螺旋天线和通信设备的制作方法

文档序号:7157462阅读:233来源:国知局
专利名称:螺旋天线和通信设备的制作方法
技术领域
本发明涉及用在移动通信终端、局域网或类似设施中的紧凑型螺旋天线,也涉及合并有螺旋天线的通信设备。
背景技术
图18是应用在常规移动通信终端中的天线及其安装方法的一个示例的透视图。如从图中所见,一般是鞭状天线12安装在移动通信终端的外壳22中。
近年来,随着移动通信技术的进展和用户服务的多样化,便携式终端已进入广泛的应用领域。为便于携带,通信终端的外壳变得越来越小。适应这种趋势,并入或装入通信终端元件已经在缩小和减轻。与这种流行态势相反,传统的鞭状天线21的构形是从外壳22向外伸出的。为了使终端进一步小型化,要求有一种尺寸小、重量轻的天线,把它设计得不从外壳伸出来。
为满足这种要求,作为紧凑型天线,已开始发展螺旋天线,它有一个由螺旋结构形成的辐射电极。
图19是日本未审定专利公告JP-A9-121113(1997)中披露的螺旋天线的透视图。这种螺旋天线是将螺旋形导体15装在基体11中而构成的。导体15,在馈送端17连接至设置在基体11一个端面的终端电极12的连接部,并在基体11的长度方向缠绕成螺旋形状。这样,把导体15形成螺旋形状,作为辐射电极,就能达到天线小型化的目的。
在这种螺旋天线中,它的谐振频率按下列因素确定螺旋形导体的绕制匝数(=导体长度);导体宽度;基体的尺寸(厚度,长度,和宽度);和相对介电常数。
然而,出现了下面的问题,通过把导体做成螺旋形而缩减的螺旋天线,对导体图案结构中的电容和电气连接的感应尤为敏感。结果,谐振频率受导体宽度的影响很大。
例如,按这种缩减的螺旋天线构成导体的方法,在导体宽度上可以有大约5%的尺寸偏差。这样,即使螺旋天线设计得能获得理想的谐振频率,也必然会由于在制造过程中导体宽度的偏差,而使谐振频率产生大约5%的偏差。

发明内容
针对上述传统技术的问题,已设计出本发明,本发明的一个目的是提供一种紧凑型螺旋天线,其中,即使在导体宽度上有例如5%的偏差,谐振频率的偏差也能减小至1%或以下。
本发明的另一目的是,提供一种通信设备,它在天线特性稳定性方面是突出的,其中并入紧凑型螺旋天线,即使在导体宽度上有例如5%的偏差,谐振频率的偏差也能减小至1%或以下。
注意,如果频率的偏差减小至1%或以下,螺旋天线,当它用在PDC(个人数字单元),PHS(便携式电话系统),“蓝牙”(短距离无线网络技术规范)或其他系统中时,就能满足它们的专用频率标准。
根据在螺旋天线上对导体图案结构—谐振频率关系,进行大量探索和研究的结果,本申请的发明者已发现,使用具有后面将要描述的结构的螺旋天线,能解决上述问题。从而实现本发明的目的。
本发明提供一种螺旋天线,它包括由绝缘材料或磁性材料制成的基体,和至少在基体上表面或其内部二者之一形成的螺旋形导体,其中,在基体中,厚度a(mm)保持在0.3≤a≤3(mm)的范围内;长度b(mm)保持在5≤b≤20(mm)的范围内;和相对介电常数εr保持在3≤εr≤30或相对导磁率μr保持在1≤μr≤8的范围内,还有,导体的绕制匝数X(匝)保持在3≤x≤16的范围内,和其中,谐振频率f(MHz)和导体宽度w(mm)分别满足下面的公式(1)和(2)f=Ax+By+C(MHz)…………(1)w=Dx+E(mm)…………(2)这里,
y表示基体宽度(mm);和A,B,C,D,和E各表示一个常数,它根据基体的厚度a,长度b,和相对介电常数εr或相对导磁率μr确定。
根据本发明,与处于预定条件下的基体的厚度、长度和相对介电常数,以及导体的绕制匝数一致,谐振频率和导体宽度都设置为满足预定公式。这样,就容易按照公式设计具有理想谐振频率的螺旋天线。此外,虽然螺旋形导体的宽度与谐振频率的关系还不能从理论上弄清楚,但如果辐射电极由螺旋形导体制成而后者的宽度设置满足公式,最终的关系可以说谐振频率几乎不受导体宽度偏差的什么影响。因此,即使导体宽度有大约5%的偏差,谐振频率相对于理想的谐振频率的偏差也能减小至1%或以下。
根据本发明,能实现一种具有理想天线特性的紧凑型螺旋天线,它的谐振频率、导体宽度和基体宽度很容易设计。也能提供一种螺旋天线,其中,即使在制造过程中导体宽度上出现偏差,所瞄准的谐振频率的偏差也能抑制到实用上没有问题的水平。
本发明也提供一种包括上述根据本发明的螺旋天线的通信设备。
具体地说,本发明提供一种包括螺旋天线的通信设备,其中的螺旋天线包括由绝缘材料或磁性材料制成的基准,和至少在基体上表面或其内部二者之一形成的螺旋形导体,其中,在螺旋天线的基体方面,厚度a(mm)保持在0.3≤a≤3(mm)的范围内;长度b(mm)保持在5≤b≤20(mm)的范围内;和相对介电常数εr保持在3≤εr≤30或相对导磁率μr保持在1≤μr≤8的范围内,还有,导体的绕制匝数X(匝)保持在3≤x≤16的范围内,和其中,谐振频率f(MHz)和导体宽度w(mm)分别满足下面的公式(1)和(2)f=Ax+By+C(MHz)…………(1)w=Dx+E(mm)…………(2)这里,y表示基体宽度(mm);和A,B,C,D,和E各表示一个常数,它根据基体的厚度a,长度b,和相对介电常数εr或相对导磁率μr确定。
根据本发明,即使螺旋天线的导体宽度上有例如5%的偏差,谐振频率相对于设计的谐振频率的偏差,也能减少至1%或以下。因此,能实现并入天线特性稳定性优良的紧凑型螺旋天线的通信设备。
在本发明中,优选基体由氧化铝陶瓷或镁橄榄石陶瓷制成。
在本发明中,优选基体由四氟乙烯或环氧玻璃钢制成。
在本发明中,优选基体由TIG(钇铁石榴石),Ni-Zr化合物或Ni-Co-Fe化合物制成。


本发明的其他和进一步的目的、特点和优点,从下面参考附图所作的描述中,将变得更为明显,附图中图1A至1C是根据本发明螺旋天线的一个实施例的透视图;图2是包括根据本发明实施例的螺旋天线的通信设备主要端口电路配置的简要方块图;图3A至3D各表示以基体宽度为基础,在螺旋天线中观测的导体宽度—谐振频率关系曲线图;图4A至4D各表示以基体宽度为基础,在螺旋天线中观测的导体绕制匝数—谐振频率关系曲线图;图5A至5D各表示以基体宽度为基础,在螺旋天线中观测的导体绕制匝数—导体宽度关系曲线图;图6A至6C各表示以基体宽度为基础,在螺旋天线中观测的导体宽度—谐振频率关系曲线图;图7A至7C各表示以基体宽度为基础,在螺旋天线中观测的导体绕制匝数—谐振频率关系曲线图;图8A至8C各表示以基体宽度为基础,在螺旋天线中观测的导体绕制匝数—导体宽度关系曲线图;图9A至9C各表示以基体宽度为基础,在螺旋天线中观测的导体宽度—谐振频率关系曲线图;图10A至10C各表示以基体宽度为基础,在螺旋天线中观测的导体绕制匝数—谐振频率关系曲线图;
图11A至11C各表示以基体宽度为基础,在螺旋天线中观测的导体绕制匝数—导体宽度关系曲线图;图12A至12C各表示以基体宽度为基础,在螺旋天线中观测的导体宽度—谐振频率关系曲线图;图13A至13C各表示以基体宽度为基础,在螺旋天线中观测的导体绕制匝数—谐振频率关系曲线图;图14A至14C各表示以基体宽度为基础,在螺旋天线中观测的导体绕制匝数—导体宽度关系曲线图;图15A至15C各表示以基体宽度为基础,在螺旋天线中观测的导体宽度—谐振频率关系曲线图;图16A至16C各表示以基体宽度为基础,在螺旋天线中观测的导体绕制匝数—谐振频率关系曲线图;图17A至17C各表示以基体宽度为基础,在螺旋天线中观测的导体绕制匝数—导体宽度关系曲线图;图18是传统设计的移动通信终端示例透视图;图19是传统设计的片状天线透视图。
具体实施例方式
下面,参考附图,描述本发明的优选实施例。
此后,将用实施例,参考附图描述本发明。
图1A至1C是根据本发明螺旋天线的一个实施例的透视图。在图1A中,实施本发明的螺旋天线1包括基体2;馈电端子3,其配置在基体2的端面上;和螺旋形导体4,其形成在基体2的上表面。
图中所示的螺旋天线1,被设计用于移动通信,LAN或诸如此类系统,其结构如下。在由例如陶瓷制成的基本上为平行管形状的基体2的上表面,安排有直线的导体4和馈电端子3。导体4螺旋地配置在基体2的长度方向。馈电端子3用来向导体4馈送高频信号功率。
注意,在本示例的结构中,导体4形成在基体2的上表面,这样,导体4的形成是容易的,螺旋天线1能被生产而不必使用分层方法,从而能减少制造成本。
另一种方式,导体4a可形成在基体2内部,如图1B中所示。这样,例如,处于导体4a的内部和外部的基体2的部分,绝缘材料的相对介电常数或磁性材料的相对导磁率可任意地设置。这可有助于简化天线特性的调整。此外,导体4a的形成,使其不暴露在基体2的上表面。所以,即使绝缘材料安排在天线周围,由绝缘材料产生的影响也可被充分抑制。
还有,如图1C所示,导体4b可同时形成在基体2的上表面和内部。这样导体4b(相对介电常数等)的环境偏差取决于它是定位在上表面还是内部。通过改变导体4b的形成位置的组合,导体4b的一部分形成在基体2的内部,这样由在天线周围的绝缘材料产生的影响被充分抑制,导体4b的一部分形成在基体2的上表面,这样,它的这个部分被微调,因而能容易地调节频率,获得具有基于单独的简单螺旋天线1的不同天线特性的多个天线。
基体2由绝缘材料或磁性材料制成,例如,制备主要由氧化铝(相对介电常数9.6)组成的绝缘材料。这样一种粉末形式的材料经受压力—模制,烧结,形成陶瓷。使用这种陶瓷,基体2通常以基本上为平行管的形状构成。另一种方法,基体2可以由陶瓷制成的合成材料组成,即绝缘材料和树脂,或者磁性材料例如铁氧体。
在基体2由绝缘材料组成的情况下,高频信号经过导体4以较低的速度传播,引起波长变短。当基体2的相对介电常数表示为εr时,导体4的结构有效长度给定为1/εr1/2,也就是说,有效长度被减小。因此,如果结构长度保持相同,当以这种方式调节频率,即结构宽度改变,而频率变成相同时,则电流分布区域在面积上增加。这就使得导体4发射更大量的无线电波,获得天线增益提高的优点。
对比起来,在得到与常规天线相同的天线特性情况下,导体4的模式长度可设置为1/εr1/2。因此,可达到螺旋天线1的小型化。
注意,用绝缘材料制造基体2产生如下趋势。如果εr值小于3,则其近似空气(εr=1)中所观测的相对介电常数。由于前述原因,这使满足天线小型化的市场要求变得困难。相反,如果εr值超过30,虽然可达到小型化,但由于天线的增益和宽带与天线的尺寸成正比,所以天线的增益和带宽急剧地减小。结果,天线不能提供满足的天线特性。所以在用绝缘材料制造基体2的情况下,最好使用相对介电常数εr保持在从3至30范围内的绝缘材料。这种绝缘材料的例子包括陶瓷材料例如氧化铝陶瓷,镁橄榄石陶瓷,氧化锆陶瓷或诸如此类,或树脂材料例如四氟乙烯,环氧玻璃钢或诸如此类。
另一方面,在用磁性材料制造基体2的情况下,导体4具有较高的阻抗。这引起天线的低Q值,带宽因此而增加。
用磁性材料制造基体2产生下面的倾向。如果相对导磁率μr超过8,虽然能得到较宽的天线频带,但由于天线的增益和带宽与天线的尺寸成正比,所以天线的增益和带宽急剧地减小。结果,天线不能提供满意的天线特性。所以,在用磁性材料制造基体2的情况下,最好使用相对导磁率μr保持在从1至8范围内的磁性材料。这种磁性材料的例子包括YIG(钇铁石榴石),Ni-Zr化合物,或Ni-Co-Fe化合物。
为了构成螺旋天线1的辐射电极图案,螺旋形导体4和馈电端子3它们各由例如金属材料制成,该金属材料主要由任何铝,铜,镍,银,钯,铂,和金组成。为了用上述金属材料形成各种图案,具有理想图案结构的导体采用通常所知道的印刷方法,基于汽相淀积方法、溅射方法等的薄膜形成技术,金属薄片焊接方法、镀敷方法或诸如此类方法。
只要基体2的尺寸(厚度a和长度b),如图1A所示,和相对介电常数εr(或相对导磁率μr)都设置在预定范围内,则螺旋天线1的谐振频率f就与导体4的绕制匝数x和基体2的宽度y相关。基于这个事实,曾对谐振频率f与导体4的绕制匝数x和基体2的宽度y之间的关系进行过考查和研究,观察当基体2的厚度a,长度b和相对介电常数εr以及螺旋形导体4的绕制匝数都设置在预定范围内时的情形。结果发现,通过根据下面的公式设置谐振频率f和导体4的宽度w,能够实现具有所要求的天线特性的螺旋天线。
具体地说,如果设定,在基体2中,厚度a(mm)保持在0.3≤a≤3(mm)的范围内;长度b(mm)保持在5≤b≤20(mm)的范围内;和相对介电常数εr保持在3≤εr≤30或相对导磁率μr保持在1≤μr≤8的范围内,以及螺旋形导体4的绕制匝数X(匝数)保持在3≤x≤16的范围内,则螺旋天线1的谐振频率f(MHz)满足下面公式(1)。
f=Ax+By+C(MHz)…………(1)这里y表示基体宽度(mm);和A,B,C各表示一个常数,它由基体2的厚度a,长度b和相对介电常数εr或相对导磁率μr确定。
上述公式(1)曾通过实行下面的过程确定。图3A至3D各表示螺旋形导体4的宽度w与谐振频率f之间的关系(导体宽度—谐振频率关系)偏差的曲线图,是当导体4的绕制匝数基于基体2的宽度y而偏差时观测到的。在图3A至3D的每个曲线图中,导体4的宽度w(单位mm)沿水平轴取值,谐振频率f(单位MHz)沿垂直轴取值。此外,特性曲线和图表各表示谐振频率f相对于导体4的宽度w的偏差,是当导体4的绕制匝数x(单位匝数)改变时观测到的。在这个示例中,基体2的宽度y取四个不同的值2.5mm,2.8mm,3mm,和3.2mm,导体4的绕制匝数x取四个不同的值9,10,11和12,或三个不同的值10,11和12。导体4的宽度w在从0.2至0.6mm范围内偏差。此外,基体2满足的条件是厚度a是0.5mm;长度b是10mm和相对介电常数εr是0.6。从这些曲线图将了解到,相对于每个导体4的绕制匝数x,有一个点,在这个点中与导体4的宽度w偏差相应的谐振频率f的偏差是特别小的(凸形特性曲线的极点)。
然后,将谐振频率f偏差小的一些点提取出来,并表示在图4A至4D中。在这些图中,导体4的绕制匝数x沿水平轴取值,谐振频率f沿垂直轴取值。于是,基于基体2的宽度,绘制绕制匝数与谐振频率之间的关系。如从这些图看到的,每条特性曲线由直线段确定,与各个直线段对应的近似等式在倾斜角上基本上互相等同的。所以,谐振频率f正比于导体4的绕制匝数x。此后,等式f=Ax+By+C,在基体2的宽度y(单位mm)与谐振频率f之间存在一个比值的假定条件下,被推导出来。将指示在图4A至4D的条件代入等式,得到联立等式的解,由此确定常数A,B和C。在关于基体的其他条件下,检查等式可利用性的结果证明,在任何条件下,等式是成立的。因此,得到公式(1)。
附带地,只要基体2的厚度a和长度b,各被设置在预定的范围,与理想的谐振频率f对应的导体4的宽度w,通过与导体4绕制匝数x相关,就能够得到。这是因为,当导体4的宽度w与导体4部件之间的距离(间隔)的比,达到一定程度时,导体4的宽度w对谐振频率f有最小的影响。
基于这个发现,曾对表示导体4的宽度w与导体4的绕制匝数x之间的关系进行考查。结果,如前所述,在基体2中给出厚度a(mm)保持在0.3≤a≤3(mm)的范围内,长度b(mm)保持在5≤b≤20(mm)的范围内,和相对介电常数εr保持在3≤εr≤30或相对导磁率μr保持在1≤μr≤8的范围内,以及给出螺旋形导体4的绕制匝数x(匝)保持在3≤x≤16的范围内,则下面的公式成立w=Dx+E(mm)…………(2)这里,D和E各表示一个常数,它是根据基体2的厚度a,长度b,和相对介电常数εr或相对导磁率μr确定的。
上述公式(2)曾通过实行下面的过程来确定。基于图5A至5D所示的导体宽度—谐振频率关系,导体4的宽度w,当谐振频率f的偏差保持最小时观察,可借助于近似等式得到。计算的结果表示在图5A至5D中。在这些图中,导体4的绕制匝数x沿水平轴取值,而导体4的宽度w沿垂直轴取值。接着,基于基体2的宽度,绘制绕制匝数—导体宽度的关系。如从图上看到的,每一特性曲线由直线段确定,与各个直线段对应的近似等式基本上是相互等同的。因此,发现了导体4的宽度w正比于导体4的绕制匝数x,但与基体2的宽度y有很小的相关。通过以这个方法给制导体4的绕制匝数与导体宽度之间的关系,常数D和E就能确定,所以公式(2)成立。
在实施本发明螺旋天线1中,应当实现满足公式(2)的条件如下基体2的厚度a保持在0.3≤a≤3(mm)的范围内;基体2的长度b保持在保持在5≤b≤20(mm)的范围内;基体2的相对介电常数εr保持在3≤εr≤30的范围内或基体2的相对导磁率μr保持在1≤μr≤8的范围内;和导体4的绕制匝数x保持在3≤x≤16(匝)。只要上述条件被满足,则基于基体2的厚度a、长度b和相对介电常数εr或相对导磁率μr,常数D和E就能获得。
注意,如果导体4的绕制匝数x小于3(匝),则天线就得寻找在高频领域内的应用。这要求导体4在长度上最初要做得较短,因此消除了由螺旋结构带来的小型化优点。相反,如果导体4的绕制匝数x超过17(匝),导体4各部分之间的距离(间隔)被减小,由于这个结果,相信导体4各部分相互影响。这使得导体不可能充分地缩短电长度,引起天线缩减体积的困难。
如果基体2的厚度a小于0.3mm,天线的强度就会低得以致天线在某种用于终端或其他设备的条件下不能操作。相反,如果基体2的厚度a超过3mm,就会丧失由螺旋结构带来的小型化优点。
而且,如果基体2的长度小于5mm,天线特性就会变坏,特别是频带变窄,增益下降,由于这个结果,天线不能满足必要的要求。相反,如果基体2的长度b超过20mm,就会丧失由螺旋结构带来的小型化优点。
还有,如果基体2的相对介电常数εr小于3,如前面已描述的,其就近似空气中观察到的相对介电常数(εr=1),这使得天线的小型化困难。相反,如果基体2的相对介电常数εr超过30,天线特性就会变坏,频带和增益减小,由于这个结果,天线不能满足必要的要求。
在实施本发明的螺旋天线中,从公式(1)得到的对谐振频率f的细调,可通过调节公式(1)中基体2的宽度y进行。从公式(1)将了解到,谐振频率f也可通过改变导体4的绕制匝数x调节。但是,在这种情况下,由于导体4的绕制匝数x基本上仅能按整数取值,所以谐振频率f只能以约100MHz为基础调节。同时,基体2宽度y的值可依据产品的性能,根据基体2的尺寸精度来调节(一般,调节在约10μm基础上进行)。因此,在调节基体2宽度y的情况下,谐振频率f可在大约2至3MHz基础上调节。除此以外,由于导体4的绕制匝数x这时保持不变,所以导体4的线宽w当然保持不变。也就是说,由于具体4的线宽w与导体4线到线的间隔之比保持不变,所以在螺旋天线1中,谐振频率f受导体4的宽度w的偏差影响很小。因此,通过调节基体2的宽度y,谐振频率f可得到高精度的细调。
注意,在实施本发明的螺旋天线1中,为了正确地设置上述方法中的谐振频率f的导体4的宽度w,也能不利用基体2的宽度y,而利用基体2的厚度a(单位mm)。在这种情况下,用公式(1)和(2)求得的常数A,B,C,D,和E必须用与根据本发明螺旋天线1实施例的示例基本上相同的方法重新确定。
还是在这种情况下,为了满足公式(1)和(2),下面的条件必须具备导体4的绕制匝数x保持在3≤x≤16(匝)的范围内;基体2的厚度a保持在0.3≤a≤3(mm)的范围内;基体2长度b保持在5≤b≤20(mm)的范围内;和基体2的相对介电常数εr保持在3≤εr≤30的范围内。只要这些尺寸固定,公式(1)和(2)中求得的常数A,B,C,D和E就能确定,正如在上述实施例示例的情况一样。因此,理想的谐振频率f和导体4的宽度w,可借助于等式进行设计。
下面,将描述根据本发明通信设备30实施例的一个示例。图2是包括本发明实施例螺旋天线的通信设备30主要端口电路配置的简要方块图。实施本发明的通信设备30构造为装备本发明上述螺旋天线的通信设备。这种设计用于以蜂窝式移动电话,无线LAN,或诸如此类系统为代表的移动通信终端的数据通信设备。
例如,蜂窝式移动电话在它们机壳中并入通信电路的电路板31。通常,在电路板31上形成发送电路32,接收电路33和发送/接收切换电路34。发送电路32电气上与发送/接收切换电路34相连。而且,安装在电路板31表面上的本发明螺旋天线1,通过发送/接收切换电路34电气上连接至发送电路32和接收电路33。根据这个蜂窝式移动电话,通过发送/接收切换电路34的切换操作,进行从接收电路33馈送发送信号至螺旋天线1的发送操作,以及从螺旋天线1馈送接收信号至接收电路33的接收操作,从而实现电话通信。
根据本发明,通信设备并入上述本发明的螺旋天线。因此,即使由于天线制造中产生尺寸偏差,螺旋形导体的宽度发生例如5%的偏差,但是谐振频率的结果偏差相对于天线谐振频率的设计值,可减小到1%或以下。因此,能够提供优异天线特性的通信设备,确保稳定的通信质量。
(实施例)
下面,将描述运用本发明的螺旋天线实际示例。
(实施例1)首先,作为螺旋天线的基体,制备有由氧化铝陶瓷制成的基本上为平行管形状的基体,它的厚度a为0.5mm和长度b为10mm,相对介电常数εr为0.6。就基体的表面而言,制造出基体宽度,导体宽度和导体的绕制匝数不同的螺旋天线试样。更具体地说,基体的宽度y在从2.5mm至3.2mm范围内变动;螺旋形导体的宽度w在从0.2mm至0.6mm范围内变动;和导体的绕制匝数x在从在9至12匝范围内变动。然后测量每个螺旋天线试样的谐振频率f。
注意,谐振频率f的测量进行如下。首先,制备一块环氧玻璃钢板材料,其尺寸是60mm×25mm×0.8mm。板材料具有形成在一侧的接地导体表面,和形成在另一侧的带状传输线。在这个基体中,每个螺旋天线试样的馈电端子,用焊管的方法被固定到配置在基体上的带状传输线,同轴线与带状传输线相对端连接,以获得馈电。往后,每个螺旋天线试样的谐振频率f,借助于由Agilent技术公司制造的网络分析仪进行测量。
根据获得的测量结果,导体宽度与谐振频率之间的关系(导体宽度—谐振频率关系),以基体宽度为基础,被绘制在图3A至3D中。根据曲线图中所示的近似等式,得到特性曲线的极点。用这个数据,导体的绕制匝数与谐振频率的关系(绕制匝数—谐振频率关系,以基体宽度为基础,被绘制在图4A至4D中,导体的绕制匝数与导体的宽度之间的关系(绕制匝数—谐振频率关系),以基体宽度为基础,被绘制在图5A至5D中。
下面,根据图4A至4D的结果,计算各近似等式倾斜角的平均值,以确定公式(1)中的常数(=-125.22)。然后,在图4A至4D所示的条件下,将谐振频率f的值,导体的绕制匝数x和导体宽度w各代入公式(1)f=-125.22x+By+C,以便得有关常数B和C的联立等式的解。在图5A至5D中,通过计算解的平均值,就可得到常数B(=-242.62)和C(=3679.72)。
此外,根据图5A至5D的结果,计算每个近似等式的倾斜角的平均值,以确定公式(2)的常数D(=-0.056)。然后,在图5A至5D所指示的条件下,将导体的绕制匝数x值代入公式(2)w=0.056x+E。在图5A至5D中,通过计算解的平均值,得到常数E(=1.015)。
在这个方法中,在由氧化铝陶瓷制成的,厚度为0.5mm和长度b为10mm,相对介电常数εr为9.6的基体中,谐振频率f和螺旋形导体的宽度w借助于公式(1)和(2)分别确定如下f=-125.22x-242.62y+3679.71(MHz)w=-0.056x+1.015(mm)下面所到的表1和2各表示从公式(1)和(2)得到的计算结果和对螺旋天线试样的实测数据。表1

表2

如从表1和2中所示的结果了解到,根据实施本发明的螺旋天线,谐振频率f的值和导体宽度w的值两者确定满足公式(1)和(2),大致地等于它们相应实际测量值。更具体地说,计算的谐振频率f和相应测量值之间的最大误差小于1.9%,计算的导体宽度w与相应测量之间的最大误差小于11%。也就是说,计算的与测量的值之间的误差认为是不重要的,因此对螺旋天线的实际应用没有影响。
此外,下面所列的表3,表示实施本发明螺旋天线每一试样的谐振频率f的偏差,是当借助公式(1)和(2)得到的导体宽度W出现5%的起伏时观察到的。
表3

从表3所示的结果将可以了解,根据实施本发明的螺旋天线,即使导体宽度w有5%的偏差,谐振频率f的最大偏差也被减至小于0.25%。这个数值远小于1%(即在实用中不会产生问题的水平。)(实施例2)基本上用与图1同样的方式,谐振频率f和导体宽度w,是如下所述按照下面关于基体的条件,按图3A至3D,4A至4D和5A至5D,并按照公式(1)和(2)而获得的。有如下一些步骤1)制造多个基体宽度y、导体宽度w和导体绕制匝数x不同的螺旋天线样品,然后测量每个螺旋天线的谐振频率f;2)基于由此得到的谐振频率f测量数据,绘制以基体宽度y为基础和/或以导体绕制匝数x为基础的导体宽度w与谐振频率f之间的关系,从而建立特性曲线,然后获得与其相应的近似等式;3)基于与特性曲线相应的近似等式,获得每一特性曲线的极点,并以此绘制以基体宽度y为基础的导体绕制匝数x与谐振频率f之间的关系,从而建立特性曲线,然后得到与其相应的近似等式,并通过计算各近似等式的倾斜角平均值,进一步确定常数A。
4)将常数A、导体绕制匝数x、基体宽度y和谐振频率f的测量值代入公式(1),并求解公式(1),从而确定常数B和C,获得平均值;5)同时,基于与特性曲线相应的近似等式,获得每一特性曲线的极点,并以此绘制以基体宽度y为基础的导体绕制匝数x与导体宽度w之间的关系,从而建立特性曲线,然后得到与其相应的近似等式,并通过计算各近似等式的倾斜角平均值,进一步确定常数D。
6)将常数D和导体绕制匝数x代入公式(2),并求解公式(2),从而确定常数E,获得平均值。
按上述方式,按照下面的条件,画出与3A至3D,4A至4D,和5A至5D类似的曲线图,此外,将所确定的常数A,B和C代入公式(1),而所确定的常数D和E代入公式(2),以便用等式表示谐振频率f与导体宽度w的关系。然后,制造能满足由等式所得计算结果的实施本发明的螺旋天线测试样品。对于每一螺旋天线样品,测量谐振频率f和导体宽度w的值。计算结果和实测根据表示在与表1至3类似的表中。
1)在基体方面,给出厚度a为0.5mm;长度b为10mm,相对介电常数εr为3,于是有下列等式f=-117.4x-284.3y+3782.9(MHz)w=-0.047x+0.967(mm)这种情况涉及图6A至6C(导体宽度—谐振频率关系);图7A至7C(导体绕制匝数—谐振频率关系);和图8A至8C(导体绕制匝数—导体宽度关系),还有表4(谐振频率的计算结果和实测数据);表5(导体宽度的计算结果和实测数据);和表6(由导体宽度的偏差引起的谐振频率偏差)。表4

表5

表6

2)在基体中,给定厚度a为0.5mm;长度b为10mm;和相对介电常数εr为30,那么,下列等式成立f=-116.17x-306.67y+3665.2(MHz)w=-0.055x+0.957(mm)这种情况涉及图9A至9C(导体宽度—谐振频率关系);图10A至10C(导体绕制匝数—谐振频率关系);和图11A至11C(导体绕制匝数—导体宽度关系),还有表7(谐振频率的计算结果和实测数据);表8(对导体宽度的计算结果和实测数据);和表9(由导体宽度的偏差引起的谐振频率偏差)。表7

表8

表9

3)在基体中,给定厚度a为0.2mm;长度b为20mm;和相对介电常数εr为30,那么,下列等式成立f=-51.83x-184y+3139.45(MHz)w=-0.102x+2.501(mm)这种情况涉及图12A至12C,13A至13C,和14A至14C,还有表10,11,和12。
更具体地说,涉及图12A至12C(导体宽度—谐振频率关系);图13A至13C(导体绕制匝数—谐振频率关系);和图14A至14C(导体绕制匝数—导体宽度关系),还有表10(对谐振频率的计算结果和实测数据);表11(对导体宽度的计算结果和实测数据);和表12(由导体宽度的偏差引起的谐振频率偏差)。表10

表11

表12

4)在基体中,给定厚度a为3mm;长度b为5mm;和相对介电常数εr为3,那么,下列等式成立f=-300.33x-232.33y+3107.38(MHz)w=-0.113x+0.681(mm)这种情况涉及图15A至15C(导体宽度—谐振频率关系);图16A至16C(导体绕制匝数—谐振频率关系);和图17A至17C(导体绕制匝数—导体宽度关系),还有表13(对谐振频率的计算结果和实测数据);表14(对导体宽度的计算结果和实测数据);和表15(由导体宽度的偏差引起的谐振频率偏差)。表13

表14

表15

从上述结果将会理解,在实施本发明的螺旋天线中,基体宽度a保持在0.3≤a≤3(mm)的范围内;基体长度b保持在5≤b≤20(mm)的范围内;和基体的相对介电常数εr保持在3≤εr≤30的范围,并分别以满足公式(1)和(2)确定谐振频率f(MHz)和导体宽度w(mm)。根据本发明,能容易地设计缩紧的螺旋天线,已经证实即使导体宽度有例如大约为5%的偏差,谐振频率的偏差也能减小至1%或以下。
(实施例3)首先,在螺旋天线中,关于基体,设置厚度a为0.5mm;长度b设置为10mm;和相对介电常数设置为9.6,并且,谐振频率设置为1575MHz(为GPS设计)。其次,螺旋天线的导体宽度w用示例1的公式作如下计算。注意,导体的绕制匝数x假定设置为11匝。
W=-0.056x+1.015=-0.056×11+1.015=0.399mm)通过这个计算结果,证明导体宽度w是不会有制造问题的数值。因此,导体的绕制匝数x设置为11匝,导体宽度w设置为0.399mm。
接下来,基体宽度y用示例1中的公式确定。
从等式f=-125.22x-242.62y+3679.71,导出下列数值y=(-1 25.22×11+3679.71-f)/242.623(mm)按照这个计算结果,基体宽度y给为3mm。
(实施例4)通过改变示例1的等式中表示的基体宽度y,调整谐振频率f。
根据在示例3中得出的条件x=11匝,y=3mm;和f=1575MHz,考察过谐振频率的偏差,基体宽度y设置为2.8mm和3.2mm。从示例1中的公式,导出下列数值f=-125.22x-242.62y+3679.71=-125.22×11-242.62y+3679.71=242.62y+2302.29,给出y=2.8mm时,f被确定为1623MHz,而给出y=3.2mm时,f被确定为1526MHz。
在所考虑的全部条件下,基体宽度y改变0.2mm,就能对谐振频率f调整约0.50MHz。换句话说,基体宽度y改变0.01mm(从生产能力的观点,这是基体宽度的正常调整值),就能对谐振频率f调整2.5MHz,即下列关系成立2.5MHz/0.01mm。因此,已经证实通过调整基体宽度y,谐振频率可在基础上调整2至3MHz。
(实施例5)在螺旋天线中,关于基体,厚度a设置为0.5mm;长度b设置为10mm;和相对介电常数εr设置为9.6,此外,导体宽度w设置为3mm;导体的绕制匝数x设置为11匝;并且,谐振频率f设置为1579MHz。然后,通过改变基体宽度y,调整谐振频率f。
基体在宽度y方向被研磨处理掉0.01mm,同时,已经研磨的导体结构被重构,从而形成基体宽度y为2.99mm的螺旋天线。结果,在螺旋天线中,谐振频率f能被调整到1581MHz。
从这些结果已经证实谐振频率f能通过调整基体宽度y而被精细调整。
应当了解,本发明的应用不局限于前面所描述的实施例,在本发明的精神和范围内,可以有许多修改和变形。例如,在基体被形成为圆柱体的情况下,通过以基体的半径r替代公式(1)中的宽度y,就能扩展本发明的应用范围。
本发明在不偏离其基本特征的情况下,可实施为其他具体形式。所以,现有的实施例被认为在所有方面都是例证性的而不是限制性的,本发明的范围不是由前面的描述,而是由后附的权利要求规定的,所有在权利要求的等效意义和范围的所有改变,都隐含权利要求中。
权利要求
1.一种螺旋天线,其特征在于包括由绝缘材料或磁性材料制成的基体;和至少在基体的上表面或其内部二者之一形成的螺旋形导体,其特征在于在基体中,厚度a(mm)保持在0.3≤a≤3(mm)的范围内;长度b(mm)保持在5≤b≤20(mm)的范围内;和相对介电常数εr保持在3≤εr≤30或相对导磁率μr保持在1≤μr≤8的范围内,还有,导体的绕制匝数X(匝)保持在3≤x≤16的范围内,其中谐振频率f(MHz)和导体宽度w(mm)分别满足下列的公式(1)和(2)f=Ax+By+C(MHz) …………(1)w=Dx+E(mm) …………(2)这里,y表示基体宽度(mm);和A、B、C、D和E各表示一个常数,它根据基体的厚度a、长度b和相对介电常数εr或相对导磁率μr确定。
2.根据权利要求1所述的螺旋天线,其特征在于基体由氧化铝陶瓷或镁橄榄石陶瓷制成。
3.根据权利要求1所述的螺旋天线,其特征在于基体由四氟乙烯或环氧玻璃钢制成。
4.根据权利要求1所述的螺旋天线,其特征在于基体由YIG(钇铁石榴石),Ni-Zr化合物或Ni-Co-Fe化合物制成。
5.一种包括螺旋天线的通信设备,螺旋天线包括由绝缘材料或磁性材料制成的基体;和至少在基体的上表面或其内部二者之一形成的螺旋形导体,其中在基体中,厚度a(mm)保持在0.3≤a≤3(mm)的范围内;长度b(mm)保持在5≤b≤20(mm)的范围内;和相对介电常数εr保持在3≤εr≤30或相对导磁率μr保持在1≤μr≤8的范围内,还有,导体的绕制匝数X(匝)保持在3≤x≤16(mm)的范围内,其中谐振频率f(MHz)和导体宽度w(mm)分别满足下列的公式(1)和(2)f=Ax+By+C(MHz)…………(1)w=Dx+E(mm)…………(2)这里,y表示基体宽度(mm);和A、B、C、D和E各表示一个常数,它根据基体的厚度a、长度b和相对介电常数εr或相对导磁率μr确定。
6.根据权利要求5所述的通信设备,其特征在于基体由氧化铝陶瓷或镁橄榄石陶瓷制成。
7.根据权利要求5所述的通信设备,其特征在于基体由四氟乙烯或环氧玻璃钢制成。
8.根据权利要求5所述的通信设备,其特征在于基体由YIG(钇铁石榴石),Ni-Zr化合物或Ni-Co-Fe化合物制成。
全文摘要
一种螺旋天线,包括基体和基体上表面的螺旋形导体,基体的厚度a给定为0.3≤a≤3(mm);长度b给定为5≤b≤20(mm);和相对介电常数εr给定为3≤εr≤30,和导体的绕制匝数x给定为3≤x≤16(匝),并且,它的谐振频率f和导体宽度w满足公式(1)f=Ax+By+C(MHz)和(2)w=Dx+E(mm),这里y表示基体宽度,A至E表示根据基体的厚度a,长度b和相对介电常数εr确定的常数。
文档编号H01Q1/36GK1445884SQ03120589
公开日2003年10月1日 申请日期2003年3月14日 优先权日2002年3月14日
发明者和多田一雄, 村川俊一, 吉崎广, 佐藤昭典 申请人:京瓷株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1