专利名称:制造光学器件的方法以及相关改进的制作方法
技术领域:
本发明涉及一种光学器件的制造方法,特别是,但并非局限于此地,涉及制造集成光学器件或者光电器件,例如,诸如激光二极管、光调制器、光放大器、光开关、光检测器以及类似器件的半导体光电器件。本发明还涉及包括此类器件的光电子集成电路(OEIC)和光子集成电路(PIC)。
背景技术:
量子阱混杂(Quantum Well IntermixingQWI)是一种已被报道为提供了实现单片光电集成的可行路线的工艺。QWI可以在III-V族半导体材料中进行,例如铝镓砷(AlGaAs)和铟镓砷磷(InGaAsP),该半导体材料可生长于二元衬底上,例如砷化镓(GaAs)或者磷化铟(InP)。QWI通过量子阱(QW)及相关阻挡层(barrier)中元素的相互扩散改变生长的(as-grown)结构的带隙,来制作其组成成分的合金。该合金具有比生长的QW的带隙大的带隙。因此,产生于未发生QWI的QW中的光辐射(发光)可穿过对所述光辐射实际上透明的合金的QWI或“混杂”区。
文献中已报道了各种QWI技术。例如,可以通过将诸如锌的元素高温扩散到包括QW的半导体材料中来进行QWI。
QWI还可以通过将诸如硅的元素注入到QW半导体材料中来进行。在此技术中,注入元素在半导体材料的结构中引入点缺陷,通过高温退火步骤,所述点缺陷贯穿半导体材料移动,导致例如在QW结构中产生混杂。
此QWI技术已经在“Applications of Neutral Impurity Disordering inFabricating Low-Loss Optical Waveguides and Integrated WaveguideDevices(中性杂质无序化工艺在低损耗的光波导管和光集成波导器件制造中的应用)”,Marsh et al,Optical and Quantum Electronics 23,1991,s941-s957中报道,其作为参考在此引述。
此类技术的问题在于,虽然QWI将改变(增大)生长后的半导体材料的带隙,但残留的扩散或注入杂质会由于这些杂质元素的自由载流子吸收系数而引入大的损失。
报道的另一种提供混杂的QWI技术是无杂质空位扩散(Impurity FreeVacancy DiffusionIFVD)。在进行IFVD时,III-V族半导体结构的顶部覆盖层(top cap layer)通常为砷化镓或铟镓砷(InGaAs)。在顶部层上淀积氧化硅(SiO2)薄膜。半导体材料的后续快速热退火使得半导体合金中的键断开,并使对氧化硅(SiO2)敏感的镓离子或原子扩散入氧化硅中,从而在覆盖层中留下空位。随后,所述空位在半导体结构中扩散并例如在QW结构中导致层混杂。
IFVD已在“Quantitative Model for the Kinetics of CompositionalIntermixing in GaAs-AlGaAs Quantum-Confined Heterostructures(在GaAs-AlGaAs量子限制异质结构中成分混杂动力学的定量模型)”,by Helmyet al,IEEE Journal of Selected Topics in Quantum Electronics,Vol 4,No 4,July/August 1998,pp 653-660中报道,其作为参考在此引述。
本发明至少一个方面的目的在于避免或者至少减轻现有技术中的至少一个前述缺点/问题。
本发明至少一个方面的目的还在于提供一种利用一种改进了的QWI工艺制造光学器件的改进的方法。
发明内容
根据本发明的第一方面,提供了一种制造光学器件的方法,将用来制作所述器件的器件体部分(device body portion)包括一量子阱(QW)结构,该方法包括对所述器件体部分进行处理的步骤,以便至少在器件体部分的一部分中形成扩展缺陷(extended defect)。
每一扩展缺陷可以被理解为包括多个相邻的“点”缺陷的结构缺陷。
优选地,所述加工器件体部分的步骤包括在器件体部分上进行等离子体蚀刻。优选地并且有益地,所述在器件体部分上进行等离子体蚀刻的步骤可以在溅射器中进行。在所述的从器件体部分上进行溅射的步骤中,可以环绕器件体部分提供一磁场。在所述的从器件体部分进行溅射的步骤中,可以使用磁控溅射器。
在所述的在器件体部分上进行溅射蚀刻的步骤中,可以将一(反向)偏置电压施加在一个设置有所述器件体部分的电极上,以便对器件体部分进行“预蚀刻”或清洁。优选地,所述溅射蚀刻在1至5微米汞柱的溅射压力下以300至750瓦的功率进行0.5至10分钟。
所述方法可以包括在器件体部分的至少另一部分上淀积一介电层的优选步骤。因此所述介电层可以用作掩模来定义所述的至少一个部分。所述方法还可以包括在介电层上和/或在器件体部分的该至少一部分上淀积另一介电层的后续步骤。
有益的是,可以利用溅射器淀积所述介电层和/或另一介电层。或者,所述介电层和/或另一介电层可以利用除了溅射器之外的其它淀积技术来淀积,例如等离子体增强化学汽相淀积(PECVD)。利用这些淀积技术中的任何一种,可以形成至少一个低损伤的介电层,其基本上不会明显影响器件体部分上的相邻部分。
所述介电层最好主要包括氧化硅(SiO2);或者可以包括例如氧化铝(Al2O3)的其它介电材料。
优选地,所述溅射器包括一反应室,该反应室可以主要填充诸如氩气的惰性气体,优选压力为2微米汞柱,或者填充例如比例为90%/10%的氩气与氧气的混合物。
淀积所述介电层的步骤可以包括用于制造该器件的量子阱混杂(QWI)工艺的一部分。QWI工艺可以包括无杂质空位无序化(Impurity Free VacancydisorderingIFVD)。
优选地,所述制造方法还包括在一个较高温度下对包括所述介电层的器件体部分进行退火的后续步骤。
令人惊讶的是,作为例如IFVD的QWI技术中的一个步骤,通过在器件体部分上进行等离子体蚀刻,优选利用溅射器,损伤所致的延展缺陷被引入器件体部分的至少一部分中;所述至少一部分例如可以至少包括顶部或者“覆盖”层的一部分。相信这是由于在退火,例如通过快速热退火来施加热量,之前覆盖层中的键的断裂而产生了损伤,从而抑制了镓元素从所述的至少一部分发生转移,例如进入所述的另一介电层中。
优选地,所述制造方法还包括以下在先步骤提供一衬底;在该衬底生长一第一光学覆层;
一包括一量子阱(QW)结构的芯导层(core guiding layer);以及一第二光学覆层。
第一光学覆层、芯导层以及第二光学覆层可以通过分子束外延(MBE)或者金属有机化学汽相淀积(MOCVD)生长。
在一优选实施例中,所述方法可以包括下述步骤在器件体部分的一表面上淀积所述介电层;在所述介电层的一表面上的光致抗蚀剂层中定义出一图案,并且去除至少一部分光致抗蚀剂,以便在器件体部分的所述至少一个其它部分上形成介电层。
在所述优选实施例中,所述方法还可以包括在退火处理之前在器件体的一部分表面和所述介电层的一表面上淀积另一介电层的步骤。
在所述优选实施例中,所述介电层可以包括一混杂覆盖层(intermixingcap);同时器件体部分的所述至少一个部分和/或所述另一介电层可以包括一混杂抑制覆盖层(intermixing suppressing cap)。所述介电层的厚度可以wei10至1000纳米。更为优选地,所述介电层的厚度可以是200或者300纳米。
一个后续的退火步骤可以在700至1000℃的温度下进行0.5至5分钟,更为优选的为在800至1000℃的温度下进行0.5至5分钟,并且在一实施例中大致在900℃的温度下进行1分钟左右。
根据本发明的第二方面,提供了一种制造光学器件的方法,将用来制作所述器件的器件体部分包括一种量子阱(QW)结构,该方法包括在器件体部分上进行等离子体蚀刻。优选地,在器件体部分上进行等离子体蚀刻的步骤利用一个溅射器来实现。
根据本发明的第三方面,提供了一种利用根据本发明第一或第二方面的方法制成的光学器件。该光学器件可以包括集成光学器件或光电器件。
所述器件体部分可以在III-V族半导体材料系统中制成。在一个最优的实施例中,III-V半导体材料系统可以为一砷化镓(GaAs)基的系统,并且可以工作在大约600至1300纳米的波长。或者,在一个次优的实施例中,III-V半导体材料系统可以为一种磷化铟基的系统,并且可以工作在大约1200至1700纳米的波长。所述器件体部分可以至少部分地由铝镓砷(AlGaAs)和/或铟镓砷(InGaAs)、铟镓砷磷(InGaAsP)、铟镓铝砷(InGaAlAs)和/或铟镓铝磷(InGaAlP)制成。
所述器件体部分可以包括一衬底,在该衬底上形成有一第一光学覆层、一芯导层以及一第二光学覆层。优选地,所述量子阱(QW)结构形成于芯导层中。与第一和第二光学覆层相比,生长的芯导层可以具有较小的带隙和较高的折射率。
根据本发明的第四方面,提供了一种包括至少一个根据本发明第三方面的所述器件的光学集成电路、光电子集成电路(0EIC)或者光子集成电路(PIC)。
根据本发明的第五方面,提供了一种用于根据本发明第一或第二方面的方法中的器件体部分(“样品”)。
根据本发明的第六方面,提供了一种材料晶片,包括至少一个用于根据本发明第一或第二方面的方法中的器件体部分。
根据本发明的第七方面,提供了一种用于根据本发明第二方面的方法中的等离子体蚀刻设备。优选地,该溅射设备为溅射器,其可以为一个磁控溅射器。
根据本发明的第八方面,提供了一种在根据本发明第一或第二方面的方法中溅射设备的使用。
下面将参照附图仅以示例的方式描述本发明的实施例,附图中图1为一生长的器件体部分的侧视图,该器件体部分用于根据本发明的一实施例的光学器件制造方法;图2为一光学器件的侧视图,该光学器件根据本发明的一实施例利用图1中所示的器件体部分制成;图3为图1中所示的器件体部分的一部分的带隙能的示意图,所述部分包括一包括一量子阱(QW)的芯层(core layer);图4为一个类似于图3的示意图,示出了图2中所示的光学器件的对应部分在发生量子阱混杂(QWI)时的带隙能;图5(a)至5(g)为在图2所示的光学器件的制造方法的各个步骤期间的一系列的器件体部分的示意侧视图;图6为一磁控溅射设备的简化示意说明,该磁控溅射设备适用于图5(a)至5(g)中所示的制造方法;
图7为图6中所示磁控溅射设备的更详细的示意图;图8(a)和8(b)为图5(a)至5(g)中所示器件体部分在图5(g)中所示的退火步骤之前和之后的更详细的示意侧视图;图9(a)至9(c)为图6中所示的磁控溅射设备的各种可能构造的示意图。
具体实施例方式
首先参照图1,其示出了用于根据本发明第一实施例的光学器件制造方法中的生长的器件体部分,统一标记为5。该光学器件为集成光学器件或者光电器件。
器件体部分5适合于在III-V族半导体材料系统中制成,最优选的例如为砷化镓(GaAs),并且主要工作在600至1300纳米的波长,或者,尽管不太优选,为磷化铟(InP),工作在1200至1700纳米的波长。器件体部分5可以至少部分地由铝镓砷(AlGaAs)和/或铟镓砷(InGaAs)、铟镓砷磷(InGaAsP)、铟镓铝砷(InGaAlAs)和/或铟镓铝磷(InGaAlP)制成。在所描述的第一实施例中,器件体部分由AlGaAs制成。
器件体部分5可以与多个其它可能类似的光学器件一同形成一个半导体晶片的一部分,所述其他可能类似的光学器件可以在加工处理之后从晶片上切下。器件体部分5包括衬底10,在该衬底10上形成有第一光学覆层15,芯导层20以及第二光学覆层25。包括至少一个量子阱的量子阱(QW)结构30被形成在生长的芯导层20中。在第二光学覆层30上形成有覆盖层35。
应该注意,与第一光学覆层15和第二光学覆层25相比,生长芯导层20具有较小的带隙和较高的折射率。
特别地,描述的工艺被优化用于结合以1450至1550纳米波长发射的InGaAs-InAlGaAs-InP材料来使用,其结构在表1中予以详细说明。
表1中的这些参数涉及具有优选厚度和优选厚度范围的MOVPE生长的材料。在InGaAs-InGaAsP-InP材料中,芯导层20(InAlGaAs)由具有相似性质的InGaAsP取代,即带隙相似。对于MBE生长的材料来说,p型掺杂剂为铍(Be),而其它参数可以保持不变。
参照图2,示出了一光学器件,统一标记为40,该光学器件利用一种将在后面详细描述的方法由图1中所示器件体部分制造而成。如图2所示,器件40包括有源区45和无源区50。在本实施例中,有源区45包括一量子阱(QW)放大器。但是,应该注意,在其它实施例中有源区45可以包括激光表1
器、调制器、转换器(switch)、检测器或者类似的有源(电控)光学器件。而且,无源区域50包括一个低损耗波导管,其中如随后更详细描述的那样,利用一量子阱混杂(QWI)技术量子阱结构30已经被至少部分去除。
器件40的有源区45的芯层20的波导区与无源区50的芯层20的波导区之间良好对齐,并且在有源区45与无源区50之间具有基本可以忽略的反射系数(10-6量级)。另外,有源区45与无源区50之间的模式匹配对于器件40是固有的。
通常,衬底10被n型掺杂至第一浓度,而第一光学覆层15被n型掺杂至第二浓度。此外,芯部层20通常基本为本征的(intrinsic),而第二光学覆层25通常被p型掺杂至第三浓度。另外,覆盖层(或接触层)35被掺杂至第四浓度。本领域的技术人员应认识到,覆盖层35和第二光学覆层25可以被蚀刻成脊形(未示出),并且该脊形用作光波导管,以将芯部层20中的光学模式限制在光学有源区45和光学无源区50之中。另外,如本领域中公知的,接触金属部分可以形成在光学有源区45内的该脊形的顶表面的至少一部分上,并且还可以形成在衬底10的相对面上。
应该注意的是,器件40可以构成光学集成电路、光电子集成电路(OEIC)或者光子集成电路(PIC)的一部分,所述集成电路可以包括一个或者更多个光学器件40。
现在参照图3,其示出了位于生长的器件体部分5中芯部层20中的量子阱结构30的量子阱31的带隙能。由图3可见,AlGaAs芯部层20包括至少一个量子阱31,而量子阱结构30具有比周围的芯层20低的铝组份,使得量子阱结构30的带隙能小于周围AlGaAs芯部层20的带隙能。量子阱结构30通常约为3至20纳米厚,并且更典型的约为10纳米厚。
现在参照图4,其示出了图3中所示的芯部层20的对应部分32,但是其已经进行了量子阱混杂(QWI),使得有效提高对应于量子阱结构30中的量子阱31的部分32的带隙能。因此量子阱混杂基本上将量子阱结构30从芯层20“清除(washing out)”。图4中示出的部分涉及器件40中的无源区50。可以理解,在器件40的光学有源区域45中发出或产生的光辐射将穿过由无源区50的芯部层20中的量子阱混杂(QWI)区域32形成的低损耗波导管。
现在参照图5(a)至5(g),其说明了根据本发明,从包括量子阱(QW)结构30的器件体部分5制造光学器件40的方法的第一实施例,该方法包括对器件体部分5进行处理的步骤(参见图5(d)和5(e)),使得至少在器件体部分5的一个部分53中形成延展缺陷。
该制造方法起始于提供衬底10的步骤(参见图5(a)),在衬底10上生长第一光学覆层15、包括至少一个量子阱(QW)30的芯导层20、第二光学覆层25以及覆盖层35。
第一光学覆层15、芯导层20、第二光学覆层25以及覆盖层35均可以利用公知的半导体外延生长技术生长,例如分子束外延(MBE)或者金属有机化学汽相淀积(MOCVD)。
一旦生长了器件主体5-通常作为一包括多个此类器件体部分5的晶片(未示出)的一部分,那么在覆盖层35的表面52上淀积介电层51(参见图5(b))。在介电层51的表面54上的光致抗蚀剂(PR)55中定义一图案。随后光致抗蚀剂55被去除,以使介电层51的至少一个部分56露出(参见图5(c))。
参照图5(d),随后利用公知的例如湿法或干法蚀刻技术,将光致抗蚀剂55和介电层51的至少一个部分56去除。进行湿法蚀刻时,可以利用氢氟酸(HF)。
参照图5(e),对器件体部分5进行处理,使得至少在器件体部分5的部分53中形成延展缺陷。如下面将要详细描述的,处理器件体部分5的步骤包括利用溅射器65在器件体部分5上进行等离子体蚀刻。该步骤可以被称作“预蚀刻”,并且涉及反置溅射器65的常规的偏置电压配置。
参照图5(f),随后在介电层51上和器件体部分5的至少一个部分53上淀积另一介电层60。利用溅射器65淀积介电层51和另一介电层60。在一个改进的实施例中,介电层51和/或另一介电层60可以利用除溅射器之外的淀积技术淀积而成,例如等离子体增强化学汽相淀积(PECVD)。
概括地参照图6和7,利用溅射淀积介电层51,并且在本实施例中介电层51通过使用磁控溅射设备进行溅射淀积,所述磁控管溅射设备标记为65。介电层51主要包括氧化硅(SiO2),但是在一改进的实施例中也可以包括其它介电材料,例如氧化铝(Al2O3)。
由图6可见,溅射设备65包括反应室70,在使用中,反应室70主要填充诸如氩气的惰性气体,优选地,反应室70中的氩气最好具有大约2微米汞柱的压力。溅射器65还包括分别连接至溅射器65中的靶电极80和衬底电极85的射频(RF)电源75。二氧化硅靶81被设置在靶电极80上,同时器件体部分5(位于晶片82上)被设置在溅射器65中的衬底电极85上。在使用中,在靶电极80与衬底电极85之间产生出氩等离子体(未示出),并且在二氧化硅靶81与氩等离子体之间以及在氩等离子体与器件体部分5之间分别形成第一暗区和第二暗区。
对器件体部分5进行处理使得在器件体部分5的至少一部分中形成延展缺陷的步骤包括用在器件40制造过程中的量子阱混杂(QWI)工艺的一部分,在一优选实施例中,该QWI工艺包括无杂质空位无序化(IFVD)技术。令人惊奇的是,通过利用溅射器65在器件体部分5上进行溅射,损伤所致延展缺陷会被引入器件体部分5的部分53中;在这种情况下,部分53包括覆盖层35的一部分。应该相信的是,在例如通过快速热退火施加的热量的退火处理(将在后面予以描述)之前,存在于覆盖层35中的损伤抑制了镓元素从覆盖层35的部分53转移到另一介电层60中。
介电层51优选为10至1000纳米厚,并且典型地为200纳米或者300纳米厚。所述制造方法包括另一如图5(f)中所示的步骤,即在退火处理之前,在器件体5的表面52上和介电层51的一表面上淀积另一介电层60。另一介电层60可以利用除溅射之外的技术淀积而成,例如利用等离子体增强化学汽相淀积(PECVD)。
因此介电层51包括一混杂覆盖层,而另一介电层60包括一混杂抑制覆盖层。混杂抑制覆盖层用于防止表面52发生砷解吸作用。所述方法将可以在没有混杂抑制覆盖层的条件下工作;但是表面52的质量可能不会如此之好。
如图5(g)所示,在淀积了另一介电层60之后,包括介电层51和另一介电层60的器件体部分在一个较高温度下进行退火处理。该退火步骤包括一个快速热退火阶段,退火温度为700至1000℃,更优选地为800至1000℃,并持续0.5至5分钟。在一优选实施例中,快速热退火处理以900℃左右的温度持续大约1分钟。
图5(g)中所示的退火步骤的作用在图8(a)和8(b)中示意地说明了。由图8(a)和8(b)可见,该退火步骤导致砷从覆盖层35“向外扩散”到混杂覆盖层,即介电层51。但是,位于部分53和抑制覆盖层,即另一介电层60,下方的覆盖层35的部分,经历了明显较少的砷的“向外扩散”。覆盖层35上位于混杂覆盖层区域中的部分,即介电层51,如图8(b)中所示经历了较多的砷的“向外扩散”。砷的“向外扩散”会留下一些空位,该些空位随后从覆盖层35发生迁移,穿过第二光学覆层25,进入芯部层20,从而到达量子阱结构30,因此改变了量子阱(QW)结构30的有效带隙,并且高效地清除掉位于混杂覆盖层下方的量子阱结构30中的量子阱。
应该注意的是,混杂覆盖层,即介电层51,被设置在待形成于器件40中的无源区域50中,而抑制覆盖层,即另一介电层60,设置在器件体部分5的诸如将要在器件40上形成光学有源区45的区域上,该区域未进行量子阱混杂(QWI)。
一旦器件体部分5已经加工至图5(g)中所示的阶段,并且进行了退火处理,那么介电层51和另一介电层60可以利用传统方法去除,例如湿法或者干法蚀刻。
应该注意的是,在对器件体部分5进行处理以便在该器件体部分5的至少一个部分53中形成延展缺陷的步骤中,可以采用任何溅射设备。特别是可以使用如图6和7所示的磁控溅射器的磁控溅射设备。
在磁控溅射设备中,试图俘获住那些靠近“靶”的电子,以便增强它们的电离效果。这一点利用大体垂直的电场和磁场来实现。应该注意的是,已有多种磁控溅射器构造,例如图9(a)所示的圆柱形磁控管,图9(b)所示的圆形磁控管,或图9(c)所示的平面式磁控管。图9(a)、9(b)、9(c)中所示的磁控管65a、65b、65c中的各个部件分别由与图6和7中所示的磁控管设备65相同的附图标记加以标识。
应该注意的是,在图5(b)所示的步骤中,器件体部分5包括图6和7中所示溅射设备65中的衬底82,而氧化硅靶81为产生氧化硅淀积的靶。这一点也适用于图5(f)所示的另一介电层60的淀积阶段。但是,在图5(e)所示的步骤中,偏置电压被反置,并且晶片82实际上成为产生溅射的溅射靶。这个所谓的“预蚀刻”阶段将延展缺陷引入器件体部分5的部分53中。在图5(e)和图5(f)所示的步骤之间,偏置电压被再次反置。
示例下面为一个示例,用于说明在一个生长于砷化镓(GaAs)衬底上的例如铝砷化镓(AlGaAs)的铝合金中,利用根据本发明的制造光电器件的方法的IFVD工艺可以获得的典型的带隙偏移量。
溅射反应室70的构造如下所述。在靶电极与衬底电极之间设置一70至100毫米大小的极板间隔(plate separation),优选为70毫米。电极的构造为一4或8英寸的圆形板(优选为8英寸)。在该系统中使用的气体通常为氩气,但是也可以使用其它气体。另外,可以将少量的氧气添加到所述等离子体中(体积比大约为10%),以改善在进行介电薄膜淀积时进行化学计量成分。用于该工艺的介电材料通常为二氧化硅,但是也可以使用诸如氧化铝的其它材料。在反应室70中用于进行预蚀刻和氧化硅淀积的压力为2微米汞柱左右。
表2列出了用于在顶部淀积有200纳米溅射氧化硅的样品的最终偏移量。一个样品在500瓦的功率下进行了5分钟预蚀刻。该表中的描述偏移量的数字为在900℃的温度下进行1分钟退火的情况下得到的。
表2示出了在进行二氧化硅(SiO2)包覆之前,在器件体部分上进行溅射蚀刻提供了一改善了的混杂抑制覆盖层。
表2
为了对晶片进行处理以形成不只一个带隙,一溅射的或PECVD氧化硅薄膜被淀积在该晶片上。随后利用光刻技术在溅射的氧化硅的顶部上定义出图案,并且随后可以利用湿法或者干法蚀刻将该图案转移到溅射氧化硅上。
随后,样品被放入溅射设备(装置)中,用于进行预蚀刻和随后的另一氧化硅的溅射淀积。
接着,进行在一个合适的温度下(700℃至1000℃,更优选的为800℃至1000℃)快速热退火处理并持续所需的时间周期(0.5至5分钟)。这使得在磁控溅射的氧化硅表面处产生的点缺陷贯穿所述结构而传播,因而导致所述元素发生相互扩散。
可以理解的是,此前所描述的本发明实施例仅作为示例而给出,并不意味着以任何方式限定了本发明的范围。
特别应该注意的是,溅射氧化硅适合于在980纳米左右的GaAs/AlGaAs材料中进行IFVD工艺。而且,采用溅射预蚀刻和溅射淀积另一氧化硅层相结合的方法,提供了一有效的QWI抑制层。
可以认为,利用预蚀刻产生了高度的损伤,并且在外延晶片中的覆盖层(顶部层)中产生了延展缺陷。该些延展缺陷会有效地俘获点缺陷,并且阻止它们向下扩散到QW,由此有效地防止QW的任何混杂现象。所述损伤是由于离子在样品表面上的轰击作用造成的。
在用于所述工艺的溅射装置中,衬底可以被在系统中的阳极/阴极之间变换。首先,使得设置有样品的电极(“衬底电极”)带有负电,因而等离子体中的正离子被加速运动至其表面,造成对覆盖层的高度损伤(即延展缺陷)。
此外,可以理解的是,对于整个工艺而言,有效地利用同一类型的氧化硅,能够避开利用介电覆盖层进行IFVD的问题,也就是说其延展系数不匹配的问题。这将允许材料的后期退火保持高质量。
还应理解的是,根据本发明的光学器件可以包括波导管,例如一脊形、埋入式异质结构或者乃至任何其他合适的波导管。
也应理解的是,量子阱混杂(QWI)区域可以包括光学有源器件。
另外,应该理解的是,可以使用包括利用若干个射频(RF)电源的后续工艺来形成具有若干不同QWI带隙的器件。
权利要求
1.一种制造光学器件的方法,将用来制作所述器件的一器件体部分包括一量子阱结构,该方法包括对该器件体部分进行处理以使至少在该器件体部分的一部分中形成延展缺陷的步骤。
2.如权利要求1所述的方法,其中所述对器件体部分进行处理的步骤包括在器件体部分上进行等离子体蚀刻。
3.如权利要求2所述的方法,其中在所述的在器件体部分上进行等离子体蚀刻的步骤中包括在器件体部分上进行溅射蚀刻。
4.如权利要求3所述的方法,其中在所述的进行溅射蚀刻的步骤中包括使用磁控溅射器。
5.如权利要求3或4所述的方法,其中在所述的在器件体部分上进行溅射蚀刻的步骤中包括在设置有器件体部分的一电极上施加一个反向偏置电压,以便对所述器件体部分进行预蚀刻。
6.如前面任意一项权利要求所述的方法,其中该方法包括一在器件体部分的至少一个其它部分上淀积一介电层的在先步骤,该介电层因而可以在定义所述至少一部分的过程中用作掩模。
7.如权利要求6所述的方法,还包括在所述介电层上和/或在器件体部分的所述至少一部分上淀积另一介电层的后续步骤。
8.如权利要求7所述的方法,其中所述介电层和/或所述另一介电层利用溅射器淀积而成。
9.如权利要求7所述的方法,其中所述介电层和/或所述另一介电层通过除了利用溅射器之外的一淀积技术淀积而成。
10.如权利要求7至9中的任意一项所述的方法,其中所述介电层和所述另一介电层主要包括氧化硅或氧化铝。
11.如权利要求3至5或者8至10中的任意一项所述的方法,其中所述溅射器包括一反应室,该反应室中主要填充惰性气体。
12.如权利要求6至10中的任意一项所述的方法,其中淀积所述介电层的步骤包括用于制造所述器件中的量子阱混杂工艺的一部分。
13.如权利要求12所述的方法,其中所述量子阱混杂工艺包括无杂质空位无序化处理。
14.如前面任意一项权利要求所述的方法,还包括在一个较高温度下对器件体部分进行退火的步骤。
15.如前面任意一项权利要求所述的方法,包括以下在先步骤提供一衬底;在该衬底上生长一第一光学覆层;一包括一量子阱结构的芯导层;以及一第二光学覆层。
16.如权利要求15所述的方法,其中所述第一光学覆层、芯导层以及第二光学覆层利用一选自于分子束外延和金属有机化学汽相淀积的生长技术生长而成。
17.如权利要求6至10中的任意一项所述的方法,还包括以下步骤在器件体部分的一表面上淀积所述介电层;以及在所述介电层的一表面上的光致抗蚀剂中定义一图案,并去除至少一部分光致抗蚀剂,以使在器件体部分的所述至少一个其它部分上形成所述介电层。
18.如权利要求7至10中的任意一项所述的方法,其中该方法还包括在退火之前,在所述器件主体表面的一部分上和在所述介电层的一表面上淀积所述另一介电层。
19.如权利要求7至10中的任意一项所述的方法,其中所述介电层包括一混杂覆盖层;而器件体部分的所述至少一部分和/或所述另一介电层包括一混杂抑制覆盖层。
20.如权利要求7至10中的任意一项所述的方法,其中所述介电层和所述另一介电层的厚度为10至1000纳米。
21.如权利要求14所述的方法,其中所述退火步骤在800℃至1000℃的温度下进行0.5至5分钟。
22.一种制造光学器件的方法,将用来制作所述器件的器件体部分包括一量子阱结构,该方法包括在器件体部分上进行等离子体蚀刻的步骤。
23.如权利要求22所述的方法,其中所述在器件体部分上进行等离子体蚀刻的步骤利用溅射器来实现。
24.一种利用权利要求1或22所述的方法制成的光学器件。
25.如权利要求24所述的光学器件,其中所述光学器件包括集成光学器件或光电器件。
26.如权利要求24或25中的任意一项所述的光学器件,其中所述器件体部分被制成在III-V族半导体材料系统中。
27.如权利要求26所述的光学器件,其中所述III-V族半导体材料系统为一砷化镓基系统,该砷化镓基系统适合工作于范围在600至1300纳米内的至少一个波长。
28.如权利要求26所述的光学器件,其中所述III-V族半导体材料系统为一磷化铟基系统,该磷化铟基系统适合工作于范围在1200至1700纳米内的至少一个波长。
29.如权利要求26至28中的任意一项所述的光学器件,其中所述器件体部分至少部分地由铝镓砷、铟镓砷、铟镓砷磷,铟镓铝砷以及铟镓铝磷中的一种或者多种构成。
30.如权利要求24至29中的任意一项所述的光学器件,其中所述器件体部分包括一衬底,在该衬底上设置有第一光学覆层、芯导层以及第二光学覆层。
31.如权利要求30所述的光学器件,其中所述量子阱结构被设置在所述芯导层中。
32.一种包括至少一个根据权利要求24至31中的任意一项所述的光学器件的光学集成电路、光电子集成电路或光子集成电路。
33.一种用于根据权利要求1至22中的任意一项所述的方法中的器件体部分。
34.一种材料晶片,包括至少一个用于根据权利要求1至22中的任意一项所述的方法中的器件体部分。
35.如权利要求1至23中的任意一项所述的方法,其中所述器件体部分利用InGaAs-InAlGaAs-InP系统制成,所述系统适合工作于范围在1450至1550纳米内的至少一个波长。
36.根据权利要求1至23中的任意一项所述的方法,包括由一系统制作所述器件体部分的步骤,该系统包括以下层中的任意一个或多个由InP形成的衬底;由InP形成的第一光学覆层;由InAlGaAs和/或InGaAsP形成的芯导层;由InGaAs形成的量子阱;由InP形成的第二光学覆层以及由InGaAs形成的覆盖层。
37.一种制造光学器件的方法,如这里参照附图所描述的。
38.一种光学器件,如这里参照附图所描述的。
全文摘要
本发明公开了一种制造光学器件(40)的改进的方法,特别地例如激光二极管、光调制器、光放大器、光转换器以及光检测器的半导体光电器件。本发明提供了一种制造光学器件(40)的方法,其中用于制作器件(40)的器件体部分(5)包括量子阱(QW)结构(30),该方法包括对器件体部分(5)进行处理以使至少在器件体部分(5)的一部分(53)中形成延展缺陷的步骤。每一延展缺陷为包括多个相邻“点”缺陷的结构缺陷。
文档编号H01L25/00GK1496579SQ02806121
公开日2004年5月12日 申请日期2002年2月1日 优先权日2001年2月1日
发明者约翰·H·马什, 斯图尔特·D·麦克杜格尔, 克雷格·J·汉密尔顿, 奥利克·P·科沃尔斯基, J 汉密尔顿, P 科沃尔斯基, 特 D 麦克杜格尔, 约翰 H 马什 申请人:格拉斯哥大学理事会