或Hf(OBu)4,其中tmhd表示四甲基庚烷二酮酸酯,i-OPr表示异丙氧基,n-OBu表示氧正丁基。
7.如权利要求5所述的方法,其特征在于,形成缓冲层的原子层沉积工艺在200-500℃温度下进行。
8.如权利要求5所述的方法,其特征在于,薄介电层前体包括选自包括Sr(methd)2、TiO(tmhd)2和Ti(i-OPr)2(tmhd)2的组中的至少一种,其中methd表示甲氧基乙氧基四甲基庚烷二酮酸酯,tmhd表示四甲基庚烷二酮酸酯,i-OPr表示异丙氧基。
9.一种制造电容器的方法,该方法包括在铂族金属下部电极的表面吸附CO;将下部电极放置在还原气氛中,以产生晶格氧;利用晶格氧,通过利用薄介电层前体实施原子层沉积工艺,形成薄介电层;以及在薄介电层上形成铂族金属上部电极。
10.如权利要求9所述的方法,其特征在于,薄介电层前体包括选自包括Sr(tmhd)2、Sr(methd)2、TiO(tmhd)2和Ti(i-OPr)2(tmhd)2的组中的至少一种,其中methd表示甲氧基乙氧基四甲基庚烷二酮酸酯,tmhd表示四甲基庚烷二酮酸酯,i-OPr表示异丙氧基。
11.如权利要求9所述的方法,其特征在于,还原气氛维持在100-500℃的温度。
12.一种采用半导体器件用电容器的电子器件,该电容器包括上部电极和下部电极,每个电极由铂族金属形成;设置在上部电极和下部电极之间的薄介电层;以及设置在下部电极和薄介电层之间的缓冲层,该缓冲层包括第3、4或13族的金属氧化物。
13.如权利要求12所述的电子器件,其特征在于,第3、4或13族金属氧化物是选自包括TiO2、Al2O3、Ta2O5和HfO2的组中的至少一种。
14.如权利要求12所述的电子器件,其特征在于,薄介电层包括SrTiO3、BaTiO3、或Pb(Zr,Ti)O3。
15.如权利要求12所述的电子器件,其特征在于,铂族金属是选自包括Ru、Os、Ir和Pt的组中的至少一种。
16.如权利要求12所述的电子器件,其特征在于,该电子器件是动态随机存取存储器或非易失性存储器。
全文摘要
本发明公开了一种半导体器件用电容器、其制造方法及采用它的电子器件。该电容器包括上部电极和下部电极,每个电极由铂族金属形成;设置在上部电极和下部电极之间的薄介电层;以及设置在下部电极和薄介电层之间的缓冲层,该缓冲层包括第3、4或13族的金属氧化物。
文档编号H01L21/822GK1441496SQ0214716
公开日2003年9月10日 申请日期2002年10月24日 优先权日2002年2月28日
发明者李正贤, 闵约塞, 曹永真 申请人:三星电子株式会社