选择性腐蚀氧化物的方法

文档序号:6856081阅读:311来源:国知局
专利名称:选择性腐蚀氧化物的方法
技术领域
本发明涉及半导体集成电路领域,具体而言,涉及选择性腐蚀氧化物的方法。
背景技术
在对晶片上面绝缘层中的接触孔进行腐蚀过程中,固有氧化物的残留物例如二氧化硅常常会残留下来,特别是在接触孔的底部。将半导体沉积在接触孔之前,必须除去这种固有的氧化物残留物,因为氧化物残留物会增加电阻,这是不利的,因为会阻碍电流通过半导体。半导体表面还必须用氢钝化,以防止除去固有氧化物后的再氧化。
湿腐蚀清洁法普遍用来除去固有氧化物并钝化半导体表面,主要是因为湿腐蚀常规地用来腐蚀绝缘层如二氧化硅层中的窗。通常,使用含氢氟酸(HF)的缓冲氧化物腐蚀溶液(BOE),来腐蚀并清洁热生长的薄膜和沉积的SiO2薄膜。室温下,HF腐蚀二氧化硅的速度比其腐蚀光致抗蚀剂或下层硅的速度快得多。BOE的腐蚀速度在25℃为10-100nm/min,取决于二氧化硅薄膜的密度。腐蚀速度还取决于存在氧化物的类型。因此,在干氧中生长的二氧化硅,其腐蚀速度较在水存在条件下生长的二氧化硅慢。而且,氧化物中高浓度的磷能提高腐蚀速度,而高浓度的硼却降低氧化物腐蚀速度。
通过湿的化学清洁法来除去固有的氧化物,尤其是除去二氧化硅,有两个重要缺点。第一,HF和BOE在硅薄膜上的润湿性差。因此,常规的湿处理不能提供可靠地清洁具有细布线的半导体表面的方法,主要是因为这种湿腐蚀溶液的粘度以及表面张力会阻止化学试剂达到这些细布线接触孔的底部。在具有大的长径比(管沟深度与管沟直径的比值)的孔的底部形成的固有氧化物一般用湿清洁法难以容易地除去,原因是表面张力使得腐蚀剂难以进入孔。
第二,在HF/BOE溶液达到孔底部除去固有氧化物之前,孔侧壁会被损坏。因此,在接触孔中,在1/4微米不到的区域进行清洁,会难以控制地增大接触孔直径,这被称作临界尺寸(CD)损失,在湿清洁过程中是很常见的。


图1说明按照已知的光刻工艺在例如在半导体衬底20上施加的BPSG的绝缘层24中形成的接触孔22。按本领域所知,之后会在衬底孔22中形成例如钨(W)的细线导体(未示出)。如本领域所知,在形成比特连接线之前,首先在接触孔22的表面21上施加金属如钛(Ti)形成的屏障层(图中未示)。因为如上所述在形成接触孔期间或之后,在接触孔22的表面21上形成了固有的氧化物23(图1)如二氧化硅,在形成这种屏障层之前,通常要进行一个湿清洁步骤,以便除去固有氧化物23。图2表明除去固有氧化物23会增大接触孔22直径D的情况。这种由于现有技术湿清洁法形成的临界尺寸CD的变化用ΔCD25表示。
图3例示图1的接触孔22的临界尺寸变化ΔCD与时间的关系,该接触孔进行了现有技术采用的改进的BOE湿腐蚀处理。如图3所示,BOE处理增大了CD,因为它腐蚀除去了靠近的绝缘层24(图1)。例如,即使浸的时间较短例如大约25妙,临界尺寸的变化ΔCD25也较大,约180。接触孔22的直径增大还会对填充接触孔的金属的置换产生影响。因此,除了临界尺寸损失以及渗入均匀性的问题外,电接触也会变得不可靠。
为了解决与接触孔中固有氧化物的湿清洁相关的问题,半导体工业已开始采用干腐蚀法,如等离子体腐蚀法或离子相助腐蚀法,这两种方法大体上是各向异性和单方向性的。用这两种方式曾经试图将固有氧化物,尤其是二氧化硅从其相应的接触孔除去。例如,Nishino等人描述了用NF3和NH3等离子体的后处理,从硅表面除去固有氧化物的方法(J.Appl.Phys.Vol.74,No.2,July 15,1993)。同样,Kusuki等人报道了用NF3和NH3等离子体处理的干法除去固有氧化物(Jap.J.Appl.Phys.Vol.33,No.48,April 1994)。
因此,需要改进的干等离子体腐蚀方法,这种方法能提供接触孔中基本均匀的腐蚀,而不会增加临界尺寸,并且在这种接触孔侧壁上不会形成条纹。还需要用来从接触孔除去固有氧化物,并对侧壁的损害最小的干等离子体腐蚀方法。还需要一种腐蚀未掺杂氧化物如热生长SiO2的速度快于经掺杂氧化物如BPSG的改进的干等离子体腐蚀方法。

发明内容
本发明提供一种用来除去在半导体衬底表面上形成的固有氧化物或其他氧化物膜或生长残留物的干等离子体清洁方法,这种方法不会损害基材或影响在衬底上的图案的临界尺寸,并对后道处理室损害较小。本发明尤其对选择性腐蚀在BPSG掺杂绝缘层中形成的接触孔的底部的二氧化硅残留物有用。本发明还对腐蚀未掺杂氧化物如热生长SiO2的速度快于经掺杂氧化物如BPSG的腐蚀有用。
本发明使用三氟化氮(NF3)和氨(NH3)的一种混合物,该混合物注入到微波等离子体源中被其激发,然后,两种气体以等离子体形式向前流到衬底表面上。本发明方法提供一种用来从接触孔底部无损害地除去固有氧化物和/或生长残留物的干清洁方法,不会明显影响这种接触孔的临界尺寸,并且对后面的处理室损害较小。本发明还提供一种腐蚀未掺杂氧化物较腐蚀经掺杂氧化物更快的干等离子体方法。
由下面对本发明的详细描述能更好地理解本发明的前述优点和其他优点以及特征。
附图简述图1是根据现有技术具有在绝缘层中形成的常规接触孔的半导体衬底一部分的示意剖面图。
图2所示为图1的半导体衬底进行现有技术的湿清洁时接触孔的临界尺寸损失。
图3所示为图1的半导体衬底进行现有技术的腐蚀处理后接触孔临界尺寸变化与时间的关系。
图4是本发明中使用的聚变等离子体反应器装置的示意图。
图5所示是按照本发明方法进行不同腐蚀处理后,热生长SiO2和BPSG绝缘体的腐蚀深度以及接触孔临界尺寸的变化。
图6所示为采用现有技术和本发明方法腐蚀处理形成的接触孔临界尺寸变化的比较。
较好实施方案的详细描述在下面的详细描述中,结合实施本发明的各种具体实施方案。描述这些实施方案时,其详细程度能够使本领域技术人员实施本发明,应当明白,可以采用其他实施方案,也可进行结构上、流程上和电性能上的改变。
下面描述使用的术语“衬底”包括任何半导体基的结构体。必须理解,结构体包括硅、硅上的绝缘体(SOI)、硅上的蓝宝石(SOS)、掺杂和未掺杂的半导体、由半导体基础支撑的外延层、以及其他半导体结构体。半导体不一定是硅基的。半导体可以是硅-锗、锗或砷化镓。在下面描述中讲到衬底时,可能已采用了前面一些步骤,在基础半导体或衬底上形成了一些区域或连接。
使用的术语“份”是指本发明中使用的气体混合物中组分的某一个相等单位。由于在相同压力和温度下使用所有的气体,“份”这个术语被用来代替其他术语(例如,摩尔),为的是强调混合物中各种气体的特定比例而非特定量的的重要性。
本发明提供一种用来除去在衬底上形成的固有氧化物、或其他氧化物薄膜或生长残留物的方法,这种方法不会损害衬底或影响在这种衬底上形成的图案的临界尺寸。本发明还提供一种获得腐蚀未掺杂氧化物的速度快于经掺杂氧化物的方法。本发明对从衬底上形成的绝缘层中接触孔底部腐蚀除去固有氧化物特别有用。
本发明使用三氟化氮(NF3)和氨(NH3)的气体混合物,该混合物注入到微波等离子体源中被其激发,然后,此上流等离子体以等离子体形式向前流到衬底表面上。
试看附图,相同的部件标以相同的数字。图4所示本发明中使用的设备100的示意图。等离子体源室12与反应室14有一定距离。等离子体源室12激发气体混合物10成为等离子体,然后该气体混合物10通过管道30输送到反应器14中。图4还显示位于衬底台34上的衬底32,该衬底台夹盘38支撑衬底32,夹盘38以机械或静电方式将衬底32固定在台34上。衬底台34还提供有一冷却装置36,用来冷却衬底台34。在反应器外面的加热灯42保持衬底32的温度不变,还有助于减少可能在反应器14壁上形成的残留物的量。
如图4所示,等离子体装置100还提供有一个微波空腔16,该空腔通过微波进口17连接到等离子体源室12。在空腔16中产生例如2.45GHz的微波,这种微波通过微波进口17施加到等离子体源室12。图4中还显示了气体进口12a、12b和12c,按照本发明,通过这些进口,将合适的腐蚀气体通入等离子体源室12。微波空腔16、微波进口17、反应室14、等离子体源室12和管道30均由石英,更好是由蓝宝石制成。
下面,使用图4的装置100,说明从腐蚀进入BPSG绝缘层的接触孔底部对固有氧化物如SiO2进行选择性腐蚀或清洁的方法。图4的装置100一般还可用来腐蚀未掺杂氧化物,比腐蚀已掺杂氧化物较快。根据一个示例性实施方案,在反应器14中进行本发明的腐蚀方法,该反应器是一个高密度等离子体(HDP)腐蚀器。一种清洁腐蚀是反应活性离子腐蚀,它是化学等离子体蚀刻,是等离子体与衬底进行化学反应而进行腐蚀的。还一种清洁性腐蚀是离子束腐蚀,是使用高能离子来轰击衬底进行腐蚀的物理方法。
本发明的聚变等离子体(fusion plasma)用于选择性腐蚀和清洁固有氧化物的使用三氟化氮(NF3)和氨(NH3)的气体混合物10。这两种气体首先通过各自气体进口12a、12b(图4)注入等离子体源室12中。在微波空腔内通常为2.45GHz和500W的微波激发产生,产生的微波通过微波进口17施加到内有NH3/NF3气体混合物20的等离子体源室12。结果,在等离子体源室12内产生放电,形成NH3/NF3气体混合物10的气体就分解。因此,在后面的处理之前,NF3和NH3气体先行注入,然后,它们才作为等离子体从等离子体源室12流入反应器14,达到衬底32表面上。
根据一个示例性的实施方案,本发明的等离子体腐蚀方法使用两种腐蚀气体氨(NH3)和三氟化氮(NF3),这两种气体分别以约1000-4000标准厘米3/分钟(sccm)和约25-200标准厘米3/分钟(sccm)的流量注入到等离子体源室中。氧气(O2)也可以约50-1000标准厘米3/分钟(sccm)的流量与NH3/NF3气体混合物10一起注入,使最后的气体混合物包含约2-10%,更好约5%的氧。在熔合等离子体中加入氧能提高H+离子浓度,这有助于达到要求的选择性。
之后,NH3/NF3/O2气体混合物10向前流动,通过管道30(图4)进入位于反应器14内的扩散器44,然后到达样品衬底32上。
现在结合图1、4、5和6描述实施本发明的一些例子。下面将详细描述的两组实验中,使用本发明的NH3/NF3/O2气体混合物10的干等离子体进行腐蚀以后,对接触孔如图1中的接触孔22的临界尺寸(CD)变化进行了测量。
另外,测定并比较用NH3/NF3/O2气体混合物10腐蚀后,为未掺杂氧化物的热生长氧化物以及为经掺杂氧化物的硼-磷硅酸盐玻璃(BPSSG)氧化物的腐蚀深度。
第一组实验在下面将图5描述的第一组实验中,根据本发明,用7种不同腐蚀化学条件选择性腐蚀具有在约1500的BPSG层中形成的接触孔的第一硅衬底32,为的是从接触孔22底部除去所有固有氧化物。由对应于图5中点P1至P7的过程参数代表本发明的7种腐蚀化学条件,下面将详细描述之。如本领域已知的,硅衬底32已先采用常规的干腐蚀和抗蚀刻带,在BPSG层中形成直径约为0.3微米,深度约为1.5微米的接触孔。
作为第一组实验的一部分,分别在两种不同的绝缘层即热生长SiO2和BPSG上进行本发明用NH3/NF3/O2气体混合物等离子体10的处理。测定和比较对应于图5中点P1至P7的7种不同干燥腐蚀化学条件在两种绝缘层上的效果。在用本发明的气体混合物进行选择性腐蚀处理之前,在第二硅衬底32上通过在升高温度例如约900℃的干氧化,形成了约1000的热生长SiO2氧化膜。同样,在另一个第三硅衬底32上,生长了约8000的硼-磷硅酸盐玻璃(BPSG)膜,其中掺杂有3.1%硼和6.5%的磷。
随后,三个硅衬底32各自与NH3/NF3/O2气体混合物10接触,记录各自其接触孔22的临界尺寸的变化,以及热生长SiO2和BPSG的腐蚀深度。是在下面条件和流量范围,三个衬底32分别与NH3/NF3/O2气体混合物接触。
压力 1.5乇RF功率 1000瓦磁场 0高斯时间 60秒气体流量NH31000-4000sccmNF350-200sccm更具体而言,对本发明的NH3/NF3/O2气体混合物10的不同腐蚀参数,进行了7个不同的实验,记录各实验的数据并示于图5,显示接触孔22的临界尺寸ΔCD和热生长SiO2和BPSG的腐蚀速度随不同腐蚀参数而不同。
例如,在P1过程条件下(图5),三个硅衬底32都各自与NH3/NF3/O2气体混合物10接触。P1过程条件如下压力 1.5乇RF功率 1000瓦磁场 0高斯时间 30秒气体流量NH32000sccmNF350sccm在下面的P2过程参数下,三个硅衬底32都各自与NH3/NF3/O2气体混合物10接触。
压力 1.5乇
RF功率1000瓦磁场 0高斯时间 60秒气体流量NH32000sccmNF350sccmO2100sccm接着,3个衬底都进行了IPA漂洗(图5的P3),之后,在图5的过程参数P4下,各衬底分别与NH3/NF3/O2气体混合物10接触。
压力 1.5乇RF功率1000瓦磁场 0高斯时间 60秒气体流量NH32000sccmNF350sccmO2100sccm在P5的对照过程条件下,NH3∶NF3∶O2的气体量比值设定为200∶10∶10。
压力 1.5乇RF功率1000瓦磁场 0高斯时间 60秒气体流量NH32000sccmNF3100sccmO2100sccmP6反映了三个硅衬底32在下面条件下各自与NH3/NF3/O2气体混合物10接触时的变化。
压力 1.5乇RF功率1000瓦磁场 0高斯时间 60秒气体流量NH32000sccmNF3100sccmO2100sccm
最后,三个硅衬底32在相应于图5中P7条件下,各自与NH3/NF3/O2气体混合物10接触。
压力 1.5乇RF功率 1000瓦磁场 0高斯时间 60秒气体流量NH32000sccmNF350sccmO2100sccm第一组实验的结果表明,在对照条件下(图5的P5),热生长SiO2的腐蚀深度超过BPSG的腐蚀深度(分别为140和110)。图5还显示,在第一组的所有其他过程条件下,热生长SiO2的腐蚀深度约等于或略小于BPSG的腐蚀深度。
在NH3/NF3/O2气体流量比值为100∶5∶10(图5的P7)下,临界尺寸的增加最大,约为200,而在NH3/NF3/O2气体流量比值为200∶5∶10(图5的P2)下,临界尺寸的变化最小,小于50。
因此,根据图5所示的第一组实验结果,当在P2条件即NH3/NF3/O2气体混合物的体积比为200∶5∶10,三氟化氮量相对于氨量降低下进行实验时,获得对临界尺寸变化的最佳值。
为进一步例说明使用本发明NH3/NF3/O2气体混合物的熔合等离子体改进了的腐蚀和清洁特性,结合图6对第二组实验进行说明。
第二组实验第二组实验中,在结构衬底如硅衬底32上形成如图1所示的接触孔22,以两种不同腐蚀化学条件进行对两种不同长径比(分别为0.5和0.6的标称值)接触孔的的腐蚀。对每种化学条件,记录临界尺寸的变化,如图6所示。在两种腐蚀化学条件中,一种是常规湿腐蚀化学条件(如图6点E1所示),另一种是根据本发明的干腐蚀化学条件(如图6中点E2所示)。
如图6所示,记录和测定常规湿腐蚀用改进的BOE化学条件使用后的临界尺寸变化(如E1)。如图6所示,与湿腐蚀化学条件比较,用本发明的干蚀刻化学条件在NH3/NF3/O2气体混合物体积比为200∶5∶10的过程条件下腐蚀60秒,测定并记录接触孔22的临界尺寸(CD)的变化(如图6中点E2所示)。
和第一组实验一样,腐蚀约1500厚的BPSG绝缘层,在衬底32上形成接触孔22。最初,接触孔直径约为0.3μm,深度约为1.5μm。用两种不同的化学条件中,一种是常规湿腐蚀化学条件(如图6点E1所示),另一种是根据本发明的干腐蚀化学条件(如图6中点E2所示)。
如图6所示,记录和测定常规湿腐蚀用改进的BOE化学条件使用后的临界尺寸变化(如E1)。如图6所示,与湿腐蚀化学条件比较,用本发明的干蚀刻化学条件在NH3/NF3/O2气体混合物体积比为200∶5∶10的过程条件下腐蚀60秒,测定并记录接触孔22的临界尺寸(CD)的变化(如图6中点E2所示)。
和第一组实验一样,腐蚀约1500厚的BPSG绝缘层,在衬底32a上形成接触孔22。最初,接触孔直径约为0.3μm,深度约为1.5μm。用两种不同的化学条件对接触孔22进行腐蚀之后,测定使用这两种化学条件的临界尺寸变化,并将数据绘制于图6中。
根据图6的CD测定结果,用在点E2的NH3/NF3/O2气体混合物10(NH3/NF3/O2体积比为200∶5∶10)进行腐蚀得到的接触孔22的临界尺寸变化(ΔCD)比用常规改进的BOE化学条件腐蚀的小得多。对在点E2的本发明较好化学条件(NH3/NF3/O2体积比为200∶5∶10),CD测定表明,0.5标称长径比的临界尺寸变化小于50,0.65标称长径比的临界尺寸变化小于80。CD测定还表明,在点E1临界尺寸明显增加约为150,对应于现有技术的常规湿腐蚀改进的BOE化学条件。
本发明的结果和测定确认,三氟化氮(NF3)和氨(NH3)两种气体混合物,加入了少量氧(O2)并减少了三氟化氮量,引入微波等离子体源,提供了除去腐蚀半导体衬底的BPSG或其它绝缘层上而形成的接触孔底部上通常有的固有氧化物或其它残留物的改进的干腐蚀清洁方法。使用本发明的气体混合物的改进的等离子体腐蚀和清洁方法提供了最小的CD损失,减少在绝缘层周围形成的条纹,并提高了孔的均匀性。
本发明的数据还证实,三氟化氮(NF3)和氨(NH3)两种气体的混合物与少量氧(O2)引入微波等离子体源,其腐蚀未掺杂的氧化物如热生长SiO2比腐蚀已掺杂氧化物如BPAG、PSG或BSG要快。虽然以热生长SiO2作为未掺杂氧化物说明了本发明,但是,本发明不限于使用热生长SiO2,可以使用其它未掺杂氧化物如SiO2、CVD或PECVD氧化物如TEOS、TEOS沉积的SiO2或硅烷。
上面的描述说明了本发明示例性的实施方案。但是,本发明不受这些实施方案的限制。在不偏离本发明精神和范围下可以对具体的方法条件和结构进行修改和替换。因此,可以认为本发明不受上述说明书和附图的限制,仅受权利要求书的限制。
权利要求
1.一种相对于半导体衬底上的经掺杂氧化物腐蚀半导体衬底上未掺杂氧化物的方法,所述方法包括下列步骤在等离子体源室内通入包含NH3、NF3和O2的气体混合物,所述等离子体源室位于等离子体室的前面;在所述等离子体源室中产生所述气体混合物的等离子体;使所述等离子体源室的等离子体向前流动进入等离子体室;所述第一和第二衬底与所述等离子体接触。
2.如权利要求1所述的方法,其特征在于所述半导体衬底与所述等离子体接触的步骤还包括用所述包含NH3、NF3和O2的气体混合物腐蚀所述半导体衬底,其中,NH3的流量在1000-4000sccm范围,NF3流量在25-200sccm范围,O2流量在50-1000sccm范围。
3.如权利要求2所述的方法,其特征在于所述NH3的流量与所述NF3流量之比约为1/40。
4.如权利要求2所述的方法,其特征在于所述NH3的流量、所述NF3流量和所述O2流量之比约为1/40/2。
5.如权利要求2所述的方法,其特征在于所述NH3的流量约为2000sccm,所述NF3流量约为100sccm,所述O2流量约为100sccm。
全文摘要
公开一种改进的干等离子体清洁方法,用来从半导体衬底上的绝缘层中形成的孔中除去固有氧化物、或其他氧化物薄膜或生成的残留物,不会损害衬底或明显影响孔的临界尺寸。首先,将三氟化氮(NF
文档编号H01L21/306GK1805123SQ200510119228
公开日2006年7月19日 申请日期2001年8月29日 优先权日2000年8月31日
发明者M·F·欣曼, K·J·托勒克 申请人:微米技术股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1