专利名称:从组合的单体和聚合体发射白光的有机光发射装置的制作方法
技术领域:
本发明涉及高效有机光发射装置(OLED)。更具体地说,本发明涉及发射白光的OLED,或称WOLED。本发明的装置在单个发射区中采用两个发射体,以充分覆盖可见光光谱。白光发射是通过在发射中心之一形成的聚合体,从单个发射区中的两个发射体获得的。
背景技术:
有机光发射装置(OLED),它使用受电流激发时发光的薄膜材料,有望日益成为平面显示技术的大众化的形式。这是因为OLED具有广泛应用前景的各种形式,包括蜂窝电话、个人数字助手(PDA)、计算机显示器、在运输工具中的信息显示器、电视监视器、和一般的照明光源。由于它们明亮的彩色、宽的视角、与全运动视频的兼容性、宽的温度范围、薄及可形变的形状因素、低功率要求、和潜在的低成本制作工艺,OLED被看成未来取代阴极射线管(CRT)及液晶显示器(LCD)的产品,阴极射线管及液晶显示器目前以年增长$400亿统领电子显示器市场。电致磷光OLED由于它们高的发光效率,被看成有希望在某些应用方面,取代白炽灯,甚或荧光灯。
基于使用有机光电子材料层的结构的装置,一般依赖于导致光发射的共同机制。通常,该机制根据被捕获电荷的辐射再结合。具体说,OLED在阳极和阴极之间至少包括两层薄有机层。这些层之一的材料,专门根据材料输运空穴的能力选择,是“空穴输运层”(HTL),另一层的材料则专门按照输运电子的能力选择,是“电子输运层”(ETL)。借助这样的结构,该装置当加在阳极的电势高于加在阴极的电势时,可以看作具有前向偏置的二极管。在这些偏置条件下,阳极把空穴(正电荷载流子)注入HTL,同时阴极把电子注入ETL。因而与阳极相邻的发光介质部分,形成空穴注入和输运区,同时,与阴极相邻的发光介质部分,形成电子注入和输运区。注入的空穴和电子各向带相反电荷的电极迁移。当电子与空穴聚集在同一分子上时,形成Frenkel激子。这些激子在有最低HOMO-LUMO禁带宽度的材料中被捕获。短寿命的激子的重新结合,可看作在某些条件下,随着弛豫的出现,优先通过光发射机理,电子从最低的空分子轨道(LUMO)落到最高的有分子轨道(HOMO)。
可用作OLED的ETL或HTL的材料,也可用作产生激子形成和电致发光发射的介质。这种OLED被称为具有“单异质结构”(SH)。另外,电致发光材料也可以存在于HTL和ETL之间的分开的发射层中,被称为“双异质结构”(DH)。
在单异质结构的OLED中,或者是空穴从HTL注入ETL,在ETL中与电子结合,形成激子,或者是电子从ETL注入HTL,在HTL中与空穴结合,形成激子。因为激子在有最低禁带宽度的材料中被捕获,而通常使用的ETL材料,一般比通常使用的HTL材料有更小禁带宽度,所以单异质结构装置的发射层,通常是ETL。在这样的OLED中,用作ETL和HTL的材料,应当选择空穴能有效地从HTL注入ETL的材料。还有,相信最好的OLED,在HTL与ETL材料的HOMO能级之间,应有良好的能级对准。
在双异质结构的OLED中,空穴从HTL及电子从ETL注入分开的发射层,在发射层,空穴和电子结合,形成激子。
从OLED的光发射,通常都通过荧光,但是,近来发现OLED通过磷光发射。在本文中,“磷光”指从有机分子的三重激发态的发射,而“荧光”指从有机分子的单重激发态的发射。发光则指荧光发射或磷光发射。
磷光的成功利用,很有希望用于有机电致发光装置。例如,磷光的优点在于,空穴和电子的重新结合形成的潜在的所有激子,不论是作为单重或三重激发态,都可能参与发光。这是因为有机分子最低的单重激发态,通常比最低的三重激发态有略高的能量。例如,在典型的磷光有机金属化合物中,最低的单重激发态可以迅速衰变到最低的三重激发态,由此产生磷光。相反,在荧光装置中,只有小百分比(约25%)激子能够产生从单重激发态获得的荧光发光。在荧光装置中,最低三重激发态中产生的其余的激子,通常不能转换为更高能量的由此产生荧光的单重激发态。因此,这部分能量成为加热装置的衰变过程的损耗,而不是发射可见光。
通常,有机分子的磷光发射不如荧光发射普遍。但是,在适当的一组条件下,能够观察到来自有机分子的磷光。有机分子与镧系元素配价时,常常从定域在镧系金属上的激发态发射。这种辐射发射不是来自三重激发态。此外,没有证据表明,这种发射产生的效率,高得足以在预见的OLED应用有实际价值。铕二酮盐络合物,是这些类型物质的一组。
有机磷光,可以在包含未共享电子对的杂原子的分子中观察到,但通常只在极低温度下观察到。二苯酮[Benzophenone]和联吡啶[2,2′-bipyridine]是这种分子。在室温下,通过把有机分子,最好是通过成键,限定在高原子量的原子紧邻,能够使磷光增强,超过荧光。这一现象,被称为重原子效应,是由于熟知的自旋轨道耦合机制产生的。一种有关的磷光跃迁,是金属到配位电荷转移(MLCT),它是在例如三(2-苯基吡啶)铱(III)[tris(2-phenylpyridine)iridium(III)]中观察到的。
高效率的蓝、绿、和红的电致磷光的实现,是对低功耗全色显示应用的要求。近来,已经展示了高效率的绿和红的有机电致磷光装置,它充分使用单重态和三重态激子两种激子,得到的内量子效率(ηint)接近100%。见Baldo,M.A.,O′Brien,D.F.,You,Y.,Shoustikov,A.,Silbey,S.,Thompson,M.E.,and Forrest,S.R.,Nature(London),395,151-154(1998);Baldo,M.A.,Lamansky,S.,Burrows,P.E.,Thompson,M.E.,and Forrest,S.R.,Appl.Phys.Lett.,75,4-6(1999);Adachi,C.,Baldo,M.A.,and Forrest,S.R.,Appl.Phys.Lett.,77,904-906(2000);Adachi,C.,Lamansky,S.,Baldo,M.A.,Kwong,R.C.,Thompson,M.E.,and Forrest,S.R.,Appl.Phys.Lett.,78,1622-1624(2001);和Adachi,C.,Baldo,M.A.,Thompson,M.E.,andForrest,S.R.,Bull.Am.Phys.Soc.,46,863(2001)。使用绿色磷光材料,fac三(2-苯基吡啶)铱(III)(简称Ir(ppy)3)[factris(2-phenylpyridine)iridium(Ir(ppr)3)],具体说,使用宽禁带宽度的主体材料,3-苯基-4-(1′-萘基)-5-苯基-1,2,4-三唑(简称TAZ)[3-phenyl-4-(1′-naphthyl)-5-phenyl-1,2,4-triazole(TAZ)],可以实现(17.6±0.5)%的外量子效率(ηext),相当于>80%的内量子效率,见Adachi,C.,Baldo,M.A.,Thompson,M.E.,and Forrest,S.R.,Bull.Am.Phys.Soc.,46,863(2001)。最近,展示了高效率(ηext=7.0±0.5)%的红色电致磷光,它采用联(2-(2′-苯并[4,5-a]噻吩基)吡啶化物-N,C3)铱(乙酰丙酮化物)(简称Btp2Ir(acac))[(2-(2′-benzo[4,5-a]thienyl)pyridinato-N,C3)iridium(acetylacetonate)[Btp2Ir(acac)]]。见Adachi,C.,Lamansky,S.,Baldo,M.A.,Kwong,R.C.,Thompson,M.E.,and Forrest,S.R.,Appl.Phys.Lett.,78,1622-1624(2001)。
在每一种后面的情形中,借助从主体的单重态和三重态,到磷光物质三重态的能量传递,或通过直接捕获磷光材料上的电荷,能够获得高的效率,从而收获高达100%的激发态。与在小分子或聚合物有机光发射装置(OLED)中使用荧光的期望相比,这是显著的改进。见Baldo,M.A.,O′Brien,D.F.,Thompson,M.E.,and Forrest,S.R.,Phys.Rev.,B60,14422-14428(1999);Friend,R.H.,Gymer,R.W.,Holmes,A.B.,Buuoughes,J.H.,Marks,R.N.,Taliani,C.,Bradley,D.D.C.,Dos Santos,D.A.,Bredas,J.L,Logdlund,M.,Salaneck,W.R.,Nature(London),397,121-128(1999);和Cao,Y,Parker,I.D.,Yu,G.,Zhang,C.,and Heeger,A.J.,Nature(London),397,414-417(1999)。在两种情形之一中,这些传递必然引起共振的、放热过程。随着磷光材料三重态能量的增加,很难找到有适当高能量的三重态主体。见Baldo,M.A.,和Forrest,S.R.,Phys.Rev.B 62,10958-10966(2000)。对主体要求非常大的激子能量也指出,主体材料可能没有合适能级与OLED结构中使用的其他材料对准,从而导致效率的进一步降低。为消除主体导电性质与能量传递性质之间的竞争,提高蓝色电致磷光效率的方法,可能涉及从接近主体共振激发态到磷光材料更高的三重态能量的吸热能量传递。见Baldo,M.A.,和Forrest,S.R.,Phys.Rev.B62,10958-10966(2000);Ford,W.E.,Rodgers,M.A.J.,J.Phys.Chem.,96,2917-2920(1992);和Harriman,A.;Hissler,M.;Khatyr,A.;Ziessel,R.Chem.Commun.,735-736(1999)。只要传递中要求的能量不显著高于热能,这一过程可以是非常高效率的。
白光照明光源的质量,可用一组简单的参数说明。光源的彩色由它的CIE色坐标x和y给出。CIE坐标通常在两维的图上表示。单色性彩色,落在马蹄形曲线的周边,马蹄形曲线从左下角的蓝色开始,通过光谱的彩色,沿顺时针方向走到右下角的红色。给定能量和光谱形状的光源的CIE坐标,将落在曲线区域之内。所有波长的光均匀地加起来,给出白色或非彩色点,位于图的中心(CIEx,y坐标是0.33,0.33)。从两个或多个光源混合的光,给出的光的彩色,由各独立光源CIE坐标的强度加权平均表示。因此,可以用两个或多个光源的混合光,产生白光。虽然该两组分和三组分的白光光源,对观察者来说似乎相同(CIE坐标0.32,0.32),但它们不是等效的照明光源。当考虑用这些白光光源照明时,除光源的CIE坐标外,还必须考虑CIE的彩色再现指数(CRI)。CRI给出光源施予它照明的物体的彩色有多好的指示。给定光源与标准照明完美的匹配,给出的CRI为100。虽然至少70的CRI值,对某些应用是可以接受的,但优秀的白光光源,应有约80的CRI或更高。
前述用于产生白光的OLED的最成功办法,涉及把三个不同的发射体(发光掺杂物)分成分离的层。需要三个发射中心来获得良好的彩色再现指数(CRI)值,因为用少于三个发射体,谱线通常不够宽,不足以覆盖整个可见光光谱。设计WOLED的一种办法,涉及把各种掺杂物分门别类放进分离的层中。于是在这样的装置中,发射区包含不同的发射层。Kido,J.et.al.Science,267,1332-1334(1995)。这样的装置的设计,可能很复杂,因为要获得良好的色平衡,每一层的厚度和成分的精心控制,都是关键的。把发射体分成各层,基本上避免能量在红色、绿色、和蓝色发射体之间的传递。问题在于,最高的能量发射体(蓝色)有效地把它的激子传递到绿色和红色发射体。这一能量传递过程的效率,由Forster能量传递方程式描述。如果蓝色发射体与绿色或红色发射体的吸收谱有良好的光谱重叠,且振子强度对所有的跃迁是高的,那么能量传递过程将是有效的。这些能量的传递,能够在30或更大的距离上发生。同样,绿色发射体会快速地把它的激子传递给红色发射体。最后的结果是,如果三者按相等的浓度掺杂进薄膜中,则红色发射体将支配光谱成分。用荧光染料,激子迁移的长度比较短,且能够通过改变掺杂物之比,控制该三种发射体颜色之间的平衡(蓝色必须比绿色多,绿色又比红色多,以便使所有三种颜色达到相等的强度)。如果掺杂物保持低的浓度,则能使掺杂物之间的平均距离保持在Forster能量传递距离以下,从而使能量传递效应最小。把所有三种染料放在单一层内,涉及四成分的薄膜,每种掺杂物<1%。这样的薄膜的制备,难以可靠地实施。掺杂物比值的任何变化,都将严重影响装置的彩色质量。
用磷光发射体,情况有些不同。虽然磷光掺杂物的Forster半径,比荧光掺杂物低,但激子扩散长度可以>1000。为了使电致磷光装置获得高的效率,磷光材料一般必须以比荧光掺杂物高得多的浓度存在(通常>6%)。最终的结果是,在单一层中把磷光材料混合在一起,导致严重的能量传递问题,正如对荧光发射体观察到的一样。已经成功地使用的办法,是把磷光材料分门别类放进分开的层中,消除能量的传递问题。
发明内容
本发明针对高效的有机光发射装置(OLED)。更具体地说,本发明针对发射白光的OLED,或叫WOLED。本发明的装置,在单个发射区中采用两层发光发射体,或叫发光体(lumophore),以充分覆盖可见光光谱。该发光体可以通过荧光发射(从单重激发态),或通过磷光发射(从三重激发态)。白光发射是通过发光体之一形成的聚合体,从单个发射区中的两个发光发射体获得的。该两个发射中心(聚合体发射体和单体发射体)被掺杂成单一的发射层。这样能使呈现高彩色再现指数的WOLED结构简单、高亮度、和高效。
因此,本发明的一个目的,是提供发射白光的OLED,它呈现高的外发射效率(ηext)和亮度。
本发明的另一个目的,是产生发射白光的OLED,它呈现高的彩色再现指数。
本发明还有一个目的,是产生发射白光的有机光发射装置,它产生的白光发射的CIEx,y色坐标接近(0.33,0.33)。
本发明还有一个目的,是提供可在漫射照明应用中使用的大面积、高效光源,例如目前到处可见的常规荧光灯。
例如,本发明的一个目的,是产生发射白光的OLED,它包括发射区,其中该发射区包括聚合体发射体和单体发射体,其中从聚合体发射体的发射,在能量上低于从单体发射体的发射,且其中聚合体发射体和单体发射体的发射光谱,充分覆盖可见光光谱,给出白光的发射。
为说明本发明,在附图中举出有代表性的实施例,但应指出,本发明不受画出的精确排列和手段的限制。
图1画出TAZ中FPt(激态复合物)的电致发光光谱,和CBP中FIrpic(只画出掺杂物)的电致发光光谱,以及两种光谱的和。合成的光谱不是单个装置的,而是在计算上把两个装置的输出组合一起,说明使用单体和激态复合物发射体,获得真正白光发射的潜在可能性。
图2画出以<1%和>6%FPt掺杂的CBP薄膜的光致发光光谱。在1%装填时,光谱由单体发射支配。在6%装填时,单体信号仍然存在,但主要成分相对地发黄,是准分子的发射。
图3对ITO/PEDOT(400)/NPD(300)/CBP:Firpic6%(300)/Firpic(500)/LiF(5)/Al(1000)装置,画出在若干不同电流电平下的EL光谱。对每一光谱,在图例中给出CIE坐标。在所有电流密度上,装置呈现白色,CRI值高达70。
图4对ITO/PEDOT(400)/NPD(300)/CBP:Firpic6%(300)/Firpic(500)/LiF(5)/Al(1000)装置,画出量子效率(空心圆)和功率效率(空心方框)曲线。电流密度电压曲线画在插入的图中。该装置表明准分子的发射能够在单个OLED中与单体的发射耦合,获得白光的发射。
图5画出薄膜1-4的光致发光发射(实线)和激发光谱(空心圆)。各薄膜厚1000,在石英衬底上生长。薄膜1表明CBP PL光谱在λ=390nm有峰,而对应的PLE则在λ=220-和370nm之间。CBP的PLE在λ=300nm有肩,且主峰在λ=350nm。该CBPPLE峰对应于在λ=300-和350nm上的吸收峰(箭头,图6的插图)。这两个CBP特征出现在所有把CBP用作主体的薄膜的PLE光谱中;因此,这是所有薄膜的主要吸收物质,且能量必须有效地从CBP传递到FPt(acac)和Fir(pic)两者,以便发生从这些分子的发射。
图6画出装置ITO/PEDOT-PSS/NPD(30nm)/CBP:Firpic6%:FPt6%(30nm)/BCP(50nm)/LiF(5)在若干电流密度下的归一化电致发光光谱,为了看得清楚,光谱在竖直方向错开。左上角的插图,表明石英上1000厚CBP薄膜的吸收对波长曲线。下方插图画出装置的结构。
图7对装置ITO/PEDOT-PSS/NPD(30nm)/CBP:Firpic6%:FPt6%(30nm)/BCP(50nm)/LiF,画出外量子效率和功率效率对电流密度的曲线。发射层由CBP中掺杂6wt%的Fir(pic)和6wt%的FPt(acac)组成。左侧的插图表明该装置的电流密度对电压特性。右侧的插图画出能级图,以实线表示CBP的能级,CBP中掺杂Fir(pic)和FPt(acac)(虚线)。图中HOMO表示最高有分子轨道的位置,而LUMO表示最低空分子轨道的位置。
图8画出以变化浓度FPt掺杂的CBP薄膜的光致发光光谱。
图9画出以变化浓度FPt2掺杂的CBP薄膜的光致发光光谱。
图10画出以变化浓度FPt3掺杂的CBP薄膜的光致发光光谱。
图11画出以变化浓度FPt4掺杂的CBP薄膜的光致发光光谱。
图12对以各种FPt3浓度掺杂的OLEDITO/NPD(400)/Ir(ppz)3(200)/CBP-Fpt3(300)/BCP(150)/Alq3(200)/Mg-Ag,画出其电流密度对电压的曲线。
图13画出图12各种FPt3浓度掺杂的OLED的电致发光光谱。
图14画出图12各种FPt3浓度掺杂的OLED的CIE坐标。
图15画出图12各种FPt3浓度掺杂的OLED的亮度对电压曲线。
图16画出图12各种FPt3浓度掺杂的OLED的量子效率对电流密度曲线。
图17对图12各种FPt3浓度掺杂的OLED,画出作为电流密度函数的功率效率和亮度。
图18画出如下化合物的结构铂(II)(2-(4′,6′-二氟苯基)吡啶化物-N,C2)(2,4-戊二醇化物)(简称FPt,FPt(acac))[platinum(II)(2-(4′,6′-difluorophenyl)pyridinato-N,C2)(2,4-pentanedionato)(FPt,FPt(acac))];铂(II)(2-(4′,6′-二氟苯基)吡啶化物-N,C2)(2,2,6,6-四甲基-3,5-庚二醇化物)(简称FPt2)[platinum(II)(2-(4′,6′-difluorophenyl)pyridinato-N,C2)(2,2,6,6-tetramethyl-3,5-heptanedionato)(FPt2)];铂(II)(2-(4′,6′-二氟苯基)吡啶化物-N,C2)(6-甲基-2,4-庚二醇化物)(简称FPt3)[platinum(II)(2-(4′,6′-difluorophenyl)pyridinato-N,C2)(6-methyl-2,4-heptanedionato)(FPt3)];铂(II)(2-(4′,6′-二氟苯基)吡啶化物-N,C2)(3-乙基-2,4-庚二醇化物)(简称FPt4)[platinum(II)(2-(4′,6′-difluorophenyl)pyridinato-N,C2)(3-ethyl-2,4-pentanedionato)(FPt4)];铱-双(4,6,-F2-苯基-吡啶化物-N,C2)-甲基吡啶化物(简称FIrpic)[iridium-bis(4,6,-F2-phenyl-pyridinato-N,C2)-picolinate(FIrpic)];fac-铱(III)-三(1-苯基-吡唑化物-N,C2)(简称Irppz)[fac-iridium(III)tris(1-phenyl-pyrazolato-N,C2)(Irppz)];和N,N′-间-联咔唑基苯(简称mCP)[N,N′-meta-dicarbazoloylbenzene(mCP)]。
图19画出分别以8%的FPt(记以“Me”)和20%的FPt2(记以“iPr”)掺杂的CBP薄膜的光致发光光谱。FPt2络合物更大的空间堆积,抑制聚合体在CBP中形成,这一点与呈现宽带聚合体发射的8%FPt掺杂的CBP相反。
图20画出以各种FPt浓度在mCP薄膜中掺杂的光致发光光谱。光谱是在基体材料的激发极大(对mCP是300nm)上激发薄膜而测量的。
图21画出CBP和mCP主体分子的能量最小结构。分子模型和能量最小化,是用Wavefunction Inc,Irvine,CA92612的MacSpartanPro v1.02软件包,在PM3能级上完成的。
图22画出的能级图,表明所选材料的HOMO和LUMO能级。每一轨道的能量在相应线条之下(HOMO)或之上(LUMO)列出。在每一图中,对发射掺杂物FPt,HOMO和LUMO能级以虚线表示。掺杂的发光层(CBP或mCP)画在括弧内。每一装置有CBP层或mCP层,但不同时具有两种层。上部的图是四层的OLED(没有电子阻挡层)图,而下面的图是有Irppz EBL的相同的OLED。
图23画出mCP基WOLED装置(ITO/NPD(400)/Irppz(200)/mCP:FPt(掺杂浓度16%,300)/BCP(150)/Alq3(200)/LiF-Al)的性质。具有Irppz EBL的装置,示意地画在顶部的插图中。光谱和CIE坐标(插图)画在上部。
图24是图23画出的装置的量子效率对电流密度特性及电流电压特性(插图)。
图25对图23的WOLED以及没有Irppz EBL的有关结构,画出每瓦的流明(Lumen)数和亮度对电流密度曲线。
具体实施例方式
现在就本发明的具体的优选实施例,详细说明本发明。这些实施例仅作说明例子,本发明不受其限制。
本发明针对高效的发射白光的OLED的制作。本发明的装置在单个发射区中采用两种发射体,以充分覆盖可见光光谱。白光发射是通过发光体之一形成的聚合体,从单个发射区中的两个发光发射体获得的。聚合体发射体包括两种或多种发射分子或在基态和/或激发态中键合的部分分子。一般说,聚合体发射体应包括两种发射分子(即二聚体),它们可以相同或不同。发光体可以通过荧光发射(从单重激发态),或通过磷光发射(从三重激发态)。两个发射中心(聚合体发射体和单体发射体)被掺杂成单一发射层。这样能使呈现高彩色再现指数的WOLED结构简单、高亮度、和高效。在用于产生白光的方法中,推荐使用电致磷光作为OLED光发射最有效的机制,因为它有可能获得100%的内量子效率。令人惊讶的是,我们已经发现,从聚合体激发态的磷光发射,即使给出获得100%内量子效率的潜能,也常常比预期的大。虽然电致磷光通常是在导电主体中掺杂有机金属材料获得的,已经成功地用于产生显示应用中需要的基色,但直至现在,白光光源要求的宽光谱发射的有效产生,依然难觅踪影。
虽然把发射材料分散在分开的层中,可使三种掺杂物的电致发光装置的色彩调整,成为相对直接的过程,如在待决专利申请No.60/291,496中公开的,该申请标题为“High Efficiency Multi-colorElectro-phosphorescent OLEDs”,2001年5月16日申请,但多层的解决办法增加了装置的复杂性。如果装置用两个发射体而不是三个,又如果该两个发射体在同一发射区,则要简单得多。情况如果是这样,那么,可以按已经表明对单色电致发光OLED有相同的高效率、长寿命的结构,制作装置。为了只用两种掺杂物并得到可接受的CRI值,掺杂物之一必须有非常宽的发射谱线。遗憾的是,宽发射谱线通常仅在低效率的装置中观察到。
有希望降低掺杂物数和降低多个色带结构中结构上的不均匀性的办法,是采用激态复合物(即,态的波函数与相邻的、不相同的分子重叠)发光体,激态复合物在它的激发态中形成宽带发射。最近,已经发表Comission Internationale de l′Eclairage(CIE)坐标接近理想白光光源(0.33,0.33)的荧光激态复合物OLED,其外效率ηext=0.3%,发光效率ηp=0.58lm/W,和最大照度2000cd/m2。见Berggren,M.et al.J.Appl.Phys.76,7530-7534(1994);和Feng,J.et al.Appl.Phys.Lett.78,3947-3949(2001)。这些值正好在实际光照应用的必要范围之内。据报告,从该OLED的发射,是单独地由激态复合物产生的。
我们已经发现,获得高效的、发射白光的OLED的方案,涉及从单个发射区的两个发光发射体获得发射,其中发射中心之一是单体,而另一个发射中心是聚合体。聚合体发射体包括两种或多种在基态和/或激发态中键合的发光体。一般说,聚合体发射体应包括两种分子(即二聚体),它们可以相同或不同。
准分子或激态复合物,是当包括聚合体发射体的发光体在激发态中键合,但不是在基态中键合时形成的。准分子是二聚体,具有伸延在两个相同分子上的激发态波函数。激态复合物是二聚体,具有伸延在两个不同分子上的激发态波函数。在准分子或激态复合物中,构成的分子在激发(激子)态中键合在一起,但在弛豫后,很快分解为两个分立的分子。最后的结果是,激子在基态没有吸收。准分子和激态复合物的形成,得益于构成的物质的LUMO之间显著的重叠。准分子和激态复合物的能量,比定位在形成准分子或激态复合物的两种分子之一上的激子能量低,且准分子或激态复合物的发射,通常是宽谱线的。因为准分子和激态复合物两者都没有键合的基态,所以它们提供唯一的、把能量有效地从携带缔合的主体基体传递到光发射中心的方案。的确,对于两个发射中心的情形,使用准分子或激态复合物,可以禁止发射中心之间的能量传递,消除复杂的分子间的互作用,这种分子间的相互作用,导致使用多种掺杂物的色平衡难以解决。对准分子和激态复合物性质的评论,见Andrew Gilbert and Jim Baggott,Essentials of Molecular Photochemistry,1991,CRC Press,Boston,pp.145-167。
在本发明的另一个实施例中,构成聚合体发射体的分子,既在基态键合,也在激发态键合。例如,磷光有机金属化合物的二聚体,可以在基态有金属-金属键。事实上,很难确定包括聚合体发射体的发光体,当掺杂成用于制作OLED类型的分子薄膜时,是否在基态键合。情形可能是,对某些聚合体发射体,真实的情况是在两个极端之间。例如,磷光有机金属化合物的二聚体,在基态可以有弱的金属-金属键,但在激发态,键变短,从而该二聚体变成强键合。此时,当该二聚体在基态键合时,该二聚体既非准分子,也非激态复合物。磷光掺杂物很可能被牵涉到掺杂薄膜内的π-π堆集和金属-金属相互作用中,导致准分子或MMLCT激发态之一。因此,从这些薄膜的发射,可能包含准分子的和低聚物的激发态的贡献。在这两种情形中,从聚合体观察到的发射光谱,不论该聚合体是在基态键合还是在激发态键合,通常是宽带的且非结构的,出现在比单体更低的能量上。因此,本文使用的“准分子”和“激态复合物”,在某些情形下是指有强键合激发态和弱键合基态的聚合体。此外,本文使用的“聚合体”,如通常理解那样,包括准分子和激态复合物。
在本发明的一个实施例中,单体和聚合体两者的发射,是从相同掺杂物获得的。那些与另一种掺杂物分子紧密接触的掺杂物分子,能够形成聚合体状态。被孤立的掺杂物分子提供的是单体发射而不是聚合体发射。如果来自每一发射中心的相对贡献,被适当地控制,例如通过调整发射层内每种发射体的浓度,那么可以得到白光的OLED。要用单一发光掺杂物从发射层获得良好平衡的单体和聚合体发射,并获得高的效率,必须在适当掺杂物浓度上获得单体-聚合体比值。有各种办法影响薄膜中分子间相互作用性质,从而单体-聚合体发射的程度,可以用这些办法控制单体-聚合体的比值。这些办法之一是,改变掺杂物分子中的空间堆积量。第二种办法是改变主体基体。相信两种办法能影响发射层中掺杂物材料缔合的程度,从而影响单体和聚合体状态的比值。
使用这些方法,本发明特殊的特征是,通过调整掺杂物的浓度,使整个发射层有基本上相同的掺杂物浓度,能够制作有非常高效率和非常高CRI的WOLED。对给定的主体-掺杂物组合,相邻分子间距离自然出现的变化,确定聚合体形成的程度,以此获得需要的单体和聚合体发射的平衡。本发明的装置产生的发射光谱,充分覆盖可见光光谱,于是呈现基本上白光的光,例如CIEx坐标从约0.30到约0.40,同时CIEy坐标从约0.30到约0.45。较好情形时,CIE的x,y坐标约(0.33,0.33)。还有,本发明的装置最好能产生CIE(ComissionInternationale de l′Eclairage)彩色再现指数(CRI)至少约70的白光发射。CRI高于80更好。另外,代替追求非常高的CRI,也可以用本方法产生选定的有预设CIE坐标的颜色。
本发明的装置包括阳极、HTL、ETL、和阴极。此外,装置还可以包含附加的层,例如,但不限于,激子阻挡层(EBL)、分开的发射层、或空穴注入层(HIL)。在一个实施例中,HTL也用作激子形成区和电致发光发射区。另外,ETL也可以用作激子形成区和电致发光发射区。在又一个实施例中,该装置可以包括分开分的发射层,在其中形成激子并发生电致发光。发射区包括两种类型的发射中心。一种发射中心形成聚合体,给出宽的发射光谱。另一种发射体则作为单体发射。在本发明的一个实施例中,单一的发光材料能够既作为聚合体发射体也作为单体发射体发射。通过选择形成发射体的聚合体和单体发射体,使它们的发射覆盖可见光光谱,和通过改变发射体的浓度,可以达到高彩色再现指数的色彩优化。
在一个优选实施例中,把两种发光材料在基体材料中掺杂。基体材料通常是电荷携带材料。在一个优选实施例中,发光材料可以是磷光发射体(即它们从三重激发态发射)。选择用作电荷携带主体和掺杂物的材料,使之从主体到掺杂物材料有高的能量传递。通过从主体的单重态和三重态两者,到磷光材料的三重态的能量传递,或通过直接捕获磷光材料上的电荷,从而收获高达100%的激发态,能够获得高的效率。此外,这些材料必需能产生对OLED可接受的电的性质。还有,该类主体和掺杂物材料,最好能用开始材料使之结合进OLED中,开始材料是能用常规的制作技术,快速结合进OLED中的材料。例如,小的分子、非聚合物材料,用视线真空淀积技术(line-of-sightvacuum-deposition techniques)淀积、或用有机汽相淀积(OVPD)技术淀积,OVPD技术例如公开在如下专利申请中No.08/972,156,1997年11月17日申请,标题是“Low Pressure Vapor Phase DepositionOf Organic Thin Films”,本文收入该申请全文,供参考。另外,用旋转涂布技术,可以淀积聚合物材料。
在本发明的一个优选实施例中,装置的发射区包括准分子和单体发射体。包含单体和准分子的发光材料,可以通过荧光发射,或通过磷光发射。单体发射体的发射,最好在可见光光谱的高能部分(例如,蓝色或绿色)。准分子发射体最好提供宽带发射,覆盖可见光光谱的低能部分。在该准分子态内不存在吸收,所以从单体发射体到准分子的能量传递极小。
为了从掺杂层获得有效的准分子发射,掺杂物浓度的控制是考虑的重要因素。准分子通常是当平面分子彼此紧密靠近时形成的。例如,正方平面络合物,如某些Pt络合物,已经证明在浓溶液和薄膜中形成准分子。例如FPt(acac),在10-6M的二氯甲烷溶液中呈现单体发射,在浓缩的10-3M溶液中呈现准分子发射。
在适当的浓度上,能够从同一掺杂物获得单体和准分子两种发射。只有那些与另一种掺杂物分子相对紧密地接触的掺杂物分子,能够形成准分子态。被孤立的掺杂物分子给出单体发射而不是准分子发射。如果单体发射蓝光和准分子发射黄光,如果适当控制来自每一发射体的相对贡献,例如通过调整发射层中每一发射体的浓度,可以获得白光的OLED。
准分子态的形成,要求两种发射分子彼此紧密靠近,以便当其中之一被推向它的激发态时,它们能够发生二聚作用。这一点指出,在准分子的形成中,存在强的浓度依赖性。例如,当FPt以1%被掺杂进主体基体,如CBL中时,在薄膜的光致发光光谱中,只观察到单体发射。在如此低的掺杂浓度,分子是被孤立的。随着掺杂浓度的提高,准分子态的发射量随单体谱线的降低而增加。在FPt掺杂浓度为2-3%时,单体发射对准分子态发射的比值,接近1∶1。在该掺杂浓度,一些FPt分子被孤立,而另一些则与其他FPt分子紧密靠近,导致有效的准分子形成。在掺杂浓度为6%时,观察到几乎完全的准分子态发射。
如果用约2-3%掺杂的FPt薄膜制备OLED,能够制备白光的OLED。该装置只有单一的掺杂物,存在于均匀掺杂的薄膜之中。遗憾的是,约2-3%的掺杂浓度,一般说太低,不足以淬灭主体激子,导致在电致发光光谱中明显的主体发射。为了制成高效的磷光OLED,掺杂浓度最好在约6%以上,在更高的掺杂浓度上有最高的效率。以足够高的FPt掺杂浓度制备高效的OLED,只有准分子的发射被观察到。为了从单一掺杂物(通过同时的单体和准分子发射)获得更有效的白光发射,导致平衡发射的掺杂浓度,应该增加。
当增加发射体的空间堆积时,在固体状态中形成的准分子很可能降低。增加堆积阻止分子紧密缔合。这一点容易在FPt2的光谱(图9)中看出。络合物的t-Bu基团,阻止掺杂薄膜中这些分子紧密的面对面填充。结果是,在以高达25%的掺杂浓度的FPt2掺杂薄膜中,其光致发光光谱只观察到单体发射。FPt过于迅速地形成准分子,而FPt2不形成准分子。当使用具有中间程度空间堆积的分子时,能够在合适的掺杂浓度上获得混合的单体/准分子发射。增加空间堆积的作用,可以在FPt3(图10)和FPt4(图11)薄膜的光致发光光谱中明显看出。在较低的掺杂浓度,观察到单体发射,而在高掺杂浓度,支配的是准分子发射。接近10%的掺杂,可以观察到这些络合物两者接近平衡的单体-准分子发射。在较低的掺杂浓度,可以观察到来自主体的大的贡献。随着掺杂浓度的增加,主体的贡献降低,正如在更高掺杂浓度预期有更高效率的激子传递那样。
在本发明的另一个实施例中,单体/聚合体发射比,通过改变主体基体材料而优化。例如,在单一掺杂物系统(单体和聚合体两者从同一掺杂物发射)中,发射层中掺杂物缔合的程度,从而发射态比值,能够通过改变主体基体材料而改变。不受理论的限制,在掺杂薄膜生长时,在掺杂物的聚合和它们在主体基体中的分散之间,存在竞争过程。如果主体基体作为良好的溶剂起作用,掺杂物将更均匀地分散在主体基体中,对单体形成有利。不良溶解的主体基体,将不能有效地分散单体掺杂物,导致掺杂物聚合。因此,较好溶解的主体,在给定掺杂物浓度时,与聚合体形成比较,将更有利于单体形成。主体基体材料的各种性质,在确定它对特定掺杂物的溶解性质时是重要的,这些性质包括偶极矩、缔合的能量、及其他物理特征,如结晶度。
在另一个代表性的实施例中,装置是由两种不同发射材料制备的,以便其中一种从单体激发态发射蓝光。另一种掺杂物从准分子态发射,导致宽带的黄色发射。例如,为表明本概念而制备的装置,利用发射蓝色的八面体的Ir络合物Firpic,它在任何浓度下也不形成准分子态。该装置使用的另一种掺杂物,是平面Pt络合物FPt,即使在低浓度下,它也能有效地形成准分子态。当每一种掺杂物都以6%存在时,得到的电致发光发射,粗略地包含来自Firpic(单体)和FPt准分子相等的贡献。
无论何时,使用激态复合物发射体来提供覆盖可见光光谱低能部分的宽带发射,装置的发射区将包含激态复合物发射体和单体发射体。包括单体和准分子的发光材料,可以通过荧光发射或通过磷光发射。单体发射体最好是可见光光谱的高能(例如,蓝色或绿色)发射。激态复合物发射体提供宽带的发射,覆盖可见光光谱的低能部分。因为没有吸收进该激态复合物态中,所以从单体发射体到激态复合物的能量传递极小。因此,如果装置的制备,例如是用两种发射蓝光的磷光材料,一种与基体材料形成激态复合物,而一种则不形成激态复合物,那么可以制备白光装置。激态复合物可以发射黄光,且不会从非激态复合物形成的掺杂物中捕获能量,因为激态复合物没有基态吸收(吸收振子的强度是零,因此Forster半径=0)。因此,蓝色发射对黄色发射的比,通过改变两种发射体的比,能够容易调整,没有复杂的从蓝色发射体到黄色发射体的能量传递。两种这样的材料的例子,是Firpic和FPt。Ir络合物并不形成激态复合物,而Pt络合物形成TAZ基体中的黄光激态复合物。两种装置的电致发光光谱及它们的和,示于图1。基于Ir的装置有外效率为6%的峰,而基于Pt的装置(激态复合物发射)有外效率为4%的峰。两种光源之和,给出白光光源,具有82的CRI,与某些最好的照明光源相当。
单体发射体,一种在聚合体发射中不涉及的发射体,可从高能(如蓝色)发光材料中选择。单体发射体通常是发光化合物,具有足够的空间堆积,以防止在固体状态中必要的接近,避免在特定浓度上形成聚合体。推荐的单体发射体,包括有机金属过渡金属络合物,有八面体排列的几何形状,或者有正方平面几何形状,并有足够的空间堆积配体,避免聚合体的形成。
用于本装置的磷光材料,通常是有机金属化合物。该磷光材料可按如下待决专利申请的教导,从有机金属化合物中选择U.S.SerialNos.08/980,986,2001年6月18日申请,和09/978,455,2001年10月16日申请,本文收入该两个专利申请全文,供参考。
已经用作HTL材料和ETL材料的有各种化合物。ETL材料包括,具体说,芳基取代了的噁二唑、芳基取代了的三唑、芳基取代了的菲咯啉、苯并噁唑或苄基噻唑类化合物;如,1,3-双(N,N叔丁基苯基)-1,3,4-噁二唑(简称OXD-7);3-苯基-4-(1′-萘基)-5-苯基-1,2,4-三唑(简称TAZ);2,9-乙烷-4,7-二苯基-菲咯啉(简称浴铜灵或BCP);双(2-(2-羟基苯基)-苯并噁唑化物)锌;或双(2-(2-羟基苯基)-苄基噻唑化物)锌;如在C.Adachi et al.,Appl.Phys.Lett.,vol.77,904(2000)中所公开的。其他的电子输运材料包括(4-联苯)(4-叔丁基苯基)噁二唑(简称PDB),和铝三(8-羟基喹啉盐)(简称Alq3)。
选择空穴输运层的材料,把空穴从阳极输运到装置的发射区。HTL材料大多包括各种形式的呈现高空穴迁移率(~10-3cm2/Vs)的三芳基胺。适合用作空穴输运层材料的一个例子是4,4′-双[N-(萘基)-N-苯基-氨基]联苯(简称α-NPD),空穴迁移率约5×10-4cm2/Vsec。其他例子包括N,N′-双(3-甲基苯基)-N,N′-联苯-[1,1′-联苯]4,4′-联氨(简称TPD)、4,4′-双[N-(2-萘基)-N-苯基-氨基]联苯(简称β-NPD)、4,4′-双[N,N′-(3-甲苯基)氨基]-3,3′-二甲基联苯(简称M14)、4,4′,4″-三(30甲基苯基苯基氨基)三苯胺(简称MTDATA)、4,4′-双[N,N′-(3-甲苯基)氨基]-3,3′-二甲基联苯(简称HMTPD)、3,3′-二甲苯-N4,N4,N4′,N4′-四-对-甲苯基-联苯-4,4′-联氨(简称R854)、N,N′,N″-1,3,5-三咔唑基苯(简称tCP)、和4,4′-N,N′-联咔唑-联苯(简称CBP)。另外适合空穴输运的材料,本领域是熟知的,适合用作空穴输运层的材料例子,可以在如下专利申请中找到U.S.Patent No.5,707,745,本文收入该申请,供参考。
除上面讨论的小分子外,基体可以包括聚合物或聚合物的掺合物。在一个实施例中,发射材料是作为自由分子添加的,即没有与聚合物键合,而是在聚合物“溶剂”中分解。推荐用作基体材料的一种聚合物是,聚(9-乙烯咔唑)(简称PVK)[poly(9-vinylcalbazole)(PVK)]。在另外的一个实施例中,发射体是聚合物重复单元的一部分,例如是Dow的聚芴材料。荧光发射体和磷光发射体两者都可以附着在聚合物链上,并可用来制作OLED。包括聚合物基体的装置中的层,通常是用旋转涂布淀积的。
推荐用于发射层的主体基体材料,包括咔唑联苯(简称CBP)及其衍生物、N,N′-联咔唑苯及其衍生物、N,N′,N″-1,3,5-三咔唑基苯及其衍生物。衍生物包括上述化合物被下面的一种或多种基团取代烷基、链烯基、炔基、芳基、CN、CF3、CO2alkyl、C(O)alkyl、N(alkyl)2、NO2、O-alkyl、和卤。特别推荐的用于发射层的主体基体材料,包括4,4′-N,N′-联咔唑-联苯(简称CBP)、N,N′-meta-联咔唑基苯(简称mCP)、和N,N′,N″-1,3,5-三咔唑基苯(简称tCP)。CBP有许多作为基体材料的重要性质,如高的2.56eV(484nm)的三重态能级,和双极性电荷输运性质,这使它成为磷光掺杂物的优良主体。
良好的CBP薄膜结晶迅速。把小分子掺杂进CBP中(如发射掺杂),使薄膜稳定在非晶态或玻璃态,能稳定相当长的时间。另一方面,mCP即使在未掺杂时也形成稳定的玻璃态。在装置操作时发生结晶,可能导致装置失效,所以是应当避免的。有了即使在未掺杂时也形成稳定玻璃态的材料,是有利的,因为结晶过程更不易发生。用来评价给定材料的玻璃态形成能力的一种尺度,是它的玻璃态转变温度Tg。该温度表征玻璃质材料的热稳定性,因此对OLED材料,希望有高的Tg。在Tg上,通常发生显著的热膨胀,导致装置失效。mCP的Tg值是65℃。虽然该值对装置的制备是可接受的,但对制作有最长可能寿命的装置,最好有更高的Tg。通过向分子添加大的、坚固的基团,如苯基及聚苯基基团和类似的芳基基团,增加Tg是容易实现的。但是,该苯基添加物/取代物,应当按不降低三重态能量,或按主体材料不适合用作蓝色或白光发射装置的方式实施。例如,向咔唑单元本身(如化合物I的4′位置)添加苯基基团,通常将降低三重态的能量,使mCP衍生物更不适合用于蓝色或白光发射装置。
用苯基或聚苯基基团在化合物I的2,4,5,或6位置取代,最可能不会导致三重态能量的显著移动。这些取代物一般将增加材料的Tg,使它们成为长寿命的OLED的更好的材料。该种化合物的例子包括,但不限于
及其衍生物。
适合的电极(即阳极和阴极)材料,包括导电材料,如金属、金属的合金、或导电的氧化物如ITO,这些材料与电的接点连接。电接点的淀积,可以通过汽相淀积或其他适当的金属淀积技术实施。这些电接点可以由,例如铟、镁、铂、金、银或其组合,如Ti/Pt/Au、Cr/Au、或Mg/Ag等制成。
当淀积上电极层(即阳极或阴极,通常是阳极),就是说,在OLED离衬底最远的一侧的电极时,应当避免损坏有机层。例如,有机层不应加热到它们的玻璃态转变温度之上。上电极最好从与衬底基本上垂直的方向淀积。
用作阳极的电极,最好用高逸出功(≥4.5eV)的金属,或透明的导电氧化物,如铟锡氧化物(ITO)、锌锡氧化物、等等。
在各优选实施例中,阴极最好是低逸出功的电子注入的材料,如金属层。最好是,阴极材料的逸出功小于约4电子伏特。如果阴极层是不透明的,那么,金属的阴极层可以由基本上较厚的金属层构成。如果要求阴极层是透明的,则可以用薄的低逸出功的金属,结合透明的导电氧化物,如ITO。透明的阴极可以有厚度为50-400的金属层,最好约100。也可以用如LiF/Al的透明阴极。
对顶发射的装置,可以用公开在下面专利申请的透明阴极U.S.Patent No.5,703,436,或待决专利申请U.S.Serial Nos.08/964,863和09/054,707,本文收入这些申请,供参考。透明阴极的光透射特性,要能使OLED的光透射至少约50%。最好是,透明阴极的光透射特性,能使OLED至少有70%的光透射,更为可取的是至少约85%。
本发明的装置可以有附加的层,例如激子阻挡层(EBL)、空穴阻挡层(HBL)、或空穴注入层(HIL)。本发明的一个实施例,使用阻挡激子扩散的激子阻挡层,从而改进整个装置的效率,激子阻挡层例如公开在下面的专利申请中U.S.Patent No.6,096,147,本文收入该申请全文,供参考。
为防止激子的电子从发光层泄漏进空穴输运层,特别是在有高能(蓝色)磷光发射体的装置中,可以在发光层与HTL之间包括电子/激子阻挡层。高能磷光掺杂物趋于具有高能的LUMO能级,接近输运材料和主体材料的能级。如果掺杂物的LUMO能级,接近HTL材料的LUMO能级,那么,电子可能泄漏进HTL。同样,如果掺杂物的发射能量接近HTL材料的吸收能量,可以发生激子泄漏进HTL层。因此,在HTL与发光层之间引进电子/激子阻挡层,可以改进装置的特性。有效的电子/激子阻挡层材料,要有防止激子泄漏进HTL的宽的禁带宽度、阻挡电子的高的LUMO能级、和高于HTL的HOMO能级。用于电子/激子阻挡层的优选材料,是fac-三(1-苯基吡啶化物-N,C2’)铱(III)(简称Irppz)。
在本发明又一个实施例中,空穴注入层在阳极层与空穴输运层之间。作为本发明的空穴注入材料的材料特征,要能使阳极表面成为平滑的或把阳极表面浸润,以便提供足够的空穴,从阳极注入空穴注入材料。本发明的空穴注入材料,还有如下特征由它们的相对IP能量定义的HOMO能级,有助于与相邻的在HIL层一侧的阳极层、及发射体掺杂的在HIL层另一侧的电子输运层匹配。从每一种材料获得的最高有分子轨道(HOMO),与它的电离电势(IP)对应。最低的空分子轨道(LUMO),等于IP加上由吸收光谱确定的光学禁带宽度。在整个组装了的装置中,能量的相对对准,可能与预测有某些差别,例如与从吸收光谱预测的有差别。
HIL材料,虽然依旧是空穴输运材料,但与常规的、通常用于OLED空穴输运层的空穴输运材料不同,其不同点,在于该种HIL材料的空穴迁移率,基本上小于常规空穴输运材料的空穴迁移率。例如,已经发现,m-MTDATA对促进空穴从ITO注入包含例如α-NPD或TPD的HTL,是有效的。原因可能是,HIL有效地注入空穴是由于HIL HOMO能级/ITO偏移能量的降低,或ITO表面的浸润。相信HIL材料m-MTDATA的空穴迁移率约3×10-5cm2/Vsec,可分别与α-NPD和TPD的空穴迁移率约5×10-4cm2/Vsec和9×10-4cm2/Vsec比较。由此,m-MTDATA材料的空穴迁移率比通常用作HTL材料的α-NPD和TPD,小一个数量级还多。
其他HIL材料包括酞青化合物,如铜酞青,还有其他材料,包括聚合物材料如,聚3,4-亚乙二氧基噻吩(简称PEDOT),或聚(乙基-二氧噻吩):聚(苯乙烯磺酸)(简称PEDOT:PSS),这些材料对促进空穴从阳极注入HIL材料,继而进入HTL,是有效的。
本发明的HIL厚度,必需足够厚,有助于使阳极层表面平滑或浸润。例如,对十分光滑的阳极表面,HIL的厚度可以小到10nm。但是,因为阳极表面大都非常粗糙,在某些情形下,可能要求HIL的厚度高达50nm。
按照本发明的衬底,可以是不透明的或基本上透明的、坚固的或柔性的、和/或塑料的、金属的、或玻璃的。虽然本文对厚度范围不加限制,但如果作为柔性塑料或金属膜衬底,可以薄到10mm,如果作为坚固的、透明的或不透明的衬底,或衬底由硅制成,则基本上要求更厚。
本发明的OLED和OLED的结构,根据需要的作用可以任选地包含另外的材料或层,如保护层(在制作过程中保护某些材料)、绝缘层、沿某些方向引导光波的反射层、和覆盖电极及有机层的防护罩,以免这些层受环境的影响。绝缘层和防护罩的说明,例如包括在U.S.Patent No.6,013,538中,本文引用该申请,供参考。
虽然高的CRI值常常是希望的,但本发明的装置,同样用于产生提供其他颜色的光源。白炽灯泡实际略带黄色,不是纯白色。如本文所说明的,通过改变单体发射体对聚合体发射体之比,可以调整得到的装置的颜色,例如,仿效白炽灯泡发射的光。通过调整掺杂物的浓度、掺杂物的空间堆积、和用于发射层的主体材料,可以构造提供不饱和(非单色)颜色发射的装置。
本文给出的层的类型、数量、厚度、和次序,可以有基本的变化,依赖于是否存在OLED层的相反序列,或是否使用还有的其他设计变化。本领域熟练人员应当能识别对本文说明并列举的本发明实施例的各种修改。这些修改应被认为包括在本发明的精神和范围之内。就是说,虽然本发明已经参照某些实施例详细说明,但本领域熟练人员应认识到,本发明在权利要求书的精神和范围之内,还有其他的实施例。
举例这里可购买的溶剂和试剂,均购自Aldrich Chemical Company。试剂是最高纯度的,并在收到后立刻使用。
配体2-(2,4-二氟苯基)吡啶(F2ppy),是通过Suzuki耦合2,4-二氟苯基硼酸与2-溴吡啶(Aldrich)制备的。Pt(II)μ-二氯桥连二聚体[(F2ppy)2Pt(μ-Cl)2Pt(F2ppy)2],是通过Lewis法的修改方法制备的(Lohse,O.et al. Synlett.1999,1,45-48)。该二聚体用3当量的螯合二酮配体与10当量的Na2CO3处理。2,6-二甲基-3,5-庚二酮和6-甲基-2,4-庚二酮,购自TCI。3-乙基-2,4-戊二酮购自Aldrich。溶剂在降低压力下除去,并把化合物用色谱分析方法提纯。产物从二氯甲烷/甲醇中重新结晶,然后升华。
Irppz是通过把Ir(acac)3(3.0g)和1-苯基吡唑(3.1g),在100ml甘油中溶解,并在惰性气氛中回流12小时。冷却后,产物通过过滤离析,并经过去离子水、甲醇、醚、和己烷几部分清洗,然后真空干燥。然后把粗产物在温度梯度220-250℃中升华,得到灰黄的产物(回收率58%)。
mCP是通过芳基卤和芳基胺的钯催化交叉耦合制备的。(T.Yamamoto,M.Nishiyama,Y.Koie Tet.Lett.,1998,39,2367-2370)。
例1电致磷光准分子WOLED,是在预先镀有铟锡氧化物(ITO)层的玻璃衬底上生长的,铟锡氧化物层的薄膜电阻是20-W/sq。在有机层淀积之前,衬底在超声溶剂浴中去油脂,然后在150mTorr下,以20W的氧等离子处理8分钟。用来降低OLED泄漏电流和增加制作出产率的聚(乙基-二氧噻吩):聚(苯乙烯磺酸)(PEDOT:PSS),被以4000rpm旋转40s,旋转涂布在ITO上,然后以120℃在真空中烘烤15分钟,获得约40nm的厚度。空穴输运材料和主体材料,以及两种掺杂物,按标准的处理过程制备(见Lamansky,S.et al.,Inorg.Chem.40,1704-1711,2001),再通过温度梯度真空升华提纯。随后不必中断真空,通过在基本压力<8×10-7Torr下的热蒸发,淀积分子有机层。
淀积开始于30nm厚的4,4′-双[N-(萘基)-N-苯基-氨基]联苯(简称α-NPD)空穴输运层(HTL),后接30nm厚的发射区,发射区由发射蓝色磷光的Fir(pic)和FPt(acac)构成,两者都按6wt%掺杂进4,4′-N,N′-联咔唑-联苯(简称CBP)的主体中。淀积的最后有机层,是30nm的浴铜灵(BCP)。该层用作空穴和激子阻挡层,还作为电子输运介质。
有机层淀积之后,样品从蒸发室转移进含有≤1ppm的H2O和O2的充N2手套箱。把有1mm直径开孔的掩模固定在样品上之后,把样品送进第二真空室(<10-7Torr),在第二真空室中,通过掩模淀积阴极金属(包括5的LiF和接着70nm的铝)。样品只在测试时暴露在空气中。装置结构的横截面示于图6。
通过考察装置发射区使用的材料的光致发光(PL)光谱及激发(PLE)光谱,开始WOLED的设计,是方便的。三个掺杂薄膜和一个不掺杂的“控制”CBP薄膜,各为1000厚,是通过热蒸发在分开的溶剂清洁石英衬底上生长的。薄膜的PL和PLE光谱,是用PhotonTechnology International QuantaMaster荧光系统测试的。图5列出薄膜的成分和与它们有关的PL CIE坐标。
图5画出薄膜1-4的PL(实线)和PLE(空心圆)光谱。薄膜1表明,CBP PL谱在λ=390nm上有一峰,而相应的PLE则在λ=220和370nm之间。CBP的PLE在λ=300nm上有肩,主峰在λ=350nm上。该CBP PLE峰与λ=300和350nm(箭头,图6的插图)的吸收峰对应。这两个CBP特征出现在CBP用作主体的所有薄膜的PLE光谱中;因此,这是所有薄膜中的主要吸收光谱,为了发生从FPt(acac)和Fir(pic)分子的发射,能量必须有效地从CBP传递到FPt(acac)和Fir(pic)两者。
薄膜2的PL光谱表明,频带只与CBP和FPt(acac)单体发射一致。CBP在λ=390nm发射,而FPt(acac)单体的发射峰在λ=470nm和λ=500nm(见图5)。观察到CBP中FPt(acac)的光谱,与相同分子在稀释溶液中的十分类似。在<1wt%的情形,随机分布的FPt(acac)分子,平均分开30,排除有效的准分子的形成。在薄膜2中缺乏宽带的长波长的峰指出,在CBP和FPt(acac)之间不形成激态复合物。就是说,如果激态复合物在这些半分子间形成,则即使在最低的掺杂样品中,也应出现从FPt(acac)-CBP络合产生的激态复合物发射。
随着FPt(acac)掺杂浓度增加至~7wt%(薄膜3),伴随λ=470nm和λ=500nm上的特征单体发射,观察到λ=570nm的橘红色的强准分子发射。更高的掺杂浓度导致CBP荧光的完全淬灭。对薄膜3,在λ=570nm上测量FPt(acac)发射的寿命是t=7.2ms,与λ=470nm上的8.3ms比较,也与FPt(acac)络合物上准分子的形成一致。
从1wt%到7wt%的FPt(acac)掺杂,导致与单体及准分子同时从掺杂物发射一致的光谱。掺杂浓度在3wt%~4wt%时,单体和准分子谱线是平衡的,导致白光发射。虽然该薄膜的成分,原则上可用于制作白光的OLED,但对有合理的效率并提供无CBP荧光的装置而言,掺杂浓度太低。
薄膜4由掺杂6wt%的FIr(pic)和6wt%的FPt(acac)的CBP构成。这里要说明的是,CBP发射没有PL,但PLE光谱依旧表明它是主要的吸收物质,且能量充分传递至FIr(pic)和FPt(acac)两者。双掺杂薄膜的PL发射与图6所示WOLED的电致发光(EL)类似。
能量传递过程可以通过参照三种有机成分(图7右下方插图)的最高有分子轨道(HOMO)和最低空分子轨道(LUMO)的能量,按双掺杂系统来理解。三重态能量从CBP到FIr(pic)的传递,是通过吸热过程发生的,吸热过程在Adachi,C.et al.,Appl.Phys.Lett.79,2082-2084(2001)中有说明。假定FIr(pic)和FPt(acac)两者HOMO能级的相同位置为(5.8±0.1eV),和LUMO能级为(3.2±0.1eV),可以期望CBP和FPt(acac)有相似的吸热三重态能量传递。两种掺杂物之间共振能量的传递同样是可能存在的,因为它们以高浓度存在于CBP基体中。但是,从FIr(pic)到准分子直接的能量传递不能发生,因为准分子有零的基态吸收,阻止了能量从蓝光发射中心到黄光发射中心的能量喷流。这一点基本上把这些分子的激发态消耦合,使要达到需要的色平衡的掺杂优化变得简单。
WOLED的光输出功率,是用Newport Power Meter和校准的硅光二极管测量的,之后,用图7左方的插图所示电流密度-电压特性,计算ηext。假定一Lambertia强度曲线,计算ηp(图7)和亮度。图上,在J=1×10-3mA/cm2和10mA/cm2之间,ηext≥3.0%。在J>300mA/cm2上的滚降,归因于样品受热和三重态-三重态湮没。WOLED有极值ηext=(4.0±0.4)%,与(9.2±0.9)cd/A、在16.6V时亮度(31000±3000)cd/m2、ηp=(4.4±0.4)lm/W、和78的CRI对应。
对一块好的FPt(acac)薄膜测量的寿命,在λ=470nm和λ=600nm上分别是t=4.8ms和t=5.2ms。因此,随着电流密度的增加,FPt(acac)的准分子态与单体及FIr(pic)相比,变成饱和,从而导致蓝色发射的增加。光谱的变化反映了在CIE坐标中小的变化,从(0.40,0.44)变到(0.35,0.43)。
例2OLED用FPt3以掺杂浓度8、10、和12%制备。装置的结构是ITO/NPD(400)/Ir(ppz)3(200)/CBP-FPt3(300)/BCP(150)/Alq3(200)/Mg-Ag。三个装置的电流电压特性类似,在低电压时,泄漏电流随掺杂浓度的增加而逐渐减小。在任何掺杂浓度上,没有观察到CBP的主体发射,表明FPt3掺杂物充分捕获CBP基体中形成的所有激子。虽然CBP中激子的形成,可能导致空穴电子再结合的结果,但它也可能使FPt3分子捕获空穴和电子,出现在掺杂物上的直接再结合。后一过程将导致在掺杂物上形成激子,不要求从基体材料即在本例中的CBP的能量传递。Ir(ppz),即电子阻挡层,必须阻止电子泄漏进NPD层,这样会导致除掺杂物单体-准分子发射外,还有NPD发射。该三个装置全都表明,接通电压在3至4伏之间,获得的最大亮度在4,000到10,000Cd/m2之间。这些装置的光谱,随电压的升高,呈现非常小的变化,就是说,单体对准分子之比不受电压和电流的明显影响。10和12%掺杂的装置,还分别提供8和6.5lm/W在1Cd/m2)的非常好的功率效率。
例4以变化的wt%掺杂FPt的mCP薄膜,是在玻璃上通过共同淀积两种材料制备的。在某一浓度范围上掺杂进mCP的FPt的光谱,示于图20。对掺杂进mCP的FPt的单体态和聚合体态,发射波长的极大与CBP中那些FPt相同。在掺杂浓度约15wt%时,观察到平衡的单体/聚合体发射,该浓度粗略为要求从FPt掺杂的CBP中,获得相等的单体/聚合体发射比的三倍。这一点表明,CBP对FPt是更优良的溶剂,在掺杂的mCP薄膜中导致更小的FPt...FPt互作用。
与CBP掺杂薄膜相反,在轻微掺杂的mCP薄膜(<1wt%FPt)的光谱中,没有观察到主体的发射,这表明从mCP到FPt的能量传递,比从CBP到FPt更有效。尽管CBP三重态的能量高(磷光波长λmax=460nm),但从CBP到蓝色磷光掺杂物,如这里使用的Pt络合物的能量传递,是吸热的过程。相反,mCP在410nm上有磷光峰,使能量从CBP到Pt络合物掺杂物的传递,成为更为有效的、放热的过程。从主体到掺杂物更有效的能量传递,如同观察到的那样,将影响淬灭发射所必需的掺杂物的量。
CBP和mCP两者都有低的偶极矩(大约0.5D),所以,可以预期掺杂物与主体材料之间的静电互作用与之类似。这是与观察相符的,掺杂的mCP和CBP薄膜的单体及聚合体态光谱是相同的。不必按照理论上的限制,引起不同掺杂物溶解度的CBP和mCP的差别,是与它们的分子结构有关的。平面型分子趋于有高的缔合能,它促进结晶和阻碍玻璃态的形成。预期CBP在固体状态中是大的平面。这与我们的观察是一致的,不掺杂的CBP薄膜,当直接淀积在玻璃或ITO衬底上时,迅速结晶。高的CBP缔合能有排斥单体掺杂物的趋势,导致在合适掺杂浓度上聚合体的形成。当把mCP淀积在无机或有机衬底上时,mCP快速形成稳定的玻璃,表明它有非平面型基态结构。对mCP,玻璃的转变温度是65℃。相邻咔唑基团与苯基环之间的空间互作用,导致CBP和mCP两者应有非平面基态结构的预测,如图21中能量最低结构的几何形状所示。虽然CBP的该最低结构,似乎在某种程度上是非平面的,但重要的是应当指出,在如图所示的结构与平面的构象异构体之间的差,仅为18kJ/mol。对照之下,使mCP平面化的能量代价是35kJ/mol。阻碍使mCP变平的大的壁垒,主要原因在于相邻咔唑间的H...H排斥力,这种互作用是CBP中没有的。由于该结构上的差别,我们认为,正方平面的Pt掺杂物对mCP的溶解度,与对CBP的溶解度非常不同。这种变化,在给定掺杂浓度下,显著地影响CBP对mCP的单体/聚合体之比。
对1掺杂进mCP的光致发光光谱的CIE坐标及彩色再现指数,在表1中给出。
表1
浓度在4-10wt%之间,给出的CIE坐标最接近白色(0.33,0.33),而最大的CRI在浓度范围15-20wt%之间观察到。最高浓度时,CIE坐标接近白炽灯泡(大约0.41,0.41)。因此,对1掺杂的mCP,选择10-20wt%的浓度范围,用于WOLED是最佳的。
例5制作的装置有结构NPD(400)/Irppz(200)/mCP:FPt(16%300)/BCP(150)/Alq3(200)/LiF(10)/Al(1000)。使用mCP主体取代CBP,显著改进了装置的性能。装置的效率、电流电压特性、和光谱,画在图23、24、和25。较高的掺杂浓度和改进的从mCP到掺杂物的能量传递,给出在低亮度(1cd/m2)下极大的量子效率6.4±0.6%(12.2±1.4lum/W,17.0cd/A),而在500cd/m2下是4.3±0.5%(8.1±0.6lum/W,11.3cd/A)。这些mCP/FPt WOLED显示的量子效率,是对WOLED报告的最高的量子效率。如同在其他装置观察到的一样,量子效率随电流密度增加而降低,但是,其降低比大多数其他电致发光装置要小。
例6OLED的制备,除省去Irppz EBL外(即NPD/mCP-FPt/BCP/Alq3),与例3一样。EL光谱有来自NPD的显著贡献,装置的量子效率大致下降一半(见图24)。总之,Irppz电子/激子阻挡层增加OLED的效率,从光谱中消除了NPD的发射,并使光谱与电压无关。
mCP和CBP装置的能级图示于图22,图上画出电子从掺杂物/CBP LUMO能级到NPD LUMO的迁移势垒,该势垒可与空穴从NPD注入发射层的势垒相当。消除电子/激子泄漏进HTL,将改进WOLED的效率和色稳定。Irppz络合物专门从磷光激发态发射(在77K时λmax=414nm,τ=15μsec)。该络合物的光学禁带宽度作为吸收光谱的下能量边缘,是在370nm(3.4eV)。光学禁带宽度的这一估算,代表载流子禁带宽度较低的极限。Irppz表明,在液体溶液中0.38V(对二茂铁/二茂铁鎓)时一种可逆的氧化作用,但不降低波伸延至DMF的-3.0V,与载流子禁带宽度>3.4eV相符。Irppz的HOMO能量,是用Ultraviolet Photoelectron Spectroscopy(UPS)测量的,并发现为5.5eV。使用Irppz光学禁带宽度逼近载流子禁带宽度,我们估计Irppz LUMO是2.1eV,远在CBP和掺杂物的LUMO之上。图22的能量图指出,Irppz可以制成优良的电子/激子阻挡层。
虽然本发明已经对特定例子和优选实施例加以说明,但应指出,本发明不限于这些例子和实施例。特别应当指出,本发明可用于广泛的各种电子装置。如权利要求书所要求的,也是本领域熟练人员熟知的,本发明包括本文说明的特定例子和优选实施例的各种变化。
权利要求
1.一种包含发射层的有机光发射装置,其中的发射层包括聚合体发射体,和单体发射体,其中,从聚合体发射体的发射,在能量上低于从单体发射体的发射,且其中聚合体发射体与单体发射体的组合发射,充分地覆盖可见光光谱,给出白光的发射。
2.按照权利要求1的装置,其中的聚合体发射体是准分子。
3.按照权利要求1的装置,其中的聚合体发射体与单体发射体,是通过磷光发射的。
4.按照权利要求3的装置,其中的准分子发射体和单体发射体,包括相同的化学化合物。
5.按照权利要求3的装置,其中的单体发射体和聚合体发射体,是磷光有机金属化合物。
6.按照权利要求5的装置,其中的聚合体发射体包括FPt(acac),而单体发射体包括FIr(pic)。
7.按照权利要求1的装置,其中的组合发射的彩色再现指数,至少约80。
8.按照权利要求1的装置,其中的组合的发射的CIE x坐标,约0.30到约0.40,而CIE y坐标,约0.30到约0.45。
9.按照权利要求1的装置,其中的发射层包括激态复合物发射体和单体发射体。
10.按照权利要求9的装置,其中的激态复合物发射体与单体发射体,是通过磷光发射的。
11.按照权利要求10的装置,其中的单体发射体与激态复合物发射体,是磷光有机金属化合物。
12.按照权利要求1的装置,其中的发射层还包括聚合物基体。
13.按照权利要求12的装置,其中的聚合物基体是PVK。
14.一种有机光发射装置,包括阳极;空穴输运层;电子输运层;和阴极;其中的空穴输运层或电子输运层是发射层,该发射层包括聚合体发射体和单体发射体,其中从聚合体的发射,在能量上低于从单体发射体的发射,和其中聚合体发射体和单体发射体的组合发射,充分覆盖可见光光谱,给出白光发射。
15.按照权利要求14的装置,其中的空穴输运层是发射层。
16.按照权利要求14的装置,其中的电子输运层是发射层。
17.按照权利要求14的装置,其中的聚合体发射体是准分子。
18.按照权利要求14的装置,其中的聚合体发射体和单体发射体,是通过磷光发射的。
19.按照权利要求18的装置,其中的聚合体发射体和单体发射体,包括相同的化学化合物。
20.按照权利要求18的装置,其中的聚合体发射体和单体发射体,是磷光有机金属化合物。
21.按照权利要求20的装置,其中的聚合体发射体,包括FPt(acac),而单体发射体包括FIr(pic)。
22.按照权利要求14的装置,其中的组合发射的彩色再现指数,至少约80。
23.按照权利要求14的装置,其中的组合发射的CIEx坐标,约0.30到约0.40,而CIEy坐标,约0.30到约0.45。
24.按照权利要求14的装置,其中的发射层包括激态复合物发射体和单体发射体。
25.按照权利要求24的装置,其中的激态复合物发射体和单体发射体,是通过磷光发射的。
26.按照权利要求24的装置,其中的单体发射体和激态复合物发射体,是磷光有机金属化合物。
27.按照权利要求14的装置,其中的发射层还包括聚合物基体。
28.按照权利要求27的装置,其中的聚合物基体是PVK。
29.按照权利要求14的装置,其中该装置还包括激子阻挡层。
30.按照权利要求14的装置,其中该装置还包括空穴注入层。
31.一种有机光发射装置,包括阳极;空穴输运层;发射层;电子输运层;和阴极;其中的发射层包括聚合体发射体和单体发射体,其中从聚合体的发射,在能量上低于从单体发射体的发射,和其中聚合体发射体和单体发射体的组合发射,充分覆盖可见光光谱,给出白光发射。
32.按照权利要求31的装置,其中的发射层包括准分子发射体和单体发射体。
33.按照权利要求31的装置,其中的聚合体发射体和单体发射体,是通过磷光发射的。
34.按照权利要求33的装置,其中的聚合体发射体和单体发射体,包括相同的化学化合物。
35.按照权利要求33的装置,其中的聚合体发射体和单体发射体,是磷光有机金属化合物。
36.按照权利要求35的装置,其中的聚合体发射体包括FPt(acac),而单体发射体包括FIr(pic)。
37.按照权利要求31的装置,其中的组合发射的彩色再现指数,至少约80。
38.按照权利要求31的装置,其中的组合的发射的CIEx坐标,约0.30到约0.40,而CIEy坐标,约0.30到约0.45。
39.按照权利要求31的装置,其中的聚合体发射体是激态复合物。
40.按照权利要求39的装置,其中的激态复合物发射体和单体发射体,是通过磷光发射的。
41.按照权利要求40的装置,其中的单体发射体和激态复合物发射体,是磷光有机金属化合物。
42.按照权利要求31的装置,其中的发射层还包括聚合物基体。
43.按照权利要求42的装置,其中的聚合物基体是PVK。
44.按照权利要求31的装置,其中该装置还包括激子阻挡层。
45.一种采用权利要求1的装置的光源。
全文摘要
本发明涉及高效的有机光发射装置(OLED)。更具体说,本发明涉及发射白光的OLED,或称WOLED。本发明的装置,在单个发射区中采用两种发射体,以便充分覆盖可间光的光谱。白光发射是通过在发射中心之一形成的聚合体,从单个发射区中的两个发射体获得的。这样能使呈现高彩色再现指数的WOLED结构简单、高亮度、和高效。
文档编号H01L51/50GK1656853SQ02826319
公开日2005年8月17日 申请日期2002年12月26日 优先权日2001年12月28日
发明者马克·E.·汤普森, 贾森·布鲁克斯, 瓦蒂姆·艾达莫维茨, 斯蒂芬·R.·弗瑞斯特, 布赖恩·德安德瑞德 申请人:普林斯顿大学理事会, 南加利福尼亚大学