液晶显示器及用于其的薄膜晶体管阵列板的制作方法

文档序号:6835343阅读:113来源:国知局
专利名称:液晶显示器及用于其的薄膜晶体管阵列板的制作方法
技术领域
本发明涉及一种液晶显示器和一种薄膜晶体管阵列板。
背景技术
液晶显示器(LCD)是最广泛使用的平板显示器之一。LCD包括设置有场生电极的两个平板和夹在其间的液晶(LC)层。LCD通过向场生电极施加电压,在LC层中产生电场来显示图像,该电场确定LC层中LC分子的定向以调整入射光的偏振。
常规LCD具有较窄的视角。已经提出了用于扩大视角的多种技术,一种利用垂直取向的LC,并在如像素电极和共用电极的场生电极处设置切口或突出部的技术是很有前途的。
由于切口和突出部降低了孔径比,因此已经提出了要使像素电极的尺寸最大化。但是,像素电极的附近将引起它们之间强的横向电场,使LC分子定向混乱,产生纹理和漏光,由此降低显示特性。
此外,考虑到标准对比度为1∶10的对比度,并考虑到产生亮度反转的视角为标准角度的灰度反转,使用切口或突出部的LCD显示出在任意方向上的最佳视角超过80度。但是,这种LCD的可视性比扭曲向列型LCD差。可视性差是由于前视图与侧视图之间的伽玛曲线不协调造成的。
例如,在使用切口的垂直取向型LCD中,随着视角的增加,图片板变得越来越亮,彩色朝着白色变化。当这种现象过度时,由于灰度之间的亮度差消失,图像将会扭曲。
在多媒体显示器中LCD的广泛使用增加了可视性的重要性。

发明内容
本发明提供了一种具有宽视角和高图像质量的LCD。
本发明的附加特征将在下面的描述中进行阐述,并且部分特征将会从描述中明显看出,或者可通过本发明的实践获得。
本发明披露了一种用于LCD的薄膜晶体管阵列板,它包括一个形成在一个衬底上的信号线和形成在衬底上的第二信号线,该第二信号线具有至少一弯曲部分。由第一信号线和第二信号线限定出一个像素区,第一像素电极和第二像素电极设置在该像素区中。该像素区为弯曲形状,第一像素电极耦合到一个薄膜晶体管,第二像素电极耦合到第一像素电极。
本发明还披露了一种用于LCD的薄膜晶体管阵列板,它包括一个形成在一个衬底上的第一信号线和形成在衬底上的第二信号线,该第二信号线具有至少一弯曲部分。由第一信号线和第二信号线限定出一个像素区。将第一像素电极和第二像素电极设置在像素区中,并且从薄膜晶体管电浮置。将一个方向控制电极设置在像素区中,并耦合到薄膜晶体管。该像素区为弯曲形状,并且第一像素电极或第二像素电极中的至少一个的一部分与方向控制电极重叠。
本发明还披露了一种液晶显示器(LCD),它包括一个上衬底、一个下衬底和夹在这两个衬底之间的液晶层。下衬底进一步包括一个形成在该下衬底上的第一信号线和形成在该下衬底上的第二信号线,该第二信号线具有至少一弯曲部分。由第一信号线和第二信号线限定出一个像素区,将第一像素电极和第二像素电极设置在像素区中。像素区的至少一部分为弯曲形状。第一像素电极耦合到薄膜晶体管,第二像素电极耦合到第一像素电极。
本发明还披露了一种液晶显示器,它包括一个上衬底、一个下衬底和夹在这两个衬底之间的液晶层。下衬底进一步包括一个形成在该下衬底上的第一信号线和形成在该下衬底上的第二信号线,该第二信号线具有至少一弯曲部分。由第一信号线和第二信号线限定出一个像素区。将第一像素电极和第二像素电极设置在像素区中,并从薄膜晶体管电浮置。将一个方向控制电极设置在像素区中,并耦合到薄膜晶体管。像素区为弯曲形状,并且第一像素电极或第二像素电极中至少一个的一部分与方向控制电极重叠。
可以理解,上述总的说明和下面详细的说明两者都是示范性和说明性的,用于提供对本发明的进一步解释。


附图用来进一步理解本发明,并将附图结合到本说明书中,使其构成说明书的一部分,附示了本发明的实施例,与文字说明一起用于解释本发明的原理。
图1是根据本发明第一示范性实施例的用于LCD的薄膜晶体管阵列板平面图。
图2是根据本发明第一示范性实施例的用于LCD的共用电极板平面图。
图3是根据图1和图2中所示第一示范性实施例的LCD平面图。
图4是沿图3的IV-IV’线获得的LCD的截面图。
图5是图1、图2、图3和图4中所示LCD的电路图。
图6是根据本发明第二示范性实施例的LCD平面图。
图7是根据本发明第三示范性实施例的用于LCD的薄膜晶体管阵列板平面图。
图8是根据本发明第三示范性实施例的用于LCD的共用电极板平面图。
图9是根据图7和图8中所示第三示范性实施例的LCD平面图。
图10是根据本发明第四示范性实施例的LCD平面图。
图11是沿图10的XI-XI’线获得的LCD的截面图。
图12是根据本发明第五示范性实施例的LCD平面图。
图13是根据本发明第六示范性实施例的LCD平面图。
图14是根据本发明第七示范性实施例的用于LCD的薄膜晶体管阵列板平面图。
图15是根据本发明第七示范性实施例的用于LCD的共用电极板平面图。
图16是根据图14和图15中所示第七示范性实施例的LCD平面图。
图17是沿图16的XVII-XVII’线获得的LCD的截面图。
图18是根据本发明第八示范性实施例的LCD平面图。
图19是根据本发明第九示范性实施例的LCD平面图。
图20是沿图19的XX-XX’线获得的LCD的截面图。
图21是图19和图20中所示LCD的电路图。
图22是图19和图20中所示LCD的原理图。
图23是根据本发明第十示范性实施例的LCD平面图。
图24是根据本发明第十一示范性实施例的LCD平面图。
图25是图24中所示LCD的电路图。
图26是根据本发明第十二示范性实施例的LCD平面图。
图27是根据本发明第十三示范性实施例的LCD平面图。
图28是根据本发明第十四示范性实施例的LCD平面图。
具体实施例方式
以下将参考附图更详细地描述本发明,在这些附图中显示了本发明的优选实施例。但是,本发明可用多个不同的方式实现,本发明的结构不应当局限于在此所阐述的实施例。
在附图中,为了清楚起见,将层、薄膜和区域的厚度夸大了。相同的附图标记在全文中均表示相同的元件。当如层、薄膜、区域或衬底等元件称作在另一元件“上”时,它可直接在其它元件上,也可出现插入的元件。相反地,当元件称作“直接”在另一元件“上”时,没有插入的元件。
现在,将参考附图,描述根据本发明实施例的用于LCD的液晶显示器(LCD)和薄膜晶体管(TFT)阵列板。
图1是根据本发明第一示范性实施例的用于LCD的薄膜晶体管阵列板平面图,图2是根据本发明第一示范性实施例的用于LCD的共用电极板平面图,图3是根据图1和图2中所示实施例的LCD平面图,图4是沿图3的IV-IV’线获得的LCD截面图。
根据本发明第一示范性实施例的LCD包括一个TFT阵列板100、一个共用电极板200和夹在这两个板之间的LC层3。LC层3包含多个LC分子,LC分子垂直于板100和200的表面取向。
现在,将参考图1和4详细描述TFT阵列板100。
多个栅线121和多个存储电极线131形成在绝缘衬底110上。
传送栅信号的栅线121基本横向延伸,并彼此分开。栅线121具有多个栅电极124和用于连接到外部电路的栅垫129。
每根存储电极线131基本横向延伸,并包括形成存储电极133的多个分支。存储电极133包括一对倾斜部分,该倾斜部分与存储电极线131成约45度角,并彼此成约90度角。存储电极线131被提供有如共用电压的预定电压,该预定电压也施加到LCD共用电极板200上的共用电极270。
栅线121和存储电极线131可为多层结构,包括下层膜(未示出)和上层膜(未示出)。上层膜最好由低电阻材料制成,包括如Al和Al合金的含Al金属,用于减少栅线121和存储电极线131中的信号延迟或者电压下降。另一方面,下层膜最好由如Cr、Mo或Mo合金的材料制成,该材料具有与如铟锡氧化物(ITO)和铟锌氧化物(IZO)的其他材料良好的接触特性。下层膜材料和上层膜材料的优选示范性组合分别为Cr和Al-Nd合金。
此外,栅线121和存储电极线131的侧面为锥形,侧面相对于衬底110表面的倾角范围从约30度到约80度。
栅绝缘层140最好由氮化硅(SiNx)制成,形成在栅线121和存储电极线131上。
多个半导体条151最好由氢化非晶硅(缩写为“a-Si”)制成,形成在栅绝缘层140上。每根半导体条151基本纵向延伸,并具有朝栅电极124分支出的多个突起154。扩展部分156从突起154伸长。
每根半导体条151重复弯曲,并包括多个对倾斜部分和多个纵向部分。成对的两个倾斜部分彼此连接,形成V字形,将该对倾斜部分的相对端连接到各自的纵向部分。倾斜部分与栅线121成约45度角,纵向部分越过栅电极124。一对倾斜部分的长度约为纵向部分长度的一到九倍。换句话说,倾斜部分形成该对倾斜部分和纵向部分总长度的约百分之50-90。
扩展部分156包括一个从突起154斜向延伸的漏极部分、一对与栅线121成约45度角的倾斜部分、和一个连接漏极部分与该对倾斜部分末端的连接件。
多个欧姆接触条161和岛165最好由硅化物或者大量掺杂n-型杂质的n+氢化a-Si制成,它们形成在半导体条151和突起154上。每根欧姆接触条161具有多个突起163,突起163和欧姆接触岛165成对地位于半导体条151的突起154上。
半导体条151和欧姆接触部分161、165与166的边缘表面为锥形,半导体条151和欧姆接触部分161、165与166边缘表面的倾角最好在约30度至约80度的范围内。
多个数据线171、多个漏电极175和多个耦合电极176形成在欧姆接触部分161、165和166上。
传送数据电压的数据线171基本纵向延伸,并与栅线121和存储电极线131相交。每根数据线171重复弯曲,并包括多个对倾斜部分和多个纵向部分。成对的两个倾斜部分彼此连接,形成V字形,它们的相对端连接到各自的纵向部分。数据线171的倾斜部分与栅线121成约45度角,纵向部分越过栅电极124。一对倾斜部分的长度约为纵向部分长度的一至九倍。换句话说,倾斜部分形成该对倾斜部分和纵向部分总长度的约百分之50-90。
因此,通过栅线121和数据线171交叉限定出的像素区具有弯曲条的形状。
每根数据线171包括一个较宽的数据垫179,垫以便与另一层或外部设备接触。每根数据线171的多个分支朝着漏电极175突出,形成多个源电极173。每对源电极173和漏电极175彼此分开并彼此面对,其间带有栅电极124。一个栅电极124、一个源电极173和一个漏电极175沿着一个突起154形成具有一个沟道的TFT,该沟道形成在设置于源电极173和漏电极175之间的突起154中。
耦合电极176从漏电极175延伸,在第一部分处沿水平方向伸长,然后弯曲,平行于数据线171的该对倾斜部分。耦合电极176的第二部分与栅线121成约135度角,耦合电极176的第三部分与栅线121成约45度角。
数据线171、漏电极175和耦合电极176可为包括一个下层膜(未示出)和一个上层膜(未示出)的多层结构。上层膜最好由低电阻材料制成,包括如Al或Al合金的含铝金属,用于减少数据线中的信号延迟或电压下降。另一方面,下层膜最好由如Cr、Mo或Mo合金的材料制成,该材料具有与如ITO和IZO的其它材料良好的接触特性。下层膜材料和上层膜材料的优选示范性组合分别是Cr和Al-Nd合金。
此外,数据线171、漏电极175和耦合电极176的侧面为锥形,该侧面相对于衬底110表面的倾角范围从约30度到约80度。
钝化层180形成在数据线171、漏电极175和耦合电极176上。钝化层180最好由平的光敏有机材料和低电介质绝缘材料制成,该低电介质绝缘材料具有低于4.0的介电常数,如通过等离子增强的化学气相沉积法(PECVD)形成的a-Si:C:O和a-Si:O:F,或者由如氮化硅和氧化硅的无机材料制成。
钝化层180具有多个接触孔181和182,分别露出漏电极175和数据线171的数据垫179。钝化层180和栅绝缘层140具有多个接触孔183,露出栅线121的栅垫129。
接触孔181、182和183的侧壁相对于衬底110表面成约30至约85度角,并为台阶式。
接触孔181、182和183可具有多种平面形状,如矩形形状或圆形形状。每个接触孔181、182和183的面积最好大于或等于0.5mm×15μm,并且不大于2mm×60μm。
多个对像素电极190a和190b、以及多个接触辅助部分81和82最好由ITO、IZO或Cr制成,形成在钝化层180上。
每个像素具有一个第一像素电极190a和一个第二像素电极190b。每根像素电极190a和190b具有象像素区一样的弯曲带形状。每根像素电极190a和190b具有一个切口191和一个切口192。第一像素电极190a和第二像素电极190b基本具有相同形状,将像素区分割成右区和左区,并分别占居右区和左区。因此,第一像素电极190a可通过沿着数据线121的平移与第二像素电极190b相对应。
第一像素电极190a通过接触孔181与漏电极175物理电连接。第二像素电极190b进行物理电浮置,但它与耦合电极176重叠,从而与第一像素电极190a一起形成耦合电容。因此,第二像素电极190b的电压依赖于第一像素电极190a的电压,第二像素电极190b相对于共用电压的电压总是小于第一像素电极190a的。
当一个像素区包括带有稍微不同电场的两个子区时,通过两个子区中的相互补偿可提高侧向可视性。
下面将参考附图5,详细描述第一像素电极190a与第二像素电极190b之间的耦合关系。
根据图2、图3和图4描述共有电极板200。
用于防止漏光的黑矩阵220形成在如透明玻璃的绝缘衬底210上。
多个红色、绿色和蓝色的彩色滤色片230形成在黑矩阵和衬底210上,基本沿着像素区的列延伸。
覆盖涂层250形成在彩色滤色片230和黑矩阵220上。共用电极270最好由如ITO或IZO的透明导电材料制成,形成在带有多个切口271和272的覆盖涂层250上。
切口271和271控制多个域,最好为约9μm至约12μm宽。当有机突出部代替切口271时,有机突出部最好为约5μm至约10μm宽。
彩色滤色片230基本沿着由黑矩阵220限定出的像素列纵向延伸,它们沿着像素区的形状重复弯曲。
共用电极270的一对切口271和272设置在像素区中,并沿着像素区的形状弯曲。设置切口271和272是用来分别将第一像素电极190a和第二像素电极190b分割成右半部分和左半部分的。切口271和272的两端都弯曲,并在平行于栅线121的方向上延伸预定长度。切口271和272的中心也延伸到预定长度,并且平行于栅线121。切口271和272的中心在与切口271和272末端相反的方向上延伸。
LCD包括一个TFT阵列板100、一个彩色滤色片阵列板200和一个液晶层3,该彩色滤色片阵列板面对TFT阵列板100并与之分开预定间隙,该液晶层填充在预定间隙中。
LC层3中的LC分子这样取向,使得当没有电场时,它们的长轴垂直于板100和200的表面。液晶层3具有负介电各向异性。
装配薄膜晶体管阵列板100和彩色滤色片阵列板200,使得第一和第二像素电极190a和190b准确地对应于彩色滤色片230。当装配两个板100和200时,第一和第二像素电极190a和190b的边缘以及切口271和272,将像素区分割成多个子区。如果每个子区上的液晶区域称为一个域,则通过切口271和272就将一个像素区域分割成了4个域。
域具有两条平行的最长边缘,并且域最好为约10μm至约30μm宽。
一对偏振板12和22这样设置在板100和200的外表面上,使得它们的透射轴交叉,并且其中一个透射轴平行于栅线121。
LCD可进一步包括至少一个延迟膜(如,产生例如偏振光全、半或四分之一波相变化的光学元件),用于补偿LC层3的延迟。
通过将共用电压施加到共用电极270并将数据电压施加到像素电极190a和190b来产生基本垂直于板100和200的表面的主电场。LC分子会根据电场改变它们的定向,使得它们的长轴垂直于场方向。
切口271和272以及像素电极190a和190b的边缘扭曲主电场,使其具有水平分量,该水平分量确定LC分子的倾斜方向。主电场的水平分量采用了四个不同的定向,因此在LC层3中形成了四个域,在其中LC分子在不同方向上倾斜。水平分量垂直于切口271和272的边缘以及像素电极190a和190b的边缘。因此,在LC层3中形成了具有不同倾斜方向的四个域。可替换地,由于突出部也可控制LC分子的倾斜方向,所以多个突出部(未示出)可用来代替切口271和272。
由于像素电极190a与190b之间的电压差而产生的次级电场方向垂直于切口271和272的每条边缘。因此,次级电场的方向与主电场水平分量的方向一致。所以,像素电极190a与190b之间的次级电场增强了LC分子的倾斜方向。
由于LCD要进行反转(即,反转所施加电压的极性),如点反转、列反转等等,因此通过将具有相对于共用电压相反极性的数据电压提供给相邻像素电极,来获得增强LC分子倾斜方向的次级电场。结果,在相邻像素电极之间产生的次级电场方向和共用电极与像素电极之间产生的主电场的水平分量相同。由此,次级电场可增强域的稳定性。
所有域的倾斜方向与栅线121形成约45度角,栅线121平行或垂直于板100和200的边缘。由于倾斜方向和偏振板透射轴交叉45度会产生最大透光度,所以偏振板可这样贴附,使得偏振板的透射轴平行或垂直于板100和200的边缘,由此降低生产成本。
应当注意,由于数据线171的弯曲结构使它们增加的电阻可通过加宽它们来补偿。此外,电场扭曲和由于加宽数据线171所增加的寄生电容可依次通过增加像素电极尺寸和通过增厚有机钝化层来补偿。
在本发明的这个示范性实施例中,第一像素电极190a通过TFT被提供有图像数据电压。但是,第二像素电极190b的电压依赖于第一像素电极190a的电压而变化,因此第二像素电极190b与它电容耦合。所以,第二像素电极190b相对于共用电压的电压总是小于第一像素电极190a的。
如上所述,当具有不同电压的第一和第二像素电极190a和190b设置在一个像素区中时,伽玛曲线的扭曲通过两个像素电极190a和190b的补偿减少了。
参考图5,将描述第二像素电极190b相对于共用电压的电压总是小于第一像素电极190a相对于共用电压的电压的原因。
图5是图1、2、3和4中所示LCD的电路图。
在图5中,Clca表示第一像素电极190a与共用电极270之间形成的液晶(LC)电容,Cst表示第一像素电极190a与存储线131之间形成的存储电容。Clcb表示第二像素电极190b与共用电极270之间形成的液晶(LC)电容,Ccp表示第一像素电极190a与第二像素电极190b之间形成的耦合电容。
第二像素电极190b相对于共用电压的电压Vb和第一像素电极190a相对于共用电压的电压Va之间的关系有如下的电压分配定律Vb=Va×[Ccp/(Ccp+Clcb)]由于Ccp/(Ccp+Clcb)总是小于1,所以Vb总是小于Va。电容Ccp可通过第二像素电极190b与耦合电极176之间的重叠面积或距离来调整。第二像素电极190b与耦合电极176之间的重叠面积可通过改变耦合电极176的宽度容易地调整。第二像素电极190b与耦合电极176之间的距离可通过改变耦合电极176的位置容易地调整。那就是,在本示范性实施例中,耦合电极176形成在与数据线171相同的层上,但是耦合电极176可形成在与栅线121相同的层上,这将增加第二像素电极190b与耦合电极176之间的距离。
耦合电极的形状可通过各种方式变化。将通过下面的实施例描述这种变化的一个例子。
下面的描述重点在于第二示范性实施例与第一示范性实施例的区别特征,将省略其它的描述。
图6是根据本发明第二示范性实施例的LCD平面图。
与第一示范性实施例相比,图6的第二示范性实施例交换了第一像素电极190a和第二像素电极190b,还交换了耦合电极176和存储电极133的位置。换句话说,第一像素电极190a和存储电极133设置在像素区的左侧,第二像素电极190b和耦合电极176设置在像素区的右侧。
如在下一个示范性实施例中所示,改变数据线的倾斜和纵向部分将会改变像素区的形状。
图7是根据本发明第三示范性实施例的用于LCD的薄膜晶体管阵列板平面图。图8是根据本发明第三示范性实施例的用于LCD的共用电极板平面图。图9是根据图7和8中所示实施例的LCD平面图。
在图7、8和9的第三示范性实施例中,由于数据线171具有更长的纵向部分,所以一个像素区包括一个弯曲带部分和两个矩形部分,该矩形部分连接到弯曲带部分的两端。最好是矩形部分的总长度大于弯曲带部分。
像素电极190a和190b的形状相应于新的像素区重新形成。第一像素电极190a具有两条平行于数据线171的短边缘。第二像素电极190b具有平行于栅线121并与栅线121邻近的两条短边缘。第二像素电极190b具有两个扩大的端部,用来填充整个像素区。
设置存储电极133和耦合电极176,分别与第一和第二像素电极190a和190b的中心线相对应。共用电极270具有分别与耦合电极176和存储电极133对应的切口271和272。切口271的两端都弯曲,并在平行于栅线121的方向上延伸预定长度。切口272的两端都弯曲,并在平行于数据线171的方向上延伸预定长度。切口271和272的中心也延伸预定长度,并平行于栅线121。切口271和272的中心在与切口271末端延伸方向相反的方向上延伸。
图7至9的第三示范性实施例可减少由于像素区弯曲带形状而造成的字符断碎显示。
在所描述的实施例中,除了设置有TFT的突起154之外,半导体条151基本具有与数据线171、漏电极175、耦合电极176以及下层欧姆接触部分161、165和166相同的平面形状。突起154包括一些没有被数据线171和漏电极175盖住的露出部分,这些露出部分位于源电极173和漏电极175之间。
这种结构通过使用光刻胶的光刻过程来获得,该光刻胶具有可变厚度以形成本征半导体层151、155和156,欧姆接触部分161、165和165,以及数据线171层。
如美国专利Nos.6,335,276和6,531,392中所披露的,将这些专利全文引入这些专利以作参考,上述示范性实施例的薄膜晶体管阵列板通过使用四个光掩模来制造。第一光掩模形成栅线和存储电极线的图案。在沉积了栅绝缘层、本征半导体层、欧姆接触层和数据金属层之后,第二光掩模形成本征半导体层、欧姆接触层和数据线层的图案。第三光掩模形成钝化层中的接触孔。第四光掩模形成像素电极和接触辅助部分。第二光掩模包括光透射部分、光阻挡部分和半透射部分,曝光期间该半透射部分设置在TFT的沟道部分上。
图10是根据本发明第四示范性实施例的LCD平面图。图11是沿线XI-XI’获得图10中所示LCD截面图。
图10和11的第四示范性实施例通过半导体条151、欧姆接触部分161和165、数据线171、漏电极175以及耦合电极176的形状区别于第一示范性实施例。在图10和11的第四示范性实施例中,数据线171、漏电极175和耦合电极176的平面形状不同于半导体条151和欧姆接触部分161、165。
在图10和11的第四示范性实施例中,数据线171比半导体条151和欧姆接触条161宽。此外,耦合电极176下面没有半导体和欧姆接触部分,该耦合电极直接形成在栅绝缘层140上。漏电极175也具有直接形成在栅绝缘层140上的部分。
这种结构如下形成。半导体条151和欧姆接触部分161、165通过光刻过程形成。接着,数据线171、漏电极175和耦合电极176通过另一光刻过程形成。换句话说,第一示范性实施例与图10和11中第四示范性实施例之间结构上的不同在于形成半导体层、欧姆接触层和数据线层图案的光刻过程次数不同。总之,一个光刻过程用来形成第一示范性实施例的半导体层、欧姆接触层和数据线层,但是两个光刻过程用来形成制造第四示范性实施例中的这些层。
图12是根据本发明第五示范性实施例的LCD平面图。
图12中的第五示范性实施例通过半导体条151、欧姆接触部分161和165、数据线171、漏电极175以及耦合电极176的形状区别于图6中的第二示范性实施例。在图12中的第五示范性实施例中,数据线171、漏电极175和耦合电极176的平面图案不同于半导体条151和欧姆接触部分161、165的图案。
在图12的第五示范性实施例中,数据线171比半导体条151和欧姆接触条161宽。在耦合电极176下面没有半导体和欧姆接触部分。
图12中第五示范性实施例与图6中第二示范性实施例之间结构上的不同在于用来形成半导体层、欧姆接触层和数据线层的光刻过程次数不同。使用一次掩模光刻过程来形成图6中第二示范性实施例的半导体层、欧姆接触层和数据线层,但是使用两次掩模光刻过程来形成制造图12第五示范性实施例中的这些层。
图13是根据本发明第六示范性实施例的LCD平面图。
图13中的第六示范性实施例通过半导体条151、欧姆接触部分161和165、数据线171、漏电极175以及耦合电极176的形状区别于图7至9中第三示范性实施例。在图13的第六示范性实施例中,数据线171、漏电极175和耦合电极176的平面图案不同于半导体条151和欧姆接触部分161、165的图案。
在图13的第六示范性实施例中,数据线171比半导体条151和欧姆接触条161宽。耦合电极176下面没有半导体和欧姆接触部分。
也就是说,图13中第六示范性实施例与图7至9中第三示范性实施例之间结构上的差别在于用来形成半导体层、欧姆接触层和数据线层图案的光刻过程次数不同。使用一次掩模光刻过程形成图7中第三示范性实施例的半导体层、欧姆接触层和数据线层,但是使用两次掩模光刻过程形成制造图13第六示范性实施例中的这些层。
在本发明中,第一像素电极190a和第二像素电极190b可用多种方式排列。将描述这些方式中的两个例子。
图14是根据本发明第七示范性实施例的用于LCD的薄膜晶体管阵列板平面图。图15是根据本发明第七示范性实施例的用于LCD的共用电极板平面图。图16是根据图14和15中所示实施例的LCD平面图。图17是沿线XVII-XVII’获得的图16中所示LCD截面图。
根据图14至17中第七示范性实施例的LCD包括一个TFT阵列板100、一个共用电极板200和一个夹在其间的LC层3。LC层3包含多个LC分子,LC分子垂直于板100和200的表面取向。
现在参考图14、16和17,详细描述TFT阵列板100。
多个栅线121和多个存储电极线131形成在绝缘衬底110上。
栅传送栅信号的栅线121基本横向延伸并彼此分开。栅线121有多个栅电极124和用于连接外部电路的扩展部分129。
每根存储电极线131基本横向延伸,它包括形成存储电极133的多个平行四边形形状的扩展部分。
栅线121和存储电极线131可为包括一个下层膜(未示出)和一个上层膜(未示出)的多层结构。上层膜最好由低电阻材料制成,包括如Al或Al合金的含Al金属,用于减少栅线121和存储电极线131中的信号延迟或电压下降。下层膜最好由如Cr、Mo或Mo合金的材料制成,它们具有与如ITO和IZO的其它材料良好的接触特性。下层膜材料和上层膜材料优选例子的组合分别为Cr和Al-Nd合金。
此外,栅线121和存储电极线131的侧面为锥形,侧面相对于衬底110表面的倾角范围从约30至约80度。
栅绝缘层140最好由氮化硅(SiNx)制成,形成在栅线121和存储电极线131上。
多个半导体条151最好由氢化非晶硅(缩写为“a-Si”)制成,形成在栅绝缘层140上。每根半导体条151基本纵向延伸,并具有朝着栅电极124分.支出的多个突起154。扩展部分156从突起154伸长。
每根半导体条151重复弯曲,它包括多个对倾斜部分和多个纵向部分。成对的两个倾斜部分彼此连接,形成V字形,该对倾斜部分的相对端连接到各自的纵向部分。半导体条的倾斜部分与栅线121成约45度角,纵向部分越过栅电极124。该对倾斜部分比纵向部分长约一至九倍。换句话说,倾斜部分形成该对倾斜部分和纵向部分总长度的约百分之50至约百分之90。
扩展部分156包括一个从突起154斜向延伸的漏电极部分、与栅线121成约45度角的一对倾斜部分、和一个连接漏电极部分与该对倾斜部分末端的连接件。
多个欧姆接触条161和岛165最好由硅化物或大量掺杂n-型杂质的n+氢化a-Si制成,形成在半导体条151和突起154上。每根欧姆接触条161具有多个突起163,突起163和欧姆接触岛165成对地位于半导体条151的突起154上。
半导体条151和欧姆接触部分161、165和166的边缘表面为锥形并成角度,最好相对于衬底表面约30至约-80度的角度范围内。
多个数据线171、多个漏电极175和多个耦合电极176形成在欧姆接触部分161、165和166以及栅绝缘层140上。
传送数据电压的数据线171基本纵向延伸,并与栅线121和存储电极线131相交。每根数据线171重复弯曲,它包括多个对倾斜部分和多个纵向部分。成对的两个倾斜部分彼此连接,形成V字形,该对倾斜部分的相对末端连接到各自的纵向部分。数据线171的纵向部分与栅线121成约45度角,纵向部分越过栅电极124。该对倾斜部分比纵向部分长约一至九倍。换句话说,倾斜部分形成该对倾斜部分和纵向部分总长度的约百分之50至约百分之90。
因此,由栅线121和数据线171交叉限定出的像素区具有弯曲条的形状。
每根数据线171包括一个比数据线171宽的数据垫179,以便与另一层或外部设备接触。栅每根数据线171的多个分支朝着漏电极175突出,形成多个源电极173。每对源电极173和漏电极175彼此分开,并彼此面对其间的栅电极124。一个栅电极124、一个源电极173、一个漏电极175和一个突起154形成一个具有沟道的TFT,该沟道形成在设置于源电极173与漏电极175之间的突起154中。
多个耦合电极176形成在相同的层上,并由与漏电极175相同的材料制成,从漏电极175延伸。耦合电极176的第一部分与栅线121成135度角,耦合电极176的第二部分与栅线121成45度角。耦合电极176的第一和第二部分平行于数据线171的一对倾斜部分。
耦合电极176具有一个与存储电极133重叠的扩展部分。这一扩展部分增加了存储电容,并加宽了与第一像素电极190a的接触面积。
数据线171、漏电极175和耦合电极176可为包括一个下层膜(未示出)和一个上层膜(未示出)的多层结构。上层膜最好由低电阻材料制成,包括如Al或Al合金的含Al金属,用于减少数据线中的信号延迟或电压下降。下层膜最好由如Cr、Mo或Mo合金的材料制成,它们具有与如ITO和IZO的其它材料良好的接触特性。下层膜材料和上层膜材料的优选示范性组合分别为Cr和Al-Nd合金。
此外,数据线171、漏电极175和耦合电极176的侧面为锥形,侧面相对于衬底110表面的倾角范围从约30到约80度。
钝化层180形成在数据线171、漏电极175和耦合电极176上。钝化层180最好由平的光敏有机材料和低电介质绝缘材料制成,该低电介质绝缘材料具有低于4.0的介电常数,如通过等离子增强的化学气相沉积(PECVD)形成的a-Si:C:O和a-Si:O:F,或者由如氮化硅或氧化硅的无机材料制成。
钝化层180具有多个接触孔181和182,分别露出耦合电极176和数据线171的数据垫179。钝化层180和栅绝缘层140具有多个接触孔183,露出栅线121的栅垫129。
接触孔181、182和183的侧壁相对于衬底110的表面成约30至约85度角,并为锥形。
接触孔181、182和183可具有各种平面形状,如矩形形状或圆形形状。每个接触孔181、182和183的面积最好大于或等于0.5mm×15μm,并且不大于2mm×60μm。
多个对像素电极190a和190b以及多个接触辅助部分81和82形成在钝化层180上,它们最好由ITO、IZO或Cr制成。接触辅助部分81和82分别穿过接触孔182和183,与栅线121的栅垫129和数据线171的数据垫179耦合。
第一像素电极190a具有相应于像素区形状的弯曲带形状,它具有一个切口191。第二像素电极190b包括两个分开的平行四边形,第一像素电极190a设置在其间。第一像素电极190a和第二像素电极190b大约占据相同的面积。
第一像素电极190a通过接触孔181与耦合电极176进行物理电连接。第二像素电极190b进行物理电浮置,但是它与耦合电极176重叠,与第一像素电极190a形成耦合电容。因此,第二像素电极190b的电压依赖于第一像素电极190a的电压,第二像素电极190b相对于共用电压的电压总是小于第一像素电极190a的电压。因此,在像素区中心处所施加的电压大于两个像素区侧边的电压。
在本实施例中,耦合电极176从薄膜晶体管向第一像素电极190a传送图像信号,并耦合第一像素电极190a和第二像素电极190b。
当像素区包括带有稍微不同电场的两个子区时,侧向可视性可通过两个子区中的相互补偿来提高。
参考图15、16和17,将描述共用电极板200。
防止漏光的黑矩阵220形成在如透明玻璃的绝缘衬底210上。
形成在黑矩阵和衬底210上的多个红色、绿色和蓝色的彩色滤色片230基本沿着像素区的列延伸。
覆盖涂层250形成在彩色滤色片230和黑矩阵220上,共用电极270最好由如ITO或IZO的透明导电材料制成,形成在彩色滤色片230上。共用电极270具有多个切口271。
用作域控制装置的切口271最好为约9μm至约12μm宽。当有机突出部代替切口271时,有机突出部最好为约5μm至约10μm宽。
共用电极271的切口271相应于像素区的形状,设置它用来将第一像素电极190a和第二像素电极190b分割成右半部分和左半部分。切口271的两端弯曲,并在平行于栅线121的方向上延伸预定长度。切口271的中心也延伸预定长度,并平行于栅线121,但是它们在与切口271末端的方向相反的方向上延伸。切口271在距它一个末端的1/4点和3/4点处,还具有平行于栅线121的分支。
LCD包括一个TFT阵列板100、一个彩色滤色片阵列板200和一个液晶层3,该彩色滤色片阵列板面对TFT阵列板100并与其分开预定间隙,该液晶层填充在预定间隙中。
LC层3中的LC分子这样取向,使得当没有电场时,它们的长轴垂直于板100和200的表面。液晶层3具有负介电各向异性。
装配薄膜晶体管阵列板100和彩色滤色片阵列板200,使像素电极190a和190b准确地对应于彩色滤色片230。当装配两块板100和200时,通过第一和第二像素电极190a和190b的边缘以及切口271将像素区分割成多个子区。如果将每个子区上的液晶区域称为一个域,则切口271将像素区域分割成4个域。
域具有两条平行的最长边缘,并最好为约10μm至约30μm宽。
一对偏振板12和22这样形成在板100和200的外表面上,使得它们的透射轴交叉,其中一个透射轴平行于栅线121。
LCD可进一步包括至少一个延迟膜(如,产生例如偏振光全、半或四分之一波相变化的光学元件),用于补偿LC层3的延迟。
基本垂直于板100和200的表面的主电场通过将共用电压施加到共用电极270并将数据电压施加到像素电极190a和190b来产生。LC分子会根据电场来改变它们的定向,使得它们的长轴垂直于电场。
切口271和像素电极190a与190b的边缘扭曲了主电场,使其具有水平分量,该水平分量确定LC分子的倾斜方向。主电场的水平分量采用四个不同的定向,因此在LC层3中形成四个域,在其中LC分子在不同方向上倾斜。水平分量垂直于切口271的边缘和像素电极190a与190b的边缘。因此,在LC层3中形成四个域。可替换的是,由于突出部也可控制LC分子的倾斜方向,所以多个突出部(未示出)可用来代替切口271。
次级电场通过像素电极190a与190b之间的电压差形成,垂直于切口271的边缘。此外,次级电场的方向与主电场的水平分量一致,因此,次级电场增强了LC分子的倾斜方向。
由于LCD要进行反转(即,反转所施加电压的极性),如点反转、列反转等等,因此通过向相邻的像素电极提供具有与共用电极相反极性的数据电压来获得次级电场。结果,次级电场的方向可与主电场的水平分量方向相同。由此,可通过相邻像素电极之间的次级电场增强域的稳定性。
所有域的倾斜方向与栅线121形成约45度角,栅线121平行或垂直于板100和200的边缘。由于倾斜方向和偏振板透射轴相交45度会产生最大透光度,因此偏振板12和22可这样贴附,使得它们的透射轴平行或垂直于板100和200的边缘,由此降低生产成本。
如上所述,当具有不同电压的两根像素电极190a和190b设置在像素区中时,通过两根像素电极190a和190b的补偿,伽玛曲线的扭曲减少了。
图18是根据本发明第八示范性实施例的LCD平面图。
与图14至17的第七示范性实施例相比,图18的第八示范性实施例交换了第一像素电极190a和第二像素电极190b,并移动了存储电极线131和耦合电极176的扩展部分。也就是说,第一像素电极190a具有形状为平行四边形的两个分开部分;具有弯曲带形状的第二像素电极设置在它们之间。耦合电极176具有与第一像素电极190a的每个部分相耦合的扩展部分。
图14至17和图18的实施例显示了通过四次掩模光刻过程制造的TFT阵列板。但是,本领域的那些技术人员将会容易地理解,图14至17和图18中实施例的想法可用于通过五次掩模光刻过程制造的TFT阵列板。
在上述实施例中,切口形成在共用电极中,并可用作域控制装置。但是,有机突出部可代替切口,形成在共用电极上。当有机突出部用作域控制装置时,它们的平面图案可与切口的相同。
图19是根据本发明第九示范性实施例的LCD平面图;图20是沿图19的线XX-XX’获得的LCD的截面图;图21是图19和20中所示LCD的电路图;图22是图19和20中所示LCD的原理图。
根据本发明第九示范性实施例的LCD包括一个TFT阵列板100、一个共用电极板200和一个夹在其间的LC层3。LC层3包含多个LC分子,LC分子垂直于板100和200的表面取向。
现在,将参考图19和20,详细描述TFT阵列板100。
多个栅线121和多个存储电极线131形成在绝缘衬底110上。
栅传送栅信号的栅线121基本横向延伸并彼此分开。栅线121具有多个栅电极124和用于连接到外部电路的扩展部分129。
每根存储电极线131基本横向延伸,它包括多个存储电极133。存储电极133包括与存储线131成约45度角的一对倾斜部分。成对的两个倾斜部分彼此成约90度角。存储电极线131被提供有如共用电压的预定电压,该预定电压施加到LCD另一板200上的共用电极270。
栅线121和存储电极线131可为包括一个下层膜(未示出)和一个上层膜(未示出)的多层结构。上层膜最好由低电阻材料制成,包括如Al或Al合金的含Al金属,用于减少栅线121和存储电极线131中的信号延迟或电压下降。下层膜最好由如Cr、Mo或Mo合金的材料制成,它们具有与如ITO或IZO的其它材料良好的接触特性。下层膜材料和上层膜材料的优选示范性组合分别为Cr和Al-Nd合金。
此外,栅线121和存储电极线131的侧面为锥形,侧面相对于衬底110表面的倾角范围从约30至约80度。
栅绝缘层140最好由氮化硅(SiNx)制成,形成在栅线121和存储电极线131上。
多个半导体条151最好由氢化非晶硅(缩写为“a-Si”)制成,形成在栅绝缘层140上。每根半导体条151基本纵向延伸,并具有朝着栅电极124分支出的多个突起154。扩展部分158从突起154伸长。
每根半导体条151重复弯曲,它包括多个对倾斜部分和多个纵向部分。一对倾斜部分形成一个V字形,该对的相对端连接到纵向部分。倾斜部分与栅线121成约45度角,纵向部分越过栅电极124。该对倾斜部分比纵向部分长约一至九倍。换句话说,倾斜部分形成该对倾斜部分和纵向部分总长度的约百分之50至约百分之90。
扩展部分158包括一个V字形部分、一对弯曲末端和一个中心突起,该V字形部分从突起154延伸并平行于半导体条,该对弯曲末端连接到V字形部分的末端并平行于栅线,该中心突起从V字形部分的弯曲点延伸并平行于栅线,但是在它弯曲端的相反方向上。
多个欧姆接触条161和163、以及岛165和168最好由硅化物或大量掺杂n-型杂质的n+氢化a-Si制成,形成在半导体条151、扩展部分158和突起154上。每根欧姆接触条161具有多个突起163,突起163和欧姆接触岛165成对位于半导体条151的突起154上。
多个数据线171、多个漏电极175和多个方向控制电极178分别形成在欧姆接触部分161、165和168以及栅绝缘层140上。
传送数据信号的数据线171基本纵向延伸,并与栅线121和存储电极线131相交。每根数据线171重复弯曲,它包括多个对倾斜部分和多个纵向部分。一对倾斜部分形成一个V字形,该对倾斜部分的相对端连接到各自的纵向部分。数据线171的倾斜部分与栅线121成约30至60度(最好为45度)角,纵向部分越过栅电极124。一对倾斜部分的长度为纵向部分的约一至九倍。换句话说,倾斜部分形成该对倾斜部分和纵向部分总长度的约百分之50-90。
因此,栅线121和数据线171的交叉限定了弯曲条形状的像素区。
每根数据线171包括比数据线宽的数据垫179,以便连接到另一层或外部设备。每根数据线171的多个分支朝着漏电极175突出,形成多个源电极173。每对源电极173和漏电极175彼此分开,并彼此面对,其间带有栅电极124。一个栅电极124、一个源电极173、一个漏电极175和一个突起154形成一个具有沟道的TFT,该沟道形成在设置于源电极173和漏电极175之间的突起154中。
方向控制电极178从漏电极175延伸并弯曲,平行于数据线171的该对倾斜部分。方向控制电极178的第一部分与栅线121成120度至150度(最好为135度)的角度,第二部分与栅线121成30度至60度(最好为45度)的角度。
方向控制电极178与切口191重叠,它比切口191宽。
方向控制电极178与一个像素电极电容耦合。
数据线171、漏电极175和方向控制电极178可为包括一个下层膜(未示出)和一个上层膜(未示出)的多层结构。上层膜最好由低电阻金属制成,包括如A1或Al合金的含Al金属,用于减少数据线中的信号延迟或电压降低。下层膜最好由如Cr、Mo或Mo合金的材料制成,它们具有与如ITO和IZO等其它材料良好的接触特性。下层膜材料和上层膜材料的优选示范性组合分别为Cr和Al-Nd合金。
此外,数据线171、漏电极175和方向控制电极178的侧面为锥形,侧面相对于衬底110表面的倾角范围从约30至约80度。
钝化层180形成在数据线171、漏电极175和方向控制电极178上。钝化层180最好由平的光敏有机材料和低电介质绝缘材料制成,该低电介质材料具有低于4.0的介电常数,如通过等离子增强的化学气相沉积(PECVD)形成的a-Si:C:O和a-Si:O:F,或者由如氮化硅或氧化硅等无机材料制成。
钝化层180具有多个接触孔182,露出数据线171的扩展部分179。钝化层180和栅绝缘层140具有多个接触孔181,露出栅线121的扩展部分129。
接触孔181和182的侧壁相对于衬底110的表面成约30至约85度角,并为锥形。
接触孔181和182可具有多种平面形状,如矩形形状和圆形形状。每个接触孔181和182的面积最好大于或等于0.5mm×15μm,并且不大于2mm×60μm。
多个对像素电极190a和190b以及多个接触孔81和82形成在钝化层180上,最好由ITO、IZO或Cr制成。
切口191限定出第一像素电极190a和第二像素电极190b,它们具有与像素区相对应的弯曲条形状。此外,第一像素电极190a和第二像素电极190b基本具有相同的形状,它们将像素区分割成它们分别占据的左区和右区。因此,第一像素电极190a可通过沿着栅线121的平移与第二像素电极190b相对应。
连接件91和92连接第一像素电极190a和第二像素电极190b。第二像素电极190b具有一个切口192,该切口将它分割成下部和上部。
第一和第二像素电极190a和190b不物理连接到漏电极175,但是它们与方向控制电极178电容耦合,该方向控制电极连接到漏电极175。因此,第一和第二像素电极190a和190b的电压依赖于方向控制电极178的电压。在这种情况下,方向控制电极178的电压总是大于像素电极190a和190b的电压。下面,参考图21和22描述这种关系。
将参考图19至20,描述共用电极板200。
一个防止漏光的黑矩阵220形成在如透明玻璃的绝缘衬底210上。
多个形成在黑矩阵220和衬底210上的多个红色、绿色和蓝色的彩色滤色片230基本沿着像素区的列延伸。
覆盖涂层250形成在彩色滤色片230和黑矩阵220上,共用电极270最好由如ITO或IZO的透明导电材料制成,形成在覆盖涂层250上。
LCD包括一个TFT阵列板100、一个彩色滤色片阵列板200和一个液晶层3,该彩色滤色片阵列板面对TFT阵列板100并与其分开预定间隙,该液晶层填充在预定间隙中。
LC层3中的LC分子这样取向,使得当没有电场时,它们的长轴垂直于板100和200的表面。液晶层3具有负介电各向异性。
装配薄膜晶体管阵列板100和彩色滤色片阵列板200,使得像素电极190a和190b准确地与彩色滤色片230相对应。当装配两个板100和200时,通过第一和第二像素电极190a和190b的边缘以及切口191,将像素区分割成多个子区。如果将每个子区上的液晶区域称为一个域,那么切口191将像素区域分割成4个域。
域具有两条平行的最长边缘,并最好为约10至约30μm宽。
一对偏振板12和22这样形成在板100和200的外表面上,使得它们的透射轴交叉,并且它们的一个透射轴平行于栅线121。
LCD可进一步包括至少一个延迟膜(如,产生例如偏振光全、半或四分之一波相变化的光学元件),用于补偿LC层3的延迟。
施加到共用电极270和像素电极190a、190b的电压产生主电场,该主电场基本垂直于板100和200的表面。LC分子根据电场改变它们的定向,使得它们的长轴垂直于场方向。
切口191和像素电极190a、190b的边缘扭曲主电场,使其具有水平分量,该水平分量确定LC分子的倾斜方向。水平分量垂直于切口191、第一像素电极190a和第二像素电极190b的边缘。因此,主电场的水平分量采用了四个不同的定向,由此在具有不同LC分子倾斜方向的LC层3中形成四个域。
像素电极190a与190b之间的电压差产生次级电场,该次级电场垂直于切口191的每条边缘。因此,次级电场的方向与主电场水平分量的相一致。所以,像素电极190a与190b之间的次级电场增强了LC分子的倾斜方向。
由于LCD要进行反转(即,反转所施加电压的极性),如点反转、列反转等等,因此通过向相邻的像素电极提供具有与共用电极相反极性的数据电压来获得次级电场。结果,次级电场的方向与主电场的水平分量方向相同。由此,次级电场可增强域的稳定性。
所有域的倾斜方向与栅线121形成约45度角,栅线121平行或垂直于板100和200的边缘。由于倾斜方向和偏振板透射轴相交45度产生最大的透光度,因此偏振板12和22可这样帖附,使得它们的透射轴平行或垂直于板100和200的边缘,由此降低生产成本。
应当注意,由于数据线171的弯曲结构而使它们所增加的电阻,可通过加宽它们来补偿。此外,电场扭曲和由于数据线171宽度增加而增加的寄生电容,可依次通过增加像素电极的尺寸和通过增厚有机钝化层来补偿。
在本发明第九示范性实施例中,像素电极190a和190b的电压依赖于方向控制电极178的电压,因为像素电极190a和190b与方向控制电极178电容耦合。
像素电极190a和190b的电压总是小于方向控制电极178的电压。因此,方向控制电极178可增强LC阵列的稳定性。
参考图21和图22,将描述方向控制电极178的电压总是超过像素电极190a和190b的原因。
如图21和22中所示,方向控制电极178与像素电极190a和190b电容耦合。Cdce表示方向控制电极178与像素电极190a、190b之间的电容。Clc表示由像素电极190a、190b和共用电极270形成的电容。Cst表示由像素电极190a、190b和存储电极133形成的电容。
Clcd表示由方向控制电极178和共用电极270形成的电容。Cstd表示由方向控制电极178和存储电极133形成的电容。
如图22中所示,当数据电压Vdce施加到方向控制电极178上时,由于Cdce与Clc之间的电压分布,像素电极190a和190b具有小于Vdce的电压Vp。也就是说,Vp=Vdce*Cdce/(Cdce+Clc)。
(1)由于Cdce/(Cdce+Clc)总是小于1,所以Vp小于Vdce。
当Vdce表示方向控制电极178的电压时,Vp表示像素电极190a和190b的电压,ε表示LC层3的介电常数,d表示像素电极190a、190b与共用电极270之间的距离,ε’表示钝化层180的介电常数,d’表示像素电极190a、190b与方向控制电极178之间的距离,将这样满足下面的公式,使得方向控制电极178起到增强LC阵列稳定性的作用。
Vdce>Vp(1+εd’/ε’d) (2)根据公式(1),由于Cdce影响Vp,因此公式(2)可通过调整Cdce来满足。Cdce可通过改变重叠面积,或者改变方向控制电极178与像素电极190a、190b之间的距离来调整。重叠面积可通过调整方向控制电极178的宽度来容易地变化,它们之间的距离可通过改变方向控制电极178的位置变化。也就是说,在本示范性实施例中,方向控制电极178形成在与数据线171相同的层上,但是方向控制电极178可替换地形成在与栅线121相同的层上,这样将会增加方向控制电极178与像素电极190a、190b之间的距离。
方向控制电极178可用多种方式排列。将描述一种这样的例子。
图23是根据本发明第十示范性实施例的LCD平面图。
将图23的第十示范性实施例与图19和20的第九示范性实施例相比较,不同之处包括切口191完全分开第一像素电极190a和第二像素电极190b。第一像素电极190a通过预定距离与第二像素电极190b分开。方向控制电极178重叠第一像素电极190a和第二像素电极190b,并与它们电容耦合。
第一像素电极190a和第二像素电极190b具有基本相同的形状,它们将像素区分割成左区和右区,并分别占据它们所占据的那些面积。因此,第一像素电极190a可通过沿着栅线121平行移动,来对应于第二像素电极190b。
可调整方向控制电极178与第一和第二像素电极190a和190b之间的耦合电容,使得第一和第二像素电极190a和190b的电压比方向控制电极178的电压小至少Vp(εd’/ε’d)的值。
第一像素电极190a的电压最好与第二像素电极190b的相差预定值。这一电压差可通过在方向控制电极178与第一像素电极190a之间和在方向控制电极178与第二像素电极190b之间形成不等的重叠面积来获得。
当一个像素区包括具有稍微不同电场的两个子区时,可通过两个子区中的相互补偿来提高侧向可视性。
图24是根据本发明第十一示范性实施例的LCD平面图,图25是图24中所示LCD的电路图。
如图24中所示,第一像素电极190a和第二像素电极190b形成在像素区中,它们分开预定距离并电浮置。它们具有基本相同的形状,它们将像素区分割成左区和右区,并且它们分别占据那些面积。因此,第一像素电极190a可通过沿着栅线121平移对应于第二像素电极190b。
第一像素电极190a和第二像素电极190b具有V字形状的切口191a和191b,它们将像素电极分割成左部分和右部分。第一和第二像素电极190a和190b的切口192a和192b分别将像素电极分割成下部分和上部分。
第一方向控制电极178a和第二方向控制电极178b形成在像素区中。第一方向控制电极178a与切口191a重叠,第二方向控制电极178b与切口191b重叠。第一和第二方向控制电极178a和178b连接到漏电极175。
调整第一像素电极190a的电压,使其比第一方向控制电极178a的电压小至少Vpa(εd’/ε’d)的值。调整第二像素电极190b的电压,使其比第二方向控制电极178b的电压小至少Vpb(εd’/ε’d)的值。
Vpa表示第一像素电极190a的电压,Vpb表示第二像素电极190b的电压。ε表示LC层3的介电常数,d表示像素电极190a和190b与共用电极270之间的距离,ε’表示钝化层180的介电常数,d’表示像素电极190a和190b与方向控制电极178a和178b之间的距离。
第一像素电极190a的电压最好与第二像素电极190b的相差预定值。这一电压差可通过使第一方向控制电极178a与第一像素电极190a之间和第二方向控制电极178b与第二像素电极190b之间具有不同的重叠面积来获得。
如上所述,当像素区包括带有稍微不同电场的两个子区时,可通过两个子区中的相互补偿来提高侧向可视性。
第一像素电极190a的电压Vpa和第二像素电极190b的电压Vpb通过电压分配定律被确定为Vpa=Vdcea*Cdcea/(Cdcea+Clca)(3)Vpb=Vdceb*Cdceb/(Cdceb+Clcb)(4)根据公式(3)和(4),第一和第二像素电极190a和190b的电压可通过调整Cdcea和Cdceb来控制。Cdcea表示在第一方向控制电极178a与第一像素电极190a之间形成的电容,Cdceb表示在第二方向控制电极178b与第二像素电极190b之间形成的电容。
可对表示在第一像素电极190a与共用电极270之间形成的电容Clca和表示在第二像素电极190b与共用电极270之间形成的电容Clcb进行调整,用来控制Vpa和Vpb。Clca和Clcb可通过变化第一和第二像素电极190a和190b与共用电极270之间的重叠面积来调整。
为了增强光透射度,最好使Vpa和Vpb接近Vdcea和Vdceb。
图26是根据本发明第十二示范性实施例的LCD平面图。
将图26的第十二示范性实施例与图24的第十一示范性实施例相比较,图26的第十二示范性实施例进一步包括多个形成在第一像素电极190a与第二像素电极190b之间的存储电极133。在第一像素电极190a与第二像素电极190b之间设置存储电极133,增强了第一和第二像素电极190a和190b边界周围的散射场,这可增强域的稳定性。
图27是根据本发明第十三示范性实施例的LCD平面图。图25可用作图27中所示LCD的电路图。
如图25和27中所示,多个像素电极190a和190b以及多个接触辅助部分81和82形成在钝化层180上。
第一像素电极190a具有跟随像素区形状的弯曲带形状,并且它具有弯曲倾斜线形状的第一切口191a。第二像素电极190b包括两个分开的平行四边形,每个平行四边形具有倾斜线形状的第二切口191b。第一像素电极190a设置在第二像素电极190b的两个平行四边形之间。第一像素电极190a和第二像素电极190b基本占据相同的面积。第一和第二切口191a和191b分别分割第一像素电极190a和第二像素电极190b分。方向控制电极178与第一和第二切口191a和191b重叠。
第一和第二像素电极190a和190b的电压可通过改变它们的位置来调整。
当像素区包括带有稍微不同电场的两个子区时,通过两个子区中的相互补偿来提高侧向可视性。
图28是根据本发明第十四示范性实施例的LCD平面图。图25用作图28中所示LCD的电路图。
如图28中所示,每根数据线171重复弯曲,并包括多个对倾斜部分51a、51b、52a和52b,以及多个纵向部分。
两对倾斜部分51a、51b和52a、52b连接,形成两个V字形51和52。
第一倾斜部分51a和52a与栅线成约30至60度(最好为45度)角,第二倾斜部分52a和52b成约120至150度(最好为135度)角。
两个V字形51和52包括第一V字形51和第二V字形52,它们彼此连接并具有基本相同的形状。
每根数据线171的多个分支朝着漏电极175突出,形成多个源电极173。数据线171的纵向部分交叉栅线121。
因此,栅线121和数据线171限定出具有三重弯曲带形状的像素区。
V字形形状的第一像素电极190a和第二像素电极190b形成在每个像素区中。第一像素电极190a对应于第一V字形51,它具有将其分割成右部分和左部分的第一V字形切口191a。第二像素电极190b对应于第二V字形52,它具有将其分割成右部分和左部分的第二V字形切口191b。第一像素电极190a和第二像素电极190b分别具有水平切口192a和192b,这些水平切口将它们的右部分分割成下右部分和上右部分。第一和第二V字形切口191a和191b包括分别将第一和第二像素电极190a和190b的左部分分割成下左部分和上左部分的水平分支。
方向控制电极178与第一和第二V字形切口191a和191b重叠。
第一像素电极190a的电压Vpa和第二像素电极190b的电压Vpb,可通过调整方向控制电极178与第一和第二像素电极190a和190b之间的重叠面积或距离,或者通过调整像素区中第一和第二像素电极190a和190b的占据面积而不同。
当像素区包括带有稍微不同电场的两个子区时,通过两个子区中的相互补偿来提高侧向可视性。
如果像素区包括三根或更多的像素电极,那么像素区可包括带有稍微不同电场的三个或更多子区,以便提高侧向可视性。
图28的第十四示范性实施例显示了三开口带形状的像素,这有助于减少像素区的宽度。像素区水平宽度的减少有助于防止看到断碎的字符。
图19至28的第九至第十四示范性实施例显示了不带有共用电极中形成的域控制元件的LCD。因此,TFT板与共用电极之间的准确取向对于域的分割不是决定性的,这允许了LCD的加宽。
在上述示范性实施例中,彩色滤色片形成在共用电极上。但是,彩色滤色片可替换地形成在钝化层与TFT阵列板上的像素之间。
对本领域的技术人员来讲,显而易见的是能够在本发明中进行各种修改和变化,而不脱离本发明的实质或范围。因此,本发明旨在覆盖了所附权利要求及它们的等价物范围内所提供的该发明的修改和变化。
权利要求
1.一种用于LCD的薄膜晶体管阵列板,包括第一信号线,形成在衬底上;第二信号线,具有至少一弯曲部分,形成在衬底上;像素区,由第一信号线和第二信号线所限定;和第一像素电极和第二像素电极,设置在像素区中;其中像素区具有弯曲形状;其中第一像素电极连接到薄膜晶体管,第二像素电极连接到第一像素电极。
2.根据权利要求1的薄膜晶体管阵列板,进一步包括耦合电极,从薄膜晶体管的漏电极延伸,并与第二像素电极重叠。
3.根据权利要求1的薄膜晶体管阵列板,其中第二信号线具有纵向部分,该纵向部分与第一信号线和形成V字形形状部分的倾斜部分相交。
4.根据权利要求3的薄膜晶体管阵列板,其中形成V字形形状部分的倾斜部分比与第一信号线相交的纵向部分长约一至九倍。
5.根据权利要求2的薄膜晶体管阵列板,其中第一像素电极通过通孔连接到薄膜晶体管的漏电极。
6.根据权利要求5的薄膜晶体管阵列板,其中第一像素电极通过通孔连接到薄膜晶体管的漏电极,该通孔露出从薄膜晶体管漏电极延伸的耦合电极。
7.根据权利要求6薄膜晶体管阵列板,其中第二像素电极由两个分开的平行四边形组成。
8.根据权利要求6薄膜晶体管阵列板,其中第一像素电极由两个分开的平行四边形组成,每个分开的平行四边形通过通孔连接到薄膜晶体管的漏电极,该通孔露出从薄膜晶体管漏电极延伸的耦合电极。
9.根据权利要求1的薄膜晶体管阵列板,其中第二像素电极相对于共用电压的电压小于第一像素电极的电压。
10.根据权利要求2的薄膜晶体管阵列板,其中第二信号线、漏电极和耦合电极直接形成在欧姆接触层上。
11.根据权利要求2的薄膜晶体管阵列板,其中第二信号线形成在欧姆接触层上和栅绝缘层的一部分上,漏电极具有直接形成在栅绝缘层上的部分,耦合电极直接形成在栅绝缘层上。
12.一种用于LCD的薄膜晶体管阵列板,包括第一信号线,形成在衬底上;第二信号线,具有至少一弯曲部分,形成在衬底上;像素区,由第一信号线和第二信号线所限定;和第一像素电极和第二像素电极,两者都设置在像素区中,并从薄膜晶体管电浮置;方向控制电极,设置在像素区中,并连接到薄膜晶体管;其中像素区具有弯曲形状;其中第一像素电极或第二像素电极中的至少一个的一部分与方向控制电极重叠。
13.根据权利要求12的薄膜晶体管阵列板,其中第一像素电极和第二像素电极在它们的末端彼此物理连接,方向控制电极与第一像素电极和第二像素电极的一部分相重叠。
14.根据权利要求12的薄膜晶体管阵列板,其中第一像素电极和第二像素电极分开预定距离,方向控制电极与第一像素电极和第二像素电极的一部分重叠。
15.根据权利要求12的薄膜晶体管阵列板,进一步包括一个第二方向控制电极,其中第二方向控制电极与第二像素电极的一部分重叠,第一方向控制电极与第一像素电极的一部分重叠。
16.根据权利要求15的薄膜晶体管阵列板,其中第二方向控制电极的电压大于第二像素电极的电压,第一方向控制电极的电压大于第一像素电极的电压。
17.根据权利要求16的薄膜晶体管阵列板,其中第二像素电极的电压与第一像素电极的电压相差预定值。
18.根据权利要求12的薄膜晶体管阵列板,其中方向控制电极的电压大于第二像素电极的电压和第一像素电极的电压。
19.根据权利要求15的薄膜晶体管阵列板,进一步包括形成在第二像素电极与第一像素电极之间的电极,该电极与第一像素电极和第二像素电极的部分重叠。
20.根据权利要求12的薄膜晶体管阵列板,其中第一像素电极形成V字形形状,第二像素电极由两个分开的平行四边形组成。
21.根据权利要求12的薄膜晶体管阵列板,其中像素区具有第一V字形形状部分和第二V字形形状部分,第一像素电极设置在第一V字形形状部分中,第二像素电极设置在第二V字形形状部分中。
22.一种液晶显示器(LCD),包括上衬底;下衬底;和液晶层,夹在其间;其中,下衬底进一步包括第一信号线,形成在下衬底上;第二信号线,具有至少一弯曲部分,形成在下衬底上;像素区,由第一信号线和第二信号线所限定;和第一像素电极和第二像素电极,设置在像素区中;其中像素区的至少一部分具有弯曲形状;其中第一像素电极连接到薄膜晶体管,第二像素电极连接到第一像素电极。
23.根据权利要求22的LCD,其中上衬底具有带有域控制装置的共用电极。
24.根据权利要求23的LCD,其中域控制装置是切口,该切口为约9μm至约12μm宽。
25.根据权利要求23的LCD,其中域控制装置是有机突起部,该有机突起部具有5μm至10μm范围内的宽度。
26.根据权利要求23的LCD,其中第一像素电极的边缘、第二像素电极的边缘和切口的边缘形成像素区中的液晶域,该域为约10μm至约30μm宽。
27.一种液晶显示器,包括上衬底;下衬底;和液晶层,夹在其间;其中下衬底进一步包括第一信号线,形成在下衬底上;第二信号线,具有至少一弯曲部分,形成在下衬底上;像素区,由第一信号线和第二信号线所限定;和第一像素电极和第二像素电极,两者都设置在像素区中,并从薄膜晶体管电浮置;方向控制电极,设置在像素区中,并连接到薄膜晶体管;其中像素区具有弯曲形状;其中第一像素电极和第二像素电极中的至少一个的一部分与方向控制电极重叠。
28.根据权利要求27的LCD,其中第一像素电极或第二像素电极中的至少一个具有切口。
29.根据权利要求28的LCD,其中第一像素电极的边缘、第二像素电极的边缘和切口的边缘形成像素区中液晶的域,该域为约10μm至约30μm宽。
全文摘要
本发明披露了一种用于LCD的薄膜晶体管阵列板和带有该阵列板的LCD。薄膜晶体管阵列板包括信号线,形成在衬底上;和第二信号线,具有至少一弯曲部分,形成在衬底上。像素区由第一信号线和第二信号线限定出,第一像素电极和第二像素电极设置在像素区中。像素区具有弯曲形状,第一像素电极耦合到薄膜晶体管,第二像素电极耦合到第一像素电极。
文档编号H01L29/786GK1603929SQ20041009514
公开日2005年4月6日 申请日期2004年8月4日 优先权日2003年8月4日
发明者金熙燮, 柳斗桓, 柳在镇 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1