并有可折叠式阴极组件的可再充电型金属空气电化学电池的制作方法

文档序号:6992927阅读:181来源:国知局
专利名称:并有可折叠式阴极组件的可再充电型金属空气电化学电池的制作方法
技术领域
本发明系涉及一种金属空气电化学电池。更特别的是,本发明涉及一种可再充电型金属空气电化学电池及使用在其中的可折叠式阴极组件。
背景技术
电化学电源为一种经由电化学反应产生电能的装置。这些装置包括金属空气电化学电池,诸如锌空气及铝空气电池。这些金属电化学电池使用由金属组成的阳极,其会在放电期间转换成金属氧化物。某些电化学电池例如可再充电,从而电流可通过阳极而使金属氧化物再转变成可用于后放电之金属。额外地,装配能加燃料的金属空气电化学电池,如此可置换阳极材料用以连续放电。通常来说,金属空气电化学电池包括阳极、阴极及电解质。阳极通常由已浸渍电解质的金属粒子形成。阴极通常包含双功能的半渗透薄膜及还原氧用的催化层。电解质通常为具有离子传导性但是不导电的腐蚀性液体。
金属空气电化学电池具有许多超过传统以氢为基础的燃料电池之优点。特别是,由金属空气电化学电池所提供的能量供应实际上用之不竭,因为燃料(诸如锌)充足且可以金属或其氧化物存在。再者,太阳、水力发电或其它形式的能量可使用来将金属从其氧化物产物转换回具有非常高的能量效率的金属燃料形式。不像常规的需要再填充的以氢为基础的燃料电池,金属空气电化学电池的燃料可经由电力再充电而复原。金属空气电化学电池的燃料可为固态,因此其安全且容易处理及贮存。比较以氢为基础的燃料电池(其使用甲烷、天然气或液化天然气以提供作为氢源且会放出污染气体),金属空气电化学电池则产生零污染排放。金属空气燃料槽电池可在环境温度下操作,然而氢-氧燃料电池典型地需在150℃至1000℃的温度范围下操作。金属空气电化学电池能输送较高的输出电压(1-4.5伏特)(超过常规的燃料电池(<0.8V))。
图1显示出一种常规的金属空气电池100,其包括一对沿着壁形成的阴极104。电池100也包括阳极108及第三电极106(其提供作为充电电极)。第三电极106配置成与阳极108呈离子接触,且以第一分离器与阴极104电隔离而以第二分离器与阳极106电隔离。这些分离器可相同或不同。在电极之间可经由电解质110(例如,液体电解质、凝胶电解质或其组合)提供离子接触。
可使用从空气或其它来源来的氧作为金属空气电池100的气体阴极104所使用之反应物。当氧到达阴极104中的反应位置时,其会与水一起转换成羟基离子。在此时,会释放电子而流入外部电路作为电流。该羟基会移动通过电解质110而到达金属阳极108。当羟基到达金属阳极(在包含例如锌的阳极108之实例中)时,会在锌表面形成氢氧化锌。氢氧化锌会分解成氧化锌并将水释放回该碱性溶液。反应因此完成。
阳极反应为(1)(2)阴极反应为(3)因此,电池整体反应为Zn+O2→ZnO (4)于再充电期间,在透过第三电极106和已消耗的阳极材料施加能量来源(对金属空气系统来说,例如大于2伏特)后,所消耗的阳极材料(即,经氧化的金属)(其与第三电极106有离子接触)会转换成新鲜的阳极材料(即,金属)及氧。在充电期间,该阳极会由第三电极充电。电流会流入第三电极而将阳极金属氧化物转换成金属并释放出氧。
因为第三电极106的存在,阴极104可为单功能电极(例如,配制用来放电),然而第三电极106则配制用来充电。第三电极106可包含导电结构,例如筛网、多孔板、金属泡沫、长条、金属线、板或其它合适的结构。在某些具体实施例中,第三电极106为多孔物以允许离子传递。第三电极106可由不同的导电材料形成,所述导电材料包括(但是非为限制)铜、铁类金属(诸如不锈钢)、镍、铬、钛等及包含至少一种前述材料的组合与合金。合适的充电电极包括多孔金属,诸如镍泡沫金属。
比较至使用双功能性电极的可再充电型电化学电池,此电池架构具有一些优点。阴极的表面积(其想要最大化以增加氧转换)不需要和与机械强度有关的损害取得平衡。再者,在再充电期间对阴极104的机械强度及催化活性之损害(即,由于在再充电期间会经由其而连续地施加电压)可由于所包含的第三电极而消除。
然而,关于图1所描述之第三电极结构仍然存在一些问题。例如,在再充电期间阳极会恢复,但是当阴极无恢复时,阴极的生命周期会受限制。当阴极固定在电池内时,其无法置换或恢复,因此会使电池的整体寿命变短。
再者,想要消除的是当电池不作用或当电池再充电时向阴极供应空气。此可防止阴极的CO2中毒(即,碳酸饱和)。
此外,在再充电期间,于第三电极处所释放的氧具有被捕捉在电极间之倾向。此往往导致阳极区域会以较慢的速率恢复、根本不恢复或者在放电期间不作用。
因此,在本领域中仍然需要改善的可再充电型金属空气电化学电池,特别是与阴极组件有关之电化学电池。

发明内容
现有技术的上述所讨论及其它问题和缺陷可经由本发明之数种方法及设备来克服或减轻,其中提供可再充电型金属空气电化学电池。该可再充电型金属空气电化学电池通常有一对配置在中心且以可折叠式机械装置彼此依附的空气阴极部分。阳极则配置成可经由合适的电解质与每个空气阴极部分以离子传递。对再充电来说,提供一对与阳极部分以离子传递的第三充电电极。
在一个实施方案中,该可折叠式机械装置允许阴极部分收缩以打开在阴极部分与阳极部分间之空间,以使在充电期间所累积的氧容易移除。
在另一个实施方案中,该可折叠式机械装置允许阴极部分收缩以在充电期间或在空载时期中断空气供应,因此可防止碳酸饱和及扩大有用的阴极寿命。
在进一步的实施方案中,该可折叠式机械装置允许阴极部分膨胀以便打开更多空气通道用之空间,而在放电期间将空气或氧提供至该空气阴极。
在另一个实施方案中,该阴极部分可移除且可替换。
在另一个实施方案中,该可折叠式机械装置允许阴极部分收缩以允许阴极部分可在空载期间或在充电过程与阳极部分呈电隔离。
本发明之上述讨论及其它特征和优点将由本领域技术人员从下列详细说明及图形中察知及了解。


结合本发明的附图,本发明的许多其它优点及特征将从下列优选实施方案的详细说明变成容易明了,其中图1为常规的可再充电型金属空气电化学电池之示意图;及图2A及2B为包含第三电极及并入可折叠式机械装置的阴极组件(如本文中详细描述)之金属空气电化学电池的实施方案之示意图。
图3A及3B分别为在本发明之一个实施方案中所使用的放电及再充电电路图。
图3C及3D分别为在本发明之另一实施方案中所使用的放电及再充电电路图。
图4A及4B为金属空气电化学电池的实施方案之示意图,其包括开关装置、第三电极及并入可折叠式机械装置之阴极组件(如本文中详细描述)。
图5A及5B为另一个金属空气电化学电池的实施方案在充电及放电模式的示意图,其包括配置在阴极与第三电极间之阳极,进一步使用并入可折叠式机械装置的阴极组件(如本文中详细描述)。
图6A及6B为金属空气电化学电池的实施方案在充电及放电模式的示意图,其包括配置在阳极任一边上之第三电极,进一步使用并入可折叠式机械装置之阴极组件(如本文中详细描述)。
图7A及7B为以楔子形式安排的金属空气电化学电池其在充电及放电模式之实施方案的示意图,其使用并入可折叠式机械装置的阴极组件(如本文中详细描述)。
图8A及8B为以楔子形式安排的金属空气电化学电池在充电及放电模式之实施方案的示意图,其包含具有第三电极附着于此的阴极,进一步使用并入可折叠式机械装置的阴极组件(如本文中详细描述)。
图9A及9B为以楔子形式安排的金属空气电化学电池在充电及放电模式的实施方案的图式表示,其包括具有第三电极附着于此的阳极,进一步使用并入可折叠式机械装置的阴极组件(如本文中详细描述)。
具体实施例方式
本发明提供一种可再充电型金属空气电化学电池。该可再充电型金属空气电化学电池包括金属燃料阳极及空气阴极、第三电极及与阳极的主要表面之至少一部分以离子传递的分离器。再者,所提供的结构可使阳极的燃料补给容易。
现在参照附图来描述本发明的说明性实施方案。为了清楚说明,显示在图中类似的部分应该以类似的附图标记指出,及如显示在另一个具体实施例中类似的部分应该以类似的附图标记指出。
现在参照图2A及2B,图式地说明可再充电型金属空气电化学电池200。一对阳极208沿着电池结构的内壁配置。再者,一对阴极或阴极部分204配置在该电池结构的中心,通常经由电解质210与阳极208以离子传递。因为阴极204配置在中心,它们可容易替换。二阴极部分204与可折叠式机械装置202彼此依附。可折叠式机械装置202的内容(inclusion)包括可打开或关闭在阴极之间的空气空间212。该可折叠式机械装置202可包括(但是为非限制为)机械组件、记忆金属结构或其类似物。例如,该可折叠式机械装置可包含凸轮系统、以致动器为基础的系统、弹簧、弹簧片、齿轮、滑轮或它们的任何组合,如机械及机电领域技术人员所明了的。
在另一个实施方案中,该可折叠式机械装置202可包含能与阴极部分204机械协同的形状记忆合金材料。在选择性活化后,该形状记忆合金会改变(即,其形状改变)以允许阴极204折叠。应注意的是,虽然已描述出数种形状记忆合金,但仅可使用一种形状记忆合金。该形状记忆合金可例如为由形状记忆合金材料所形成的杠杆、致动器、凸轮、弹簧、金属线、管子或板子。这些材料说明当接受适当的热程序时具有会返回先前所定出的形状和/或尺寸之能力。这些材料可包括例如镍-钛合金及以铜为基础的合金(诸如铜-锌-铝及铜-铝-镍)。
形状记忆合金为一种在施加温度和/或应力变化后会经历结晶相转换之合金。在正常条件下,会在温度范围(其随着合金组成物其自身及其制造时的热-机械处理型式而不同)内发生从形状记忆合金的高温状态(奥氏体)转换至其低温状态(马氏体)。
当在奥氏体相时对形状记忆合金构件施加应力,且在从奥氏体直至马氏体的转换温度范围冷却该构件,则奥氏体相会转换成马氏体相,及该形状记忆合金构件之形状会由于施加应力而改变。在施加热后,当从马氏体相转换成奥氏体相时,该形状记忆合金构件会返回其原始形状。
通常来说,形状记忆合金可分成二种等级单向及二向。在加热至特定的温度范围后,单向形状记忆合金会重新获得预定的形状(其以合适的加热步骤预先定形)。单向形状记忆合金在冷却后不会返回原始形状。另一方面,二向形状记忆合金会在冷却后返回预先加热时的形状。更详细考虑的形状记忆合金已熟知,例如,描述在由Darel E.Hodgesidn,Ming H.Wu,及Robert J.Biermann1之″形状记忆合金(Shape Memory Alloys)″中,其于此以参考方式并入本文。
因此,应该选择形状记忆合金的材料,使其不会发生不想要的形状记忆合金改变。电池内部的温度应该不会提高至将造成形状记忆合金进行改变的程度。再者,此内部温度可使用作为蓄意诱发形状记忆合金的形状改变之机制。此可有用地例如作为防止电池过热的安全装置。
通常来说,为了提供阴极部分204之经控制的折叠,会使用加热系统(未显示)。该加热系统可在最接近形状记忆合金处包含一个或多个电热器。此外,电流可直接通过该形状记忆金以将其加热至想1http//www.sma-inc.com/SMA.Paper.html要的温度。该能量可直接得自于电池或槽其自身,或此外可来自外部或各别结合的电池。例如,可提供专用较小的可再充电型电池至该形状记忆合金系统或其它可折叠式机械装置。此专用的电池然后可从主电池(即,在如本文描述的放电期间)再充电。
应注意的是,为了防止电短路,形状记忆合金的一端或二端应该与在适当电极上之绝缘器牢牢地紧合。
至于单向形状记忆合金之改变,当合金加热而改变形状(即,如从图2A至图2B的位置的一般显示)时,形状记忆合金通常不会返回原始结构(即,图2A之结构,及该形状记忆合金在加热后的结构会膨胀至图2B中的结构)。因此,必需提供外部力量以让阴极204返回至其不使用或充电位置,因此让该形状记忆合金返回至在加热前之位置。此力量可以弹簧、与其它形状记忆合金致动器或与多种其它机械设备手动地提供。再者,此可为一种自动化系统,由此以电子控制器决定回复至原始位置的需求,并且随后提供用于机械力的讯号。
至于二向形状记忆合金,必需维持使用来转换形状记忆合金之形状的热以维持该形状。当热移除时,该形状记忆合金会回复至未经加热的形状记忆合金之形状。
应注意的是,不论单向或二向形状记忆合金,该预先加热及经加热的形状可与显示在图2A及图2B之结构的不同位置有关。例如,在一个结构中,该形状记忆合金之预先加热的形状可如图2A所描述,经加热的形状则描述在图2B中。或者,该预先加热的形状可如图2B所描述,经加热的形状则如图2A所描述。在此实施方案中,例如为二向形状记忆合金时,提供热至该形状记忆合金以维持其在不使用或充电位置之能量可来自电池其自身。
特别参照图2A,所显示的阴极为充电模式。该经折叠的阴极会减低或阻碍沿着阴极的气流,因此减少阴极在再充电期间的CO2中毒。再者,该经折叠的阴极会增加电池内部结构的空间,因此允许氧气泡逸出。额外地,可使用该经由可折叠式机械装置而获得的位置来将阴极与电池的基座阻断,因此防止不需要的阴极变质及电池的自身放电。
在可再充电型电池中,往往想要充电该阳极同时减少或消除牵涉到空气阴极的事物,因此需要切换在空气阴极(对放电操作来说)与第三电极(对再充电操作来说)之间的电连接。金属空气技术能提供任何可获得的原电池系统之最高可获得的能量密度。例如,在锌空气电池中,氧会扩散进入电池且使用作为阴极反应物。该空气阴极会催化地促进氧与水性的碱性电解质反应,且在放电期间不会消耗或改变。此主要的缺点为该空气阴极无法有效地用于电池的再充电,同时其会变成部分消耗或改变,此将会有害地影响电池性能及最终地电池有用的寿命。因此,加入额外的电极(即,第三电极)以让合适的锌空气电池成为可再充电型电池。如图2A所显示,所关心的是在再充电期间并无电流通过阴极。
图2B显示出在放电模式中的阴极位置。在此位置中,阴极204被推向阳极208。此可增加在阴极204间之空气空间,因此可提供足够量反应所需之空气/氧。再者,其可减少在每组阴极204与阳极208间之电解质空间,因此可减低电池的内部电阻。
现在参照图3A-3D,所显示的为金属空气电池之不同结构的放电及再充电电路图形。图3A显示出具有阴极302、第三电极304及阳极306之单一金属空气电池的放电。图3B显示出单一金属空气电池的再充电。应注意的是,虽然无显示,图3A及3B的电路配置典型地需要与第三电极有关的开关或其代替品及与阴极有关的开关或其代替品。
图3C显示出第三电极在放电期间仍然连接之电池系统的放电;图3D显示出电池串行的电池系统之再充电,其中该第三电极在放电期间仍然连接。在充电期间,阴极以开关/接触308与基座电路断路。在放电期间,阴极以开关/接触308与基座电路连接。因此,当开关为在关闭的位置时,阴极仍然与第三电极连接且装配该电路用于放电操作。在此结构中,在放电路径中的开关电路可减少与多重开关机制有关的不同损害。此损害包括由于开关的接触电阻而增加内部电阻、在放电期间损失能量及产生热、及与多重开关驱动机制有关的无效率。
应注意的是,虽然不希望由理论限制,可组合空气扩散电极与阳极、充电电极(其经常由镍形成)与阳极而形成协同组合,且可具有金属空气电化学电池及镍-锌电化学电池二者之性质。
当开关切换至打开位置时,阴极不再与毗连电池的第三电极连接,此电池电路装配用于再充电操作。因此,在充电操作期间并无电流通过阴极。
该开关可为任何常规能处理想要的电流和/或电压之开关。合适的开关包括(但是非为限制)机械开关、半导体开关或分子(化学)开关或在2001年4月6日递交的由Aditi Vartak及Tsepin Tsa的美国申请序号09/827,982,发表名称为“Elecctrochemical Cell Recharging System”中的任何开关方法,其于此以参考方式并入本文。
常规的电池或具有固定阴极之电池结构将需要额外的安排以并入此断路。但是,随着该阴极204之可折叠式阴极移动,该接触可容易地连接及断路而没有额外的安排。因此,如图4A及4B图所显示,在充电位置(图4A)中,阴极404的折叠位置与接触414为开路,因此在阴极与第三电极408间之接触不连接。在放电位置(图4B)中,接触将关闭而将阴极与第三电极连结在一起。
应注意的是该阳极、阴极及第三电极的结构(例如,相对位置)可与到目前为止所描述的那些不同而没有离开本发明之范围。例如,在图5A及5B所显示之实施方案中,阳极506配置在第三电极508与阴极504对之间。在充电位置(图5A图)中,阴极504在折叠位置。在放电位置(图5B)中,该可折叠式机械装置会膨胀以将阴极504带至较接近阳极506,并打开至空气阴极的气道。在例如图6A及6B所显示的另一实施方案中,每个阳极606可包括一对第三电极,以促进充电且最大化充电效率。
再者,该电池系统的整体形状不限制为到目前为止所显示之棱柱状。例如,如在图7A、7B、8A、8B、9A及9B中所显示,该使用可折叠式机械装置的系统可为楔子结构,例如更详细地描述在2002年2月11日递交的美国申请10/074,893,名称为“Metal Air CellSystem”,其于此以参考方式并入本文。在图7A及7B的实施方案中,该充电电极708在阳极706外部(相对于阴极704)。应注意的是,可移除阴极704及与之相连的可折叠式机械装置702,而该第三电极708仍然在该阳极组件中。当例如恢复于可再充电的电池中之阳极时,则此阳极部分可在一定的再充电循环数目后替换,而第三电极则可再使用。
在图8A及8B的实施方案中,充电电极808最接近阴极804,而用分离器电分离。应注意的是,阴极804、充电电极808及与之相连的可折叠式机械装置802为可移除的。当例如在可再充电的电池中之阳极恢复时,则此阳极部分可在一定的再充电循环数目后替换,而与阴极相关的第三电极可再使用。
在图9A及9B的实施方案中,充电电极908在阳极906与阴极904之间。应注意的是,阴极904及与之相连的可折叠式机械装置902为可移除的,且第三电极908仍然在该阳极组件中。当例如在可再充电的电池中之阳极恢复时,则此阳极部分可在一定的再充电循环数目后替换,该第三电极可再使用。
阳极204通常包含金属组分(诸如金属和/或金属氧化物)及电流收集器。对可再充电的电池来说,在本领域中已熟知可使用包含金属氧化物与金属组分之组合的配方。可在阳极部分中任选提供离子传导介质。再者,在某些实施方案中,阳极包含粘合剂和/或合适的添加剂。优选地,该配方可最佳化放电的离子传输速率、容量、密度及整体深度,同时减少在循环期间的形状改变。
该金属组分主要可包含金属及金属化合物,诸如锌、钙、锂、镁、铁类金属、铝、至少一种前述金属的氧化物或包含至少一种前述金属的组合及合金。这些金属也可与下列组分混合或合金,该组分可包括(但是非为限制)铋、钙、镁、铝、铟、铅、汞、镓、锡、镉、锗、锑、硒、铊、至少一种前述金属的氧化物或包含至少一种前述组分的组合。该金属组分可以以粉末、纤维、粉尘、细粒、薄片、针状物、丸粒或其它粒子之形式提供。在某些实施方案中,可提供细粒金属(特别是锌合金金属)作为金属组分。在电化学方法的转换期间,该金属通常会转换成金属氧化物。
该阳极电流收集器可为任何能提供导电性及能任选地对阳极部分提供支撑的导电材料。该电流收集器可由不同的导电材料形成,其包括(但是非为限制)铜、黄铜、铁类金属(诸如不锈钢)、镍、碳、导电聚合物、导电陶瓷、其它在碱性环境中稳定且不腐蚀电极的导电材料、或包含至少一种前述材料的组合及合金。该电流收集器可为筛网、多孔板、泡沫状金属、长条、金属线、板或其它合适结构的形式。如于本文中所描述,某些实施方案可使用电流收集器的伸长部分作为能量输出终端。
该电解质或离子传导介质通常包含碱性介质以提供羟基到达金属及金属化合物的路径。该离子传导介质可为槽浴形式(其合适地包含液体电解质溶液)。在某些实施方案中,会在阳极部分中提供离子传导量的电解质。该电解质通常包含离子传导材料,诸如KOH、NaOH、LiOH、其它材料或包含至少一种前述的电解质介质之组合。特别来说,该电解质可为包含浓度约5%的离子传导材料至约55%的离子传导材料之水性电解质,优选为约10%的离子传导材料至约50%的离子传导材料,更优选为约30%的离子传导材料至约45%的离子传导材料。但是,可依其容量而使用本领域技术人员熟悉的其它电解质。
该阳极的任选粘合剂主要讲某些结构中的阳极组分维持为固体或实质上为固体的形式。该粘合剂可为任何材料(其通常会粘着该阳极材料及该电流收集器以形成合适的结构)且通常提供合适于阳极粘着目的之量。此材料优选地对电化学环境具化学惰性。在某些实施方案中,此粘合剂材料可溶于水中或可形成乳化剂,而不溶于电解质溶液。适当的粘合剂材料包括以聚四氟乙烯为主的聚合物及共聚物(例如,可从E.I.du Pont Nemours and Company Corp.,Wilmington,DE购得之Teflon及TeflonT-30)、聚乙烯醇(PVA)、聚(环氧乙烷)(PEO)、聚乙烯吡咯烷酮(PVP)及其类似物及衍生物、包含至少一种前述粘合剂材料的组合及混合物。但是,本领域技术人员应了解可使用其它粘合剂材料。
可提供任选的添加剂以防止腐蚀。合适的添加剂包括(但是非为限制)氧化铟、氧化锌、EDTA、表面活性剂(诸如硬脂酸钠、月桂基硫酸钾、TritonX-400(可从Union Carbide Chemical & PlasticsTechnology Corp.Danbury,CT购得))及其它表面活性剂、其类似物及衍生物、包含至少一种前述添加剂材料的组合及混合物。但是,本领域技术人员将决定可使用其它添加剂材料。
提供至阴极部分的氧可来自任何氧源,诸如空气;清洁空气;纯的或实质上氧,诸如来自公用或系统提供或来自就地氧制造;任何其它经加工的空气;或包含至少一种前述的氧源的任何组合。
该阴极部分可为常规的与合适的连结结构(诸如电流收集器)一起使用的空气扩散阴极(例如通常包含活性组分及碳基板)。典型来说,可选择阴极催化剂以获得在周围空气中每平方厘米至少20毫安(毫安/平方厘米)的电流密度,优选为至少50毫安/平方厘米,更优选为至少100毫安/平方厘米。当然,使用合适的阴极催化剂及配方可获得较高的电流密度。该阴极可例如具双功能性(其能在放电及再充电期间二者下操作)。但是,使用本文中描述的系统,可除去对双功能阴极的需要,因为已提供第三电极作为充电电极。
所使用的碳优选地对电化学电池环境具化学惰性,并且可以以不同形式提供,包括(但是非为限制)碳薄片、石墨、其它高表面积的碳材料或包含至少一种前述碳形式的组合。
该阴极电流收集器可为任何能提供导电性的导电材料且优选在碱性溶液中具有化学稳定性,其任选能对阴极提供支撑。该电流收集器可为筛网、多孔板、泡沫状金属、长条、线、板或其它合适的结构形式。该电流收集器通常具有多孔性以减少氧气流的阻塞。该电流收集器可由不同的导电材料形成,包括(但是非为限制)铜、铁类金属(诸如不锈钢)、镍、铬、钛及其类似物,以及包含至少一种前述材料的组合及合金。合适的电流收集器包括多孔金属,诸如泡沫状镍金属。
在阴极中也可典型地使用粘合剂,其可为任何能粘附基板材料、电流收集器及催化剂以形式合适的结构之材料。通常提供合适于粘着碳、催化剂和/或电流收集器之目的的粘合剂量。此材料优选对电化学环境具有化学惰性。在某些实施方案中,该粘合剂材料也具有疏水特征。适当的粘合剂材料包括以聚四氟乙烯为主的聚合物及共聚物(例如,商业上可从E.I.du Pont Nemours and CompanyCorp.,Wilmington,DE购得的Teflon及TeflonT-30)、聚乙烯醇(PVA)、聚(环氧乙烷)(PEO)、聚乙烯吡咯烷酮(PVP)及其类似物及衍生物、包含至少一种前述的粘合剂材料之组合及混合物。但是,本领域技术人员将了解可使用其它粘合剂材料。
该活性组分通常为一种合适于促进氧在阴极反应的催化剂材料。该催化剂材料通常提供可有效促进氧在阴极反应的量。合适的催化剂材料包括(但是非为限制)锰、镧、锶、钴、铂及组合及包含至少一种前述催化剂材料的氧化物。典型的空气阴极揭示在由WayneYao及Tsepin Tsai所发表之名称为“Electrochemical Electrode For FuelCell”的美国专利第6,368,751号中,其全文以参考之方式并于本文。但是,本领域技术人员明了可依其性能容量使用其它空气阴极。
为了将阳极与阴极电隔离,会在电极之间提供现有技术中已知的分离器。该分离器可为任何商业上可购得的能电隔离阳极与阴极的分离器,同时允许在阳极与阴极之间有足够的离子传输。该分离器可配置成与阳极的至少一个主要表面之至少一部分(或阳极的全部主要表面)有物理及离子接触,以形成阳极组件。在进一步实施方案中,该分离器配置成与实质上阴极表面(其将最近阳极)有物理及离子接触。
在分离器与阳极间之物理及离子接触可经由下列而达成将该分离器直接涂敷在该阳极的一个或多个主要表面上;以分离器包住该阳极;使用框架或其它结构做为阳极的结构支持物,其中该分离器附着至在框架或其它结构中的阳极;或该分离器可附着至框架或其它结构,其中该阳极已配置在该框架或其它结构中。
该分离器优选地具有挠性以适应该电池组分的电化学膨胀及收缩,且对该电池化学物质具有化学惰性。合适的分离器可以下列形式提供,包括(但是非为限制)编织物、无纺布、多孔物(诸如多微孔性或纳米多孔性)、蜂窝式、聚合物薄板及其类似物。该分离器用的材料包括(但是非为限制)聚烯烃(例如,商业上可从Dow ChemicalCompany购得的Gelgard)、聚乙烯醇(PVA)、纤维素(例如,硝基纤维素、醋酸纤维素及其类似物)、聚乙烯、聚酰胺(例如,尼龙)、碳氟化合物型树脂(例如,具有磺酸基团官能团之Nafion)家族树脂,其可从du Pont商业上购得、赛珞玢、滤纸及包含至少一种前述材料的组合。分离器16也可包含一些添加剂和/或涂层(诸如丙烯酸化合物及其类似物),以使其更可让电解质润湿及渗透。
在某些实施方案中,该分离器包含具有电解质(诸如氢氧化物传导电解质)并入于此的薄膜。该薄膜可具有氢氧化物传导性质,其可经由能支撑氢氧化物来源的物理特征(例如,多孔洞性),诸如胶状碱性材料;支持氢氧化物来源的分子结构,诸如水性电解质;阴离子交换性质,诸如阴离子交换薄膜;或一种或多种能提供氢氧化物来源的这些特征之组合。
通常来说,具有能支撑氢氧化物来源的物理特征之材料型式可包含电解质凝胶。该电解质凝胶可直接涂敷在放出(evolution)和/或还原电极的表面上,或涂敷在放出与还原电极间作为自身支撑的薄膜。再者,该凝胶可由基板支撑且并入放出及还原电极之间。
该电解质(在本文中任何一种分离器的变化,或在一般电池结构中作为液体)通常包含允许在金属阳极与阴极间有离子传输之离子传导材料。该电解质通常包含氢氧化物传导材料,诸如KOH、NaOH、LiOH、RbOH、CsOH或包含至少一种前述电解质介质的组合。在较佳的具体实施例中,该氢氧化物传导材料包含KOH。该电解质可特别为包含浓度约5%的离子传导材料至约55%的离子传导材料之水性电解质,较佳为约10%的离子传导材料至约50%的离子传导材料,更佳为约30%的离子传导材料至约40%的离子传导材料。
该薄膜用之胶凝剂可为任何合适的具足够量的胶凝剂以提供该材料具有想要的坚硬度。该胶凝剂可为一种交联的聚丙烯酸(PAA),诸如可从BF Goodrich Company,Charlotte,NC购得的Carbopol家族之交联聚丙烯酸(例如,Carbopol675);商业上可从Allied ColloidsLimited(West Yorkshire),GB购得的AlcosorbG1,及聚丙烯酸的钾及钠盐类;羧甲基纤维素(CMC),诸如可从Aldrich Chemical Co.,Inc.,Milwaukee,WI购得的那些;羟基丙基甲基纤维素;明胶;聚乙烯醇(PVA);聚(环氧乙烷)(PEO);聚丁基乙烯基醇(PBVA);包含至少一种前述胶凝剂的组合;及其类似物。通常来说,该胶凝剂的浓度从约0.1%至约50%,优选为约2%至约10%。
该任选的基板可以下列形式提供,包括(但是非为限制)编织物、无纺布、多孔物(诸如多微孔性或纳米多孔性)、蜂窝式、聚合物薄板及其类似物,其能在还原及放出电极之间允许有足够的离子传输。在某些实施方案中,该基板具有挠性以适应该电池组分之电化学膨胀及收缩且对该电池材料具有化学惰性。该基板用之材料包括(但是非为限制)聚烯烃(例如,商业上可从Daramic Inc.,Burlington,MA购得的Gelgard)、聚乙烯醇(PVA)、纤维素(例如,硝基纤维素、醋酸纤维素及其类似物)、聚酰胺(例如,尼龙)、赛珞玢、滤纸及包含至少一种前述材料的组合。该基板也可包含一些添加剂和/或涂层(诸如丙烯酸化合物及其类似物)以使其更可由电解质润湿及渗透。
在以氢氧化物传导薄膜作为分离器的其它实施方案中,所提供的分子结构能支撑氢氧化物来源,诸如水性电解质。想要的薄膜为可在自身支撑的固态结构中获得水性电解质的导电利益。在某些实施方案中,该薄膜可由聚合材料与电解质之复合物来制造。该聚合材料的分子结构可支撑该电解质。提供交联和/或聚合索(polymericstrands)以维持该电解质。
在导电分离器的一个实例中,聚合材料(诸如聚氯乙烯(PVC)或聚(环氧乙烷)(PEO))可以氢氧化物来源(作为厚的薄膜)完整地形成。在第一配方中,将1摩尔的KOH及0.1摩尔的氯化钙溶解在60毫升之水与40毫升之四氢呋喃(THF)的混合溶液中。氯化钙作为吸湿剂。之后,将1摩尔的PEO加入至该混合物。在第二配方中,使用与第一配方相同的材料,但以PVC取代PEO。将该溶液铸塑(或涂布)到基板上作为厚的薄膜,例如聚乙烯醇(PVA)型式的塑料材料。可使用其它优选地具有表面张力高于该薄膜材料的基板材料。当该混合溶剂从该涂布涂层蒸发时,会在PVA基板上形成离子导电的固态薄膜(即厚的薄膜)。将该固态薄膜从PVA基板上剥除,可形成一种固体状态的离子导电膜或薄膜。使用上述的配方,可形成厚度范围约0.2至约0.5毫米的离子导电薄膜。
其它合适作为分离器的导电薄膜之实施方案更详细描述在1999年2月26日由Muguo Chen,Tsepin Tsai,Wayne Yao,Yuen-MingChang,Lin-Feng Li及Tom Karen所提出的美国专利申请第09/259,068号,名称为“Solid Gel Membrane Separator in RechargeableElectrochemical Cells”;2000年1月11日由Tsepin Tsai,Muguo Chen和Lin-Feng Li所提出的美国专利申请第09/482,126号,名称为“Solid GelMembrane Separator in Rechargeable Electrochemical Cells”;2001年8月30日由Robert Callahan,Mark Stevens及Muguo Chen提出的美国序号09/943,053,发表名称为“Polymer Matrix Material”;及2001年8月30日由Robert Callahan,Mark Stevens及Muguo Chen提出的美国第09/942,887号,名称为“Electrochemical Cell Incorporating PolymerMatrix Material”,其全文整体以参考方式并入本文。这些薄膜通常由包含一种或多种选自以下组中的单体之聚合产物的聚合材料形成可溶于水的乙烯化不饱和酰胺及酸、及任选一种可溶于水或水可溶胀的聚合物、或一种补强剂(诸如PVA)。此薄膜不仅因为其高离子导电度(由于液体电解质完整地在其中)而成为想要的,而且它们也提供结构支撑并可抵挡树枝晶生长,因此提供合适于金属空气电化学电池之再充电用的分离器。
在某些实施方案中,该使用作为分离器的聚合材料包含一种或多种选自于以下组中的单体之聚合反应产物可溶于水的乙烯化不饱和酰胺及酸及任选地一种可溶于水或水可溶胀的聚合物。该聚合产物可在支持材料或基板上形成。该支持材料或基板可为(但是非为限制)编织物或无纺布,诸如聚烯烃、聚乙烯醇、纤维素或聚酰胺(诸如尼龙)。再者,该聚合产物可直接在电池的阳极或阴极上形成。
该电解质可在上述单体聚合之前或在聚合之后加入。例如,在一个实施方案中,可在聚合之前将该电解质加入至包含该单体、任选的聚合反应引发剂及任选的补强成分之溶液中,且其在聚合反应后仍然埋在该聚合材料中。再者,该聚合反应可没有该电解质而完成,其中该电解质随后包含在其中。
该可溶于水的乙烯化不饱和酰胺及酸单体可包括亚甲基双丙烯酰胺、丙烯酰胺、甲基丙烯酸、丙烯酸、1-乙烯基-2-吡咯烷酮、N-异丙基丙烯酰胺、反丁烯二酰胺、反丁烯二酸、N,N-二甲基丙烯酰胺、3,3-二甲基丙烯酸及乙烯基磺酸的钠盐、其它可溶于水的乙烯化不饱和酰胺及酸单体或包含至少一种前述单体的组合。
该可溶于水或水可溶胀的聚合物(其作为补强成分)可包括聚(阴离子)、聚(4-苯乙烯磺酸钠)、羧甲基纤维素、聚(苯乙烯磺酸-共-顺丁烯二酸)的钠盐、玉米淀粉、任何其它可溶于水或水可溶胀的聚合物、或包含至少一种前述的可溶于水或水可溶胀的聚合物之组合。加入该补强成分可提高该聚合物结构的机械强度。
任选地,一种交联剂,诸如亚甲基双丙烯酰胺、亚乙基双丙烯酰胺、任何可溶于水的N,N’-亚烷基-双(乙烯化不饱和酰胺)、其它交联剂或包含至少一种前述交联剂的组合。
聚合反应引发剂也可包括诸如过硫酸铵、碱金属过硫酸盐及过氧化物、其它引发剂或包含至少一种前述引发剂的组合。再者,引发剂可与自由基产生方法(诸如辐射,包括例如紫外光、X-射线、γ-射线及其类似物)组合着使用。但是,若辐射单独足够强大以起始聚合反应时,则不需加入化学引发剂。
在形成该聚合材料的一种方法中,可将所选择的织物浸泡在单体溶液(含或不含离子物种)中,冷却该经溶液涂布的织物及任选地加入聚合反应引发剂。该单体溶液可经由加热、以紫外光、γ-射线、x-射线、电子束或其组合照射而聚合而产生该聚合材料。当离子物种包含在该聚合溶液中时,该氢氧化物离子(或其它离子)会在聚合反应后余留在该溶液中。再者,当该聚合材料不包含离子物种时,其可例如经由将聚合材料浸泡在离子溶液中而加入。
聚合反应通常在室温至约130℃的温度范围内进行,但是优选地在从约75℃至约100℃的高温范围。该聚合反应可任选地使用与加热有关的辐射来进行。再者,该聚合反应可依辐射强度而单独地使用辐射来进行而没有提高原料的温度。在聚合反应中有用的辐射型式之实例包括(但是非为限制)紫外光、γ-射线、x-射线、电子束或其组合。
为了控制薄膜的厚度,经涂布的织物可在聚合反应前放置在合适的铸模中。再者,以单体溶液涂布的织物可放置在合适的薄膜之间,诸如玻璃及聚对苯二甲酸乙酯(PET)薄膜。本领域技术人员应明了,该薄膜的厚度可根据其在特别应用中的效用而改变。在某些例如从空气中分离氧的实施方案中,薄膜或分离器之厚度可为约0.1毫米至约0.6毫米。因为该实际的传导介质会余留在水溶液中而在该聚合物骨架中,薄膜的导电度可与液体电解质的(其在室温下明显地高)比较。在该分离器的另一实施方案中,使用阴离子交换薄膜。某些典型的阴离子交换薄膜是基于包含四级铵盐结构的官能基之有机聚合物;强碱聚苯乙烯二乙烯基苯交联的I型阴离子交换器;弱碱聚苯乙烯二乙烯基苯交联的阴离子交换器;强碱/弱碱聚苯乙烯二乙烯苯交联的II型阴离子交换器;强碱/弱碱丙烯酸阴离子交换器;强碱全氟胺化的阴离子交换器;天然存在的阴离子交换器,诸如某些粘土;及包含至少一种前述材料的组合及混合物。
如上文中的一般讨论,该分离器可粘附至或配置成与阳极和/或阴极的一个或多个表面有离子接触。例如,该分离器可强加在阳极或阴极上。
合适的阴离子交换薄膜之另一个实例则更详细地描述在美国专利案第6,183,914号中(其于此以参考方式并入本文)。该薄膜包括以铵为基础的聚合物,其包含(a)具有烷基季铵盐结构的有机聚合物;(b)含氮的杂环铵盐;及(c)氢氧化物阴离子来源。
在另一个实施方案中,所产生薄膜的机械强度可经由将组成物铸塑在支持材料或基板上而增加,其优选为编织物或无纺布,诸如聚烯烃、聚酯、聚乙烯醇、纤维素或聚酰胺(诸如尼龙)。
充电电极206可包含导电结构,例如筛网、多孔板、泡沫状金属、长条、线、板或其它合适的结构。在某些实施方案中,充电电极206为允许离子传递的多孔物。该充电电极206可由不同的导电材料形成,包括(但是非为限制)铜、铁类金属(诸如不锈钢)、镍、铬、钛及其类似物,及包含至少一种前述材料的组合及合金。合适的充电电极包括多孔金属,诸如泡沫状镍金属。
虽然已显示并说明了优选的实施方案,但在不背离本发明之精神及范围可进行各种改变及替代。因此,需了解的是,本发明是通过举例来说明,而不是对其加以限制。
权利要求
1.一种可再充电型金属空气电化学电池,其包括一对与可折叠式机械装置彼此依附的阴极部分;阳极部分,其配置成与每个阴极部分呈离子传递且电隔离;离子介质,其可在阳极部分与阴极部分间提供离子传递;一对第三充电电极,其与阳极部分呈离子传递。
2.如权利要求1的可再充电型金属空气电池,其中所述可折叠式机械装置允许阴极部分收缩以打开在阴极部分与阳极部分之间的空间,以便在充电期间容易放出氧气。
3.如权利要求1的可再充电型金属空气电池,其中所述可折叠式机械装置允许阴极部分收缩,以便切断在充电期间或在空载期间的空气供应。
4.如权利要求1的可再充电型金属空气电池,其中所述可折叠式机械装置允许阴极部分膨胀以打开更大空气通道用的空间,以便在放电期间提供空气或氧。
5.如权利要求1的可再充电型金属空气电池,其中所述阴极部分是可移除且可替换的和/或可恢复的。
6.如权利要求1的可再充电型金属空气电池,其中所述阳极部分是可移除且可替换的。
7.如权利要求1的可再充电型金属空气电池,其中所述可折叠式机械装置允许阴极部分收缩,以便允许该阴极部分在空载期间或在充电过程期间与阳极部分断路。
8.如权利要求1的可再充电型金属空气电池,其中所述可折叠式机械装置包含机械组件。
9.如权利要求1的可再充电型金属空气电池,其中所述可折叠式机械装置包含机电组件。
10.如权利要求1的可再充电型金属空气电池,其中所述可折叠式机械装置包含形状记忆合金系统。
全文摘要
可再充电型金属空气电化学电池,其通常包含一对配置在中心且与可折叠式机械装置彼此依附的空气阴极部分。阳极则配置成可经由合适的电解质与每个空气阴极部分以离子传递。对再充电来说,提供一对与阳极部分呈离子传递的第三充电电极。
文档编号H01M4/86GK1689188SQ02828424
公开日2005年10月26日 申请日期2002年12月31日 优先权日2001年12月31日
发明者蔡则彬, 阿底提·瓦尔泰克 申请人:异能公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1