新型金属带产品的制作方法

文档序号:6844979阅读:463来源:国知局
专利名称:新型金属带产品的制作方法
技术领域
本发明通常涉及适用于制备柔性太阳能电池的涂覆金属基材材料,以及在卷带式工艺下涂覆有金属氧化物的金属带产品的制备方法。这可以通过对金属带涂覆如权利要求1所述的电绝缘内层,也可任选地涂覆导电表层而实现。
背景技术
目前制造商最普遍使用的薄膜Cu(In,Ga)Se2(简写为CIGS)太阳能电池的基材材料为钠钙玻璃。带有玻璃基材的太阳能电池的2个例子是DE-A-100 24 882和US-A-5 994 163。由于来自玻璃的碱金属(主要为钠)扩散到CIGS层中,采用钠钙玻璃的积极效果是可以提高太阳能电池的效率。这一事实可由,例如Karin Granath(1999)论文The Influenceof Na on the Growth of Cu(In,Ga)Se2Layers for Thin Film Solar Cells,Acta Universitatis Upsaliensis,Comprehensive Summaries of UppsalaDissertations from The Faculty of Science and Technology 491,UppsalaISBN91-554-4591-8”知晓,并在此将其引入本发明作为参考。然而,玻璃基材上的CIGS的分批式生产成本很高,因此采用卷带式生产太阳能电池有其优点,其可以降低成本。此外,由卷带式工艺生产的柔性太阳能电池还具有几个技术优势,例如,该柔性太阳能电池可以折叠或卷成压缩包装并且其可用于制成轻质太阳能电池,这些性能是便携式、空间和军事应用所需要的。
对几种材料作为柔性CIGS太阳能电池的基材材料进行了测试,包括聚合物如聚酰亚胺以及金属如钼、铝和钛箔,应该记住的是这些材料必须满足一定的标准。由此,该基材材料应能够耐热以承受住在薄膜柔性CIGS太阳能电池生产中的其他工艺步骤,这可能包括在腐蚀性环境中温度高达600℃的热处理。如果要制造具有集成串联的CIGS模块,则应该将柔性金属基材与带电的背接触层绝缘开。因此,基材材料的热膨胀系数(TEC)应该与电绝缘金属氧化层的热膨胀系数尽可能的接近,这对于避免绝缘金属层的热裂或剥裂是很必要的。
用于制造CIGS太阳能电池的通用常规基材材料为-在分批式工艺中采用钠钙玻璃基材;-将钼背接触材料直接沉积在构成基材的金属带上;-在分批式沉积工艺中将绝缘的硅氧化物(SiOX或SiO2)层沉积在金属带上。
在Thin Solid Films 403-404(2002)384-389中,由K.Herz等人所著的“Dielectric barriers for flexible CIGS solar modules”中公开了一个已知的太阳能电池的例子,在此引入本发明作为参考。根据这篇文献,通过采用SiOX或和/或Al2O3阻挡层可以在金属基材上获得用于制备CIGS太阳能模块的出色电绝缘层。然而,由于缺少钠,太阳能电池产生的电压较低。
在Solar Energy Materials & Solar Cells 75(2003)65-71中,由Takuya.Satoh等人所著的“Cu(In,Ga)Se2solar cells on stainless steelsubstrates covered with insulating layers”公开了采用不锈钢基材的已知太阳能电池的另一个例子,在此引入本发明作为参考。然而,根据这篇文献,在不锈钢上的CIGS太阳能电池与在钠钙玻璃基材上的相比开路电压降低了。
此外,在WO 03/007386(在此引入本发明作为参考)中描述了薄膜太阳能电池。它包含带有第一表面和第二表面的柔性金属基材。金属背接触层沉积在柔性金属基材的第一表面上。半导体吸收剂层沉积在金属背接触层上。感光膜沉积在半导体吸收剂层上以形成异质结结构,并在该异质结结构上沉积栅格接触(grid contact)。该柔性金属基材可由铝或不锈钢制成。此外,还公开了构建太阳能电池的方法。该方法包括提供铝基材,在该铝基材上沉积半导体吸收剂层,并将铝基材与半导体吸收剂层绝缘开,以抑制铝基材与半导体吸收剂层之间的反应。
尽管这一已知的太阳能电池的运转令人满意,但是因为缺少钠的掺杂,它并不能获得具有钠钙玻璃基材的太阳能电池的开路电压水平。
因而,所有的这些常规方法都具有各自的缺点。基于分批式生产的所有工艺也总是会增加成本,因此卷带式的工艺生产对于降低成本而言是至关重要的。
因此,当采用钠钙玻璃时,是不可能制备柔性CIGS的,且分批式工艺成本很高。此外,钼背接触层在柔性金属带基材上的直接沉积将限制集成串联的CIGS模块的生产。此外,SiOX或SiO2绝缘层具有太低的热扩散系数,在后面的工艺步骤中可能导致形成裂纹和针孔。此外,在SiO2层中未添加碱金属,那么如果需要生产更高效率的CIGS,则必须在后面的生产步骤中添加它(主要为钠)。在生产线上增加一个或多个工序则总是会带来额外的成本。
因此本发明的主要目的是提供太阳能电池生产用的柔性、轻质金属基材,其热膨胀系数与绝缘的金属氧化层尽可能地相似。
本发明的另一目的是提供廉价的且可以在连续卷带式工艺中生产的太阳能电池用柔性基材。
本发明的另一目的是使具有提高效率的柔性太阳能电池的生产成为可能以获得所需的电压。
通过制造出具有如权利要求1所述特征的涂覆钢产品,可以令人惊讶的方式完成这些或其他目的。从属权利要求中限定了进一步优选的发明概述因此,在用作基材的金属带表面,通过施用薄而连续的、均匀的、电绝缘的金属氧化层,如氧化铝,可以达到上述目的及进一步的优点。为了提高太阳能电池的效率,在绝缘金属氧化物中添加了少量的碱金属。金属氧化物层应光滑且致密以避免任何针孔,否则当材料被进一步加工时所述针孔会成为导电通路。如果希望这样,且为了确保与金属带基材绝缘开,可沉积多层(ML)的金属氧化物。多层结构的优势在于其能够避免透过绝缘氧化物层的任何针孔或导电通路。另外,通过在金属基材表面沉积连续、均匀、致密的金属氧化物层,则与诸如金属带表面的阳极化氧化物层相比,可更容易地控制金属氧化物层的绝缘性能及厚度。此外,金属氧化物层与热生长氧化层相比对于基材具有更强的粘附性。添加的碱金属(主要是钠)在CIGS生产的进一步加工步骤中将扩散到CIGS层中。另外,如果要求的话,在所述金属氧化物层的表面接下来会沉积钼层,这样做是为了获得用于薄膜柔性太阳能电池生产的带电背接触。
当进行数层金属氧化物沉积时,这些层可以是相同的金属氧化物或不同的金属氧化物。
附图简介

图1所示为本发明第一实施方案的截面示意图。
图2所示为本发明第二实施方案的截面示意图。
图3所示为本发明另外两个实施方案的截面示意图。
图4所示为用于制造本发明的涂覆金属带材的生产线的示意图。
发明详述待涂覆的金属带下层金属带的一个关键问题是其应具有较低的热扩散系数(TEC)以避免沉积的金属氧化物层的剥落或开裂。因此,要求金属带的热扩散系数在0-600℃的温度范围内低于12×10-6K-1。这种材料包括诸如铁素体铬钢、钛和一些镍合金等金属。同样优选的是金属带中的材料应具有足够的耐腐蚀性能以经受住太阳能电池工作环境的考验。金属的物理形状是带状或箔片状,其厚度应处于5-200μm,优选10-100μm。另一个重要参数是金属带的表面粗糙度——应该越光滑越好;小于0.2μm的Ra值是比较合适的,优选小于0.1μm。
绝缘的氧化物层电绝缘的氧化物层应能够很好地与金属带粘附在一起,以保证太阳能电池尽可能高的柔韧性。这可通过在涂覆前对金属带进行仔细的预处理来获得,首先采用适当的方式对其进行清洗以去除残留油污等,这些残留物会影响涂覆过程的效率,以及涂层的粘附性和质量。其后,通过在线离子辅助蚀刻过程对金属带进行处理。另外,氧化物层也应该是良好的电绝缘体以避免金属带和钼背接触层之间的任何电连接。这可以通过沉积致密光滑的氧化物层以带来良好的绝缘性能来获得,需要重复的是也可以进行多层结构沉积。多层结构中的单个氧化物层的数量可以是10或更少。如上所述,多层氧化物结构可以阻断穿过整个金属氧化物层的针孔和电通路并确保金属带的良好电绝缘性。这种情况如图3所示,其中针孔被相邻的氧化物层阻断。当绝缘的金属氧化物层多于一层时,各单个氧化物层的厚度在10nm和最高为2μm的范围内,优选0.1-1.5μm。在单层和多层(2至10层)的情况下,整个金属氧化物层的总厚度均可最高为20μm,优选1-5μm。
氧化物层的化学组成可以是任意的介电氧化物,如Al2O3、TiO2、HfO2、Ta2O5和Nb2O5或这些氧化物的混合物,优选TiO2和/或Al2O3,最优选Al2O3,尽管其他氧化物层也是可行的,化学计量和非化学计量均可。
此外,当金属氧化物涂层由多个层(多层)组成时,那么各个单层可以是相同的金属氧化物或不同的金属氧化物。单层也可以由金属氧化物的混合物组成。
此外,根据本发明,该氧化物层掺有一定量的碱金属,合适地为锂、钠或钾,优选钠。在沉积的氧化物层中的碱金属浓度应该在0.01%-10%(以重量计)的范围内,优选0.1%-6%,最优选0.2%-4%,所述钠通过与所观测到的沉积在钠钙玻璃上的CIGS相同的方式扩散至背接触层,从而提高CIGS太阳能电池的效率。令本领域技术人员惊讶的是,在掺有碱金属的氧化物层中,碱金属穿透背接触层并以决定性的方式影响CIGS层的性能。
当采用钠时,Na源可以是任何含钠化合物,并优选在沉积之前在Na化合物中混合氧化物源材料,或可以在一个单独的工序中单独将钠添加至氧化物涂层。在氧化物源中的钠浓度可以是上面提及的浓度。下述钠化合物可用作氧化物层的钠源Na,Na2O,NaOH,NaF,NaCl,NaI,Na2S,Na2Se,NaNO3和Na2CO3,仅仅列出了一些。
根据本发明的一个实施方案,当将多个金属氧化物层沉积在基材上时,仅有最远离金属基材的层,或可能最远离金属基材的两层掺杂有碱金属。当然原因大体上是最远层或最远的两层有利于碱金属扩散入并穿过钼层并进入太阳能电池中的CIGS层。
背接触层的描述依赖进一步的工序,以及单个客户所规定的特定条件,将基本上由钼组成的表层涂覆于氧化物层的表面。这一表层应该是致密的,且能很好的粘附其下面的前述沉积氧化物层,同时使得碱金属能够穿透。钼表层的厚度应该为0.01-5.0μm,优选0.1-2.0μm,最优选约为0.5μm。
涂覆方法的描述涂覆方法可有利地集成于卷带式带材生产线中。在该卷带式生产线中,第一生产步骤是离子辅助蚀刻金属带表面,以获得相邻的绝缘氧化物层的良好粘附性。在卷带式工艺中通过电子束蒸发(EB)来沉积绝缘氧化物层。这一工艺对于本领域技术人员而言是公知的,例如在由Siegfried Schiller、Ullrich Heisig以及Siegfried Panzer所著的《Electron Beam Technology》,Verlag Technik GmbH Berlin 1995,ISBN3341-01153-6一书中有着广泛的描述,在此引入本发明作为参考。
该绝缘氧化层可以是单个层或多个层,即所谓的多层。尽管单层的工作状况通常令人满意,但多层实施方案可提供更高的对于裂纹和针孔的安全性。多层的形成可以通过在线集成数个电子束(EB)沉积室而获得(参见图4),或以同一个电子束(EB)沉积室对金属带进行数次处理而获得。如果需要化学计量的氧化物,那么应该在沉积室内具有氧分压作为反应性气体的减压气氛下来进行氧化物的沉积。在这种生产线中,最后一个室应该是用于沉积用作背接触层的钼的电子束(EB)室。钼沉积应该在最大压力为1×10-2mbar的减压气氛下进行。
本发明的优选实施方案首先,通过普通的冶金炼钢方法制备具有上述化学组成的基材材料。然后将该基材材料热轧至中间尺寸,其后在几个步骤中进行冷轧,在所述轧制步骤之间具有多个再结晶步骤,直到最终厚度约为0.042mm以及最大宽度为1000mm。然后以适当方法清洁基材材料表面以去除轧制中产生的全部油污。
在图1中描述了用于生产薄膜CIGS太阳能电池的典型柔性基材材料的横截面图。该基材材料是柔性金属带(1),其可由在0-600℃的温度范围内热膨胀系数低于12×10-6K-1的不锈钢或任何其他金属或合金组成。该金属带的表面粗糙度应该尽可能的低。金属带的厚度应该在5-200μm的范围内,优选10-100μm以确保良好的柔性。
在金属带基材(1)的上表面,可在连续卷带式电子束(EB)工艺中,将掺杂有碱金属(此时为钠)的氧化铝(4)单层直接沉积在柔性金属带的表层,如图2所示。在掺杂有碱金属的、电绝缘的氧化铝单层表面上,还可通过卷带式工艺中的电子束沉积法进行钼层的沉积。
作为如图2所示的单个或单一层(4)的替代方案,也可通过卷带式工艺中的电子束沉积法,进行电绝缘的氧化铝多层结构(2)的沉积。该氧化铝多层结构应该与金属带有着良好的粘附性且致密光滑。
沉积的氧化铝掺杂有少量的碱金属,优选为钠。为生成用于太阳能电池的背接触,可以将钼层(3)沉积在电绝缘金属带的表层上。该钼层应该致密且良好的粘附在金属氧化物涂层上以避免开裂或剥落。此外,钼层应该具有0.1-5μm的厚度,优选0.4-2μm。
上述两个实施例的另一种变更是,在由卷带式工艺中的电子束沉积方法沉积的电绝缘氧化铝多层结构(2)或电绝缘氧化铝单层(2)的上表面,没有进行钼背接触层的沉积。这如图3所示。在图中多层金属氧化物结构的优点可由阻断穿过多层金属氧化物层的任何针孔和/或电通路(5)显示。
卷带式电子束蒸发工艺如图4所示。这一生产线的第一部分是在真空室(7)中的开卷机(6),然后是在线离子辅助蚀刻室(8),其后是一系列的电子束(EB)蒸发室(9),所需电子束(EB)蒸发室的数量可在1-10个室内变化,从而获得所需的金属氧化物多层结构。所有的金属氧化物电子束(EB)蒸发室(9)都装配有电子束枪(10)以及用于蒸发的水冷却铜坩埚(11)。其后的室是用于钼表层的电子束蒸发的单独室(12),该室也装配有电子束枪(13)以及用于钼熔化的坩埚(14)。如果只需制备金属氧化物涂覆带,则可以不需要用于钼的单独电子束蒸发室。该室之后是出口真空室(15)和用于涂覆带材的卷取机,该卷取机位于真空室(15)内。真空室7和15也可以分别由入口真空锁系统和出口真空锁系统代替。在后一种情况,开卷机6和卷取机16均置于室外。
权利要求
1.包含金属带材的涂覆钢产品,其特征在于所述带材带有包含电绝缘层的涂层,所述电绝缘层掺杂有碱金属或碱金属混合物,所述金属带材在0-600℃的温度范围内的热膨胀系数小于12×10-6K-1,该电绝缘层包含至少一个氧化物层,且该氧化物层基本上由任意的如下介电氧化物组成Al2O3、TiO2、HfO2、Ta2O5和Nb2O5或上述氧化物的混合物,优选Al2O3和/或TiO2。
2.如权利要求1所述的涂覆钢产品,其特征在于所述金属带材的厚度为5-200μm,优选10-100μm。
3.如权利要求1或2所述的涂覆钢产品,其特征在于所述电绝缘层具有2-10层的多层结构以确保有效的电绝缘性。
4.如权利要求3所述的涂覆钢产品,其特征在于各单个氧化物层的厚度为0.01-2μm,优选0.1-1.5μm。
5.如权利要求1或4所述的涂覆钢产品,其特征在于仅仅最远离金属带基材的层或两层掺杂有碱金属。
6.如前述任一权利要求所述的涂覆钢产品,其特征在于氧化物涂层的总厚度可最高为20μm,优选1-5μm。
7.如前述任一权利要求所述的涂覆钢产品,其特征在于电绝缘层上涂覆有优选主要由钼制成的导电层。
8.如权利要求7所述的涂覆钢产品,其特征在于钼层的厚度为0.01-5μm,优选0.1-2μm。
9.如前述任一权利要求所述的涂覆钢产品,其特征在于所述碱金属是锂、钠或钾或其混合物,优选为钠。
10.如权利要求3或4所述的涂覆钢产品,其特征在于多层结构中的单个层由相同金属氧化物或不同金属氧化物制成,且各单个层由一种金属氧化物或者两种或更多种金属氧化物的混合物制成。
11.如前述任一权利要求所述的涂覆钢产品,其特征在于所述涂覆钢产品适于作为柔性Cu(In,Ga)Se2(CIGS)太阳能电池生产用的基材材料。
12.生产如权利要求1-11任一项所述的涂覆钢产品的方法,其特征在于电绝缘层和导电层均在卷带式电子束蒸发工艺中被沉积。
13.柔性Cu(In,Ga)Se2(CIGS)太阳能电池,其特征在于所述太阳能电池包括如权利要求1-11任一项所述的涂覆钢产品。
全文摘要
本发明公开了涂覆钢产品,所述钢产品包含带有涂层的金属带材,所述涂层包含掺杂有钠的电绝缘层。所述金属带材在0-600℃的温度范围内的热膨胀系数低于12×10
文档编号H01L31/032GK1836338SQ200480023153
公开日2006年9月20日 申请日期2004年8月9日 优先权日2003年8月12日
发明者米卡埃尔·舒伊斯凯, 马格纳斯·塞德格伦 申请人:山特维克知识产权股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1