专利名称:铜互连布线和形成铜互连布线的方法
技术领域:
本发明一般地涉及铜互连布线层的表面上的帽封层以及用于通过应用 气体团簇离子束(gas-duster ion-beam, GCIB)处理来形成用于半导体集 成电路的互连结构的改进方法。
背景技术:
半导体按"摩尔法则"不断缩小尺寸而密度更高并且性能更强,已经 提供了工业和我们的社会生产力方面的极大进步。然而,这一发展带来的 问题是需要在越来越小的互连线路中承载越来越高的电流。当这种小电线 中的电流密度和温度变得过高时,互连线路可以由于被称为电迁移的现象 而失效。发生在高电流密度互连线路中的所谓的"电子风"(electron wind)的效应导致金属原子被从其原始晶格位置扫出,从而导致线路中开 路的发生,或者在这些扩散的金属原子聚集的区域处发生挤压短路。铜作 为替代铝的布线材料的引入提供了电迁移寿命方面的极大提高,然而,互 连布线的不断縮小表明在未来还将需要额外的铜电迁移寿命的提高。
与铝互连不同(铝互连由于铝原子沿晶粒边界的扩散而失效),铜互 连电迁移失效模式由沿着表面和界面的扩散控制。具体而言,对于传统的 铜布线互连方案,铜线路的顶面一般具有上覆的电介质帽封层,其必须具 有良好的扩散阻挡性能以防止铜迁移到周围的电介质中。两种最常用的电 介质帽封材料是氮化硅和氮化硅碳,其传统上是利用等离子体增强化学气
相沉积(PECVD)技术沉积的。然而,这些PECVD沉积的帽封材料与铜 形成有缺陷的界面,这导致沿铜线路的顶面的铜迁移增强,并因此导致更 髙的电迁移失效率。铜线路结构的其他表面一般具有与阻挡层或双层(一 般是金属性的,例如TaN/Ta、 TaN/Ru或Ru)的界面,其形成了与铜的强 界面以限制铜的扩散,并因此抑制电迁移效应。我们将这种阻挡层或双层 称为"阻挡层"。
已经尝试通过利用选择性沉积的金属帽帽封铜线路的顶面来改善铜布 线的电迁移。事实上,当顶部的铜界面已经由选择性钨或选择性磷化钴钨 (CoWP)金属层帽封时,铜电迁移寿命方面的极大提高已经见诸于报 道。然而,使用选择性金属帽封解决方案的所有方法都可能在相邻的绝缘 体表面上沉积一定的金属,因此导致相邻金属线之间不希望发生的泄漏或 短路。本发明使用气体团簇离子束处理来解决许多这些问题。
图1示出了常用在铜双镶嵌集成工艺中的现有技术氮化硅帽封的铜互 连的布线方案300的示意图。其包括第一铜线路层302、第二铜线路层 304和连接这两个铜层的铜过孔结构306。这两个线路层302和304以及过 孔结构306的侧壁和底部都衬有阻挡层312。阻挡层312提供了优异的扩 散阻挡性能,这防止了铜扩散到相邻的绝缘体结构中,并且还提供了与铜 的优异的低扩散界面,这抑制了沿这些界面的电迁移。第一级间(inter-level) 电介质层308和第二级间电介质层310提供了铜线路之间的绝缘。 第一铜线路层302的顶面和第二铜线路层304的顶面各自分别覆盖有绝缘 阻挡膜314和316,这种绝缘阻挡膜一般是由氮化硅或氮化硅碳组成的。 这些绝缘阻挡膜314和316传统上利用PECVD沉积,并且其与暴露的铜 表面形成的界面在一定程度上是有缺陷的,并且提供了用于供铜原子迁移 的快速扩散路径。在该现有技术布线方案中,几乎所有的不希望出现的材 料移动都是沿着这些界面在铜电迁移期间发生的。在与此类似的传统的双 镶嵌铜互连中,在每个互连级处,在级间电介质层中形成了沟槽和过孔并 且随后沉积了铜以形成互连线路和过孔之后,接着一般进行利用化学机械 抛光(CMP)技术执行的平坦化步骤。阻蚀剂被用在CMP和CMP后刷洗 清洁工艺中,并且这些阻蚀剂和其他污染物必须在帽封层的沉积之前利用
现场清洁从铜表面去除。使用场外清洁工艺将使铜表面易于受到腐蚀和氧
化。PECVD反应器一般不被配置为在绝缘体帽封层沉积之前对铜表面执 行有效的现场清洁。尽管未在图1中示出,但是布线方案300 —般形成在 包含需要电气互连(以完成集成电路)的有源和/或无源元件的半导体衬底 上。
图2示出了现有技术的选择性金属帽封的铜互连的布线方案400。其 包括第一铜线路层402、第二铜线路层404和连接这两个铜层的铜过孔结 构406。这两个线路层402和404以及过孔结构406的侧壁和底部都衬有 阻挡层412。阻挡层412提供了优异的扩散阻挡性能,这防止了铜扩散到 相邻的绝缘体结构中,并且还提供了与铜的优异的低扩散界面,这抑制了 沿这些界面的电迁移。第一级间电介质层408和第二级间电介质层410提 供铜线路之间的绝缘。第一铜线路层402的顶面和第二铜线路层404的顶 面各自分别由选择性沉积的金属层414和416帽封,所述金属层一般由分 别利用化学气相沉积(CVD)或无电技术沉积的选择性钨或选择性CoWP 组成。在该传统的双镶嵌铜互连中,在每个互连级处,在级间电介质层中 形成了沟槽和过孔并且随后沉积了铜以形成互连线路和过孔之后,接着进 行一般利用化学机械抛光(CMP)技术执行的平坦化步骤。阻蚀剂被用在 CMP和CMP后刷洗清洁工艺中,并且这些阻蚀剂和其他污染物必须在帽 封层的沉积之前被从铜表面去除。当铜层的顶部铜界面已经由钨或CoWP 金属层帽封时,在铜电迁移寿命方面的巨大提高已经见诸于报道。然而, 使用选择性金属帽封解决方案的所有方法都有可能例如在相邻的绝缘体表 面上沉积了不想要的金属418,并因此可能导致相邻金属线之间的电泄漏 或短路。尽管选择性金属沉积技术提供了非常大的电迁移改善方面的希 望,但是它们还未广泛地实现在制造中,这是因为由于不想要的金属的沉 积而引起的半导体芯片的产量损失的高概率。尽管未在图2中示出,但是 布线方案400—般形成在包含需要电气互连(以完成集成电路)的有源和/ 或无源元件的半导体衬底上。使用气体团簇离子束来处理表面是本领域中 已知的(例如见Deguchi等人的美国专利5,814,194)。这里使用的术语 "气体团簇"是材料的纳米尺度的聚集体,所述材料在标准的温度和压强
条件下是气相的。这种气体团簇一般由几个到数千个分子的聚集体构成, 这些分子松散键合以形成气体团簇。气体团簇可以通过电子轰击或其他方 式被离子化,从而允许其形成为具有可控能量的定向束。这些离子一般各
自承载q《的正电荷(其中e是电子电荷,q是代表气体团簇离子的电荷状 态的从1到若干数的整数)。非离子化的气体团簇也可以存在于气体团簇 离子束内。较大尺度的气体团簇离子通常是最有用的,因为其能够每气体 团簇离子承载相当的能量,同时每分子仍只具有适度能量。气体团簇在撞 击后分解,其中每个个体分子只承载总气体团簇离子能量的一小部分。因 此,大的气体团簇离子的撞击效果是相当可观的,但是局限于非常浅的表 面区域。这使得气体团簇离子对于多种表面修饰工艺都是有效的,而不会 产生传统的单体离子束处理的较深亚表面损伤特性。用于产生和加速这种 GCIB的手段在先前引用的参考文件(US 5,814,194)中有所描述。当前可 用的气体团簇离子源产生具有宽分布尺度N的气体团簇离子(其中~ =每 个气体团簇离子中的分子数,在如同氩之类的单原子气体的情况下,单原 子气体的原子将被称为分子,并且这种单原子气体的离子化原子将被称为 分子离子,或简称为单体离子,这在整篇说明书中都是如此)。许多有用 的表面处理效应可以通过利用GCIB轰击表面来实现。这些处理效应包括 但不一定限于清洁、平滑、刻蚀、掺杂和膜形成或生长。Allen等人的美 国专利6,537,606教导了使用GCIB来对初始不均匀的薄膜进行修正性刻蚀 以提高其空间均匀性的技术。美国6,537,606的全部内容通过引用结合于 此。
在有能量的气体团簇撞击在固态目标的表面上之后,进入目标表面的 团簇原子的渗透一般是非常浅的,这是因为渗透深度受限于每个个体构成 原子的低能量,并且主要取决于在气体团簇离子撞击期间发生的瞬时热效 应。然后,气体团簇在撞击时离解,于是个别气体原子变得自由以反弹并 可能从目标表面逃出。除了由逃出的个别气体原子带走的能量外,在摘击 之前有能量的团簇的总能量沉积在目标表面上的撞击区中。目标撞击区的 尺寸取决于团簇的能量,但是在撞击团簇的横截面尺寸的量级上,并且很 小,例如对于由1000个原子构成的团簇而言直径大约30埃。由于由团簇
承载的总能量中的大部分沉积到目标上的小撞击区中,因此在撞击点处的 目标材料内发生强烈的热瞬态。热瞬态随着能量通过传导到目标中的更深 处从撞击区损耗而快速消散。热瞬态的持续时间由目标材料的传导率确
定,但是一般小于K)^秒。
接近气体团簇撞击点处,目标表面的一定体积可能瞬间达到好几百到 数千Kelvin度的温度。例如,承载10keV总能量的气体团簇的撞击已被估 计能够在高度搅动的、近似于半球形的整个区域中产生高达约2000 Kdvin 度的瞬间温度,该区域延伸到表面下约100埃的地方。这种高热瞬态有利 于工件和气体面簇离子束成份的混合和反应,从而导致电迁移寿命的提 高。
在有能量的气体团簇撞击点下方的目标体积内的高温瞬态出现后,受 影响的区域快速冷却。某些气体团簇成份在这一过程期间逃离,而其他保 持下来并且变为结合在表面中。原始表面材料的一部分也可以通过溅射或 相似效应而去除。通常,气体团簇的更具挥发性和惰性的成份更有可能逃 离,而挥发性较低和更具化学反应性的成份更有可能结合在表面中。尽管 实际的工艺可能复杂的多,但是为了方便起见,将气体团簇撞击点和周围 受影响的区域认为是"熔化区"(mdtzone),其中气体团簇原子可能短 暂地与衬底表面相互作用并混合,并且气体团簇材料或者逃离表面,或者 熔入到表面中到达受影响区域的深度。术语"熔入"(infosioii)被发明人 用来指与"注入"(implantation)相区别的一种工艺,"注入"是一种产 生完全不同结果的完全不同的工艺。有能量的气体团簇离子中的稀有气体 (例如氩和氙,其是挥发性的并且非反应性的)有很高的概率从受影响区 域逃离,而诸如碳、硼、氟、硫、氮、氧、锗和硅之类的材料(其是挥发 性较低的和/或更有可能形成化学键的)更有可能留在受影响区域中,从而 结合在衬底表面中。
作为示例而非限制,诸如氩和氙之类的稀有惰性气体可以与包含挥发 性较低和更具反应性的元素的气体混合以形成混合团簇。这种气体团簇可 以利用现有的气体团簇离子束处理设备形成(下文中将描述),这是利用 合适的源气体混合物作为用于气体团簇离子束生成的源气体,或者通过将
两种或更多种气体(或气体混合物)馈送到气体团簇离子发生源并允许其
在源中进行混合而实现的。在最近的公开中,Borland等人("USJ and strained-Si formation using infiision doping and desposition" , Solid State Technology, 2004年5月,53页)已经表明GCIB熔入可以产生多个渐变 的(graded)表面层,其从衬底材料平滑地转变到表面上的沉积层。
因此,本发明的一个目的是提供如下方法,所述方法用于在互连结构 中帽封铜线路,以减轻对不希望出现的电迁移效应的易受影响性,而无需 使用选择性金属沉积帽。
本发明的又一目的是提供用于有效地在互连结构中帽封铜互连,而不 会影响相邻电介质材料的绝缘或泄漏性能的方法。
本发明的另一目的是提供如下方法,所述方法用于为具有高工艺产量 的电路形成多级铜互连并降低由于电迁移效应造成的易失效性。
本发明的又一目的是提供用于集成电路的改善的帽封铜互连层,其特 征在于高工艺产量和低的易电迁移失效性。
为了更好地理解本发明以及其其他和进一步的目标,参考附图和具体
实施方式,其中
图l是示出了现有技术的氮化硅帽封铜互连布线方案的示意图2是示出了现有技术的选择性金属帽封铜互连布线方案的示意图3是示出了现有技术的GCIB处理装置的基本元件的示意图4A、 4B、 4C、 4D和4E是示出了根据本发明第一实施例通过
GCIB熔入进行的铜互连帽封工艺的示意图5A、 5B、 5C、 5D、 5E、 5F、 5G、 5H、 51、 5J、 5K和5L是示出了
根据本发明第二实施例利用GCIB熔入和沉积进行的铜互连帽封工艺的示
意图;以及
图6A、 6B、 6C、 6D、 6E、 6F和6G是示出了根据本发明第三实施例 利用GCIB熔入和沉积进行的铜互连帽封工艺的示意图。
具体实施例方式
图3示出了现有技术已知形式的GCffi处理装置100的典型配置的基 本元件的示意图,其可以描述如下真空容器102被划分为三个连通室, 源室104、离子化/加速室106和处理室108。这三个室分别被真空泵系统 146a、 146b和146c抽到合适的工作压强。存储在第一气体存储汽缸111 中的第一可压縮源气体112 (例如,氩或氮或预混气体混合物)在压强下 通过第一气体截止阀115以及第一气体计量阀113和气体馈送管114,进 入停滞室116。存储在可选的第二气体存储汽缸230中的可选第二可压縮 源气体232 (例如,二氧化碳、氧气或预混气体混合物)在压强下通过第 二气体截止阀236和第二气体计量阀234进入。当这两个气体源都被使用 时,它们在气体馈送管114和停滞室116中混合。停滞室116中的气体或 气体混合物通过适当形状的喷嘴110被注射到基本的低压真空中。得到超 声波气体喷流118。由喷流膨胀导致的冷却使得气体喷流118的一部分冷 凝为气体团簇,每个气体团簇由数个到数千个弱键合原子或分子构成。气 体漏孔120从气体团簇喷流中部分分离还未被冷凝为气体团簇喷流的气体 分子,以便最小化下游区域中的压强,在下游区域中较高的压强是有害的 (例如,离子化器122、高压电极126和处理室108)。合适的可压縮源 气体112包括但不一定限于氩、氮、二氧化碳、氧以及其他气体和/或气体 混合物。
在形成了包含气体团簇的超声波气体喷流118后,气体团簇被在离子 化器122中离子化。离子化器122 —般是电子撞击离子化器,其从一个或 多个白炽灯丝124中产生热电子,并加速和引导这些电子,使其与穿过离 子化器122的气体喷流118中的气体团簇碰撞。电子撞击从气体团簇中驱 逐出电子,使得气体团簇的一部分变为正离子化。某些气体团簇可能被驱 逐出多于一个电子,并且可能变为多离子化。 一组适当偏置的高电压电极 126从离子化器中提取出气体团簇离子,形成束,然后将其加速到期望能 量(一般加速电势从数百V到数十kV),并对其聚焦以形成GCIB 128。 灯丝电源136提供灯丝电压Vf以加热离子化器灯丝124。阳极电源134提 供阳极电压VA以加速从灯丝124发射的热电子,以使其照射包含气体团
簇的气体喷流118从而产生离子。提取电源138提供提取电压VE以偏置高 电压电极,从而从离子化器122的离子化区域中提取出离子并形成GCIB 128。加速器电源140提供加速电压VAcc以相对于离子化器122偏置高电 压电极,以便使总GCIB加速电势等于VAcc。 一个或多个透镜电源(例如 示为142和144)可以被提供用来利用聚焦电压(例如Vu和Vl2)偏置高 电压电极,以聚焦GCIB 128。
工件152可以是要由GCIB处理处理的半导体晶片或其他工件,其被 夹持在工件夹持器150上,工件夹持器150可以放置在GCIB 128的路径 中。由于大多数应用期望大工件的处理并且获得空间均匀的结果,因此扫 描系统是合乎需要的,以均匀地扫描大面积的GCIB 128从而产生空间均 一的结果。
GCIB 128是静止的,具有GCIB轴129,并且工件152通过GCIB 128 被机械扫描以将GCIB 128的效果分布在工件152的整个表面上。
X扫描致动器202提供沿X扫描运动208的方向(进出纸平面)的工 件夹持器150的线性运动。Y扫描致动器204提供沿Y扫描运动210的方 向的工件夹持器150的线性运动,Y扫描运动210 —般垂直于X扫描运动 208。 X扫描和Y扫描运动的组合使由工件夹持器150夹持的工件152以 类光栅扫描运动穿过GCIB 128运动,从而导致GCIB 128对工件152的表 面进行均匀(或者以其他方式被编程的)照射,以处理工件152。工件夹 持器150以相对于GCIB 128的轴的某一角度放置工件152,以使得GCIB 128相对于工件152的表面具有某一束入射角206。该束入射角206可以是 90度或某一其他角度,但是一般是90度或接近90度。在Y扫描期间,工 件152和工件夹持器150从图示位置移动到备用位置"A",这两个位置 分别由标号152A和150A指示。注意,在这两个位置之间的移动中,工件 152通过GCIB 128被扫描,并且在两个极端位置处,完全移出GCIB 128 的路径(过扫描)。尽管未在图3中明确示出,但是沿(一般)垂直的X 扫描运动208的方向(进出纸平面)执行类似的扫描和过扫描。
束流传感器218被放置在GCIB 128的路径中工件夹持器150的外 部,以便在工件夹持器150被扫描到GCIB 128的路径之外时拦截GCIB
128的样本。束流传感器218 —般是法拉第帽等等,其是封闭的(除了束 进入开口以外),并且一般利用电绝缘配件212附着到真空容器102的壁 上。
可以是基于微计算机的控制器的控制器220通过电缆216连接到X扫 描致动器202和Y扫描致动器204,并且控制X扫描致动器202和Y扫描 致动器204以便将工件152放入/放出GCIB 128并相对于GCIB 128均匀地 扫描工件152以实现GCIB 128对工件152的期望处理。控制器220利用 导线214接收由束流传感器218收集的样本束流,从而监视GCIB并控制 工件152所接收的GCIB剂量,这是通过在已传输了预定的期望剂量时从 GCIB 128中移走工件152而实现的。
图4A是示出了根据本发明第一实施例利用GCIB熔入帽封的铜互连 的布线方案500的示意图(以示例而非限制性方式示出了两个铜线路层互 连级)。该示意图示出了衬底501,衬底501支撑第一铜线路层502、第 二铜线路层504和连接这两个铜层的铜过孔结构506,其中的每一个都可 以利用传统技术形成。衬底501 —般是包含需要电气互连的有源和/或无源 元件(可能包括较低互连级)的半导体衬底。这两个铜线路层502和504 以及过孔结构506的侧壁和底部都衬有TaN/Ta或其他传统的阻挡层512, 这种阻挡层可以利用传统技术形成。第一级间电介质层508和第二级间电 介质层510提供铜线路层和其他组件之间的电绝缘,并且可以利用传统技 术形成。第一铜线路层502的顶面和第一级间电介质层508的顶面以及第 二铜线路层504的顶面和第二级间电介质层510的顶面都通过GCIB处理 被帽封,以形成帽封膜514、 516和518。优选地,在每个互连级的顶面执 行独立的GCIB帽封工艺。在传统的双镶嵌铜互连中,在级间电介质层中 形成了沟槽和过孔并且随后沉积了铜以形成互连线路和过孔之后,-—般利 用化学机械抛光(CMP)技术对暴露的铜和级间电介质层材料表面执行平 坦化步骤。阻蚀剂被用在要在CMP技术和CMP后刷洗清洁工艺中被抛光 的表面上,并且优选地紧接在帽封层形成之前利用现场清洁从铜和电介质 表面中(和其他污染物一起)去除(这里所用的"现场"意味着清洁发生 在其中执行帽封沉积的相同的减压气氛中,而无需在清洁和帽封步骤之间
返回到大气压强,并且降低了在清洁步骤和帽封步骤之间重新污染清洁后
的表面的机会)。PECVD反应器一般并不被配置为在绝缘体帽封层沉积 之前执行有效的铜表面的现场清洁。与PECVD系统不同,GCIB处理系统 (例如处理装置100)很容易并且一般被配置为现场实现顺序的清洁和帽 封。在清洁了暴露的铜和级间电介质表面之后(其可以通过如下所述的 GCIB处理来执行),优选地现场GCIB熔入工艺被用于帽封平坦化后的 表面(同时帽封铜和暴露的级间电介质)。
图4B示出了布线方案500的初步阶段500B。在图示阶段中, 一个互 连级已形成在衬底501上。该互连级包括已经利用传统技术沉积在衬底上 的第一级间电介质508。传统的沟槽和过孔已经形成在第一级间电介质 508中,并且已经衬有传统的阻挡层512。铜已经利用传统技术沉积在沟 槽和过孔中。该结构的上表面已经利用传统工艺平坦化和清洁。第一铜线 路层502和第一级间电介质层508的上表面具有残留污染物503。在这一 阶段,以及在每个后续互连级的相应阶段(假定多于一个互连级),可以 执行GCIB清洁工艺。GCIB清洁包括利用由气体Ar、 N2、 NH3或&中的 任何一种或其混合物的分子组成的GCIB团簇离子照射要清洁的表面,并 且使用优选地在从约3kV到约50kV范围内的束加速电势VAM,其中总气 体团簇离子剂量在从约5X1(F到约5X10"离子/cmS的范围内。本领域技 术人员将认识到,本发明并不局限于这些示例性气体,而是可以利用从铜 表面去除CMP后残留物、氧化铜和其他污染物的其他气体或气体混合 物。优选地(尽管不是本发明必需的),该GCIB清洁工艺是现场清洁工 艺。
图4C示出了在GCIB清洁步骤后的布线方案500的阶段500C。第一 铜线路层502和第一级间电介质层508的上表面已被清洁掉污染物,并且 准备用于帽封步骤。在这一阶段以及在每个后续互连级的相应阶段(假定 多于一个互连级),执行GCIB帽封工艺。GCIB帽封工艺包括利用由反 应性元素构成的GCIB照射第一铜线路层502和/或第一级间电介质层508 的上表面,这些反应性元素在熔入到原先暴露的电介质和/或铜表面中时形 成了绝缘材料。具有例如由C、 N、 0、 Si、 B或Ge或其混合物构成的气
体团簇离子元素的GCIB是合适的,并且可以在铜上形成渐变帽封膜,例 如Si3N4、 SiCN、 CuC03和BN。也可以采用在镕入到铜和/或相邻绝缘体 中时形成合适的电介质材料的其他元素和组合。可以采用诸如CH4、 SiH4、 NH3、 N2、 C02、 B2H6、 GeH4和其混合物之类的源气体。这些气体 可以用于以其纯净形式或者通过将其与诸如Ar或Xe之类的惰性气体混合 而形成团簇离子。参考图3的GCIB处理装置100,可以使用在从约3kV 到约50kV的范围内的束加速电势VAee,其中总气体团簇离子剂量在从约 1X10"到约lX10"离子/ci^的范围内,以实现熔入。
图4D示出了在GCIB帽封步骤后的布线方案500的阶段500D。在铜 表面和/或相邻的级间电介质表面上,GCIB工艺的撞击能量和热瞬态特性 熔入暴露于GCIB的铜线路和/或相邻的级间电介质结构的顶面,从而分别 形成帽封层514和516。帽封层514和516可以各自可选地另外包括充当 电介质阻挡膜的上层部分。在形成工艺的初始部分期间,混合的铜/GCIB 物质组分的渐变层514A被熔入到铜表面中。该混合层提供了任何随后沉 积的电介质阻挡膜514B和下层铜之间的渐变界面,从而限制了表面处的 铜扩散并且提高了电迁移的寿命。尽管随后沉积的电介质阻挡层514B可 以是利用传统PECVD沉积的独立、额外的膜,但是优选地其是作为GCIB 帽封熔入步骤的继续由GCIB沉积的,这仅仅继续帽封GCIB照射工艺, 该工艺首先创建混合的渐变层,直到工艺从熔入工艺前进到(伴随着剂量 增大)纯粹沉积工艺为止,从而在铜的熔入表面处的混合层的上方沉积了 电介质材料。该初始的熔入混合渐变层514A用作帽封层,并且随着GCIB 照射的继续,电介质材料随后的额外沉积形成了沉积的电介质阻挡膜 514B。这形成了由于混合渐变层而与铜互连集成的电介质膜,从而得到了 包括较长的电迁移寿命在内的改善界面性能。形成帽封层514的同一 (或 另一)帽封GCIB优选地在级间电介质508上形成帽封层516。与帽封层 514相似,帽封层516可以是双层(bi-layer)。帽封层516最初在表面处 形成混合电介质/GCIB物质组分的混合渐变层,并且随着GCIB处理的继 续或者额外的独立(例如PECVD)沉积也可以包括沉积的电介质阻挡 膜。例如,如果电介质阻挡膜514B不是利用延长的GCIB工艺形成的,
或者如果需要特别厚的电介质阻挡膜514B,则熔入的帽封层514A或帽封 层516可以可选地利用传统的绝缘层(例如PECVD的Si3N4、 SiCN或 SiC)掩盖,以提供电介质阻挡膜用于额外的铜扩散阻挡或过孔刻蚀停止 性能。在帽封步骤和任何电介质阻挡膜的形成后,如果需要可以利用传统 技术添加额外的互连级。
图4E示出了在GCIB帽封(包括电介质阻挡)的第一互连级上添加 了第二互连级后布线方案500的阶段500E。在这一阶段,第二互连级已经 形成在被帽封的层514和516上。第二互连级由第二级间电介质510构 成,第二级间电介质510已经利用传统技术沉积在被帽封的层514和516 上。沟槽和过孔已形成在第二级间电介质510中,沟槽和过孔已经衬有阻 挡层512,并且铜已经利用传统技术沉积在沟槽和过孔中。该结构的上表 面已经利用诸如CMP之类的传统工艺被平坦化和清洁。第二铜线路层504 和第二级间电介质层510的上表面被示为具有残留污染物505。在第二互 连级(如果有的话)和后续的更高互连级(如果有的话)处,如上所述将 GCIB清洁和GCIB熔入步骤应用于布线方案500,从而形成(例如)诸如 图4A中所示的帽封膜518。相应地,按需要可以形成两级或多级互连结 构。
因此,所述技术提供了减少的电迁移,并避免了与选择性金属帽封工 艺相关联的不希望出现的副作用。在电介质表面上,熔入层和电介质保持 绝缘,并且极薄的熔入层对层的总介电常数和层间电容的影响可以忽略。
图5A是示出了根据本发明第二实施例利用GCIB熔入和沉积帽封的 铜互连的布线方案600的示意图(以示例而非限制性方式示出了两个铜线 路层互连级)。该示意图示出了衬底601,衬底601支撑第一铜线路层 602、第二铜线路层604和连接这两个铜层的铜过孔结构606,其中的每一 个都可以利用传统技术形成。衬底601 —般是包含需要电气互连的有源和/ 或无源元件(可能包括更低互连级)的半导体衬底。这两个铜线路层602 和604以及过孔结构606的侧壁和底部都衬有TaN/Ta或其他阻挡层612, 这种阻挡层可以利用传统技术形成。第一级间电介质层608和第二级间电 介质层610提供铜线路层之间的电绝缘,并且可以利用传统技术形成。通
常希望级间电介质层608和610可以是多孔的以增强其介电性能。在这种 情况下,级间电介质层可以可选地在其上沉积有硬掩模层,例如分别是第 一硬掩模层609和第二硬掩模层611,其各自由诸如Si02、 SiC或Si3N4之 类的材料构成,并且可以利用传统技术沉积。第一铜线路层602、第-级 间电介质层608的顶面(或者可选地,如果存在的话,第--硬掩模层609 的顶面)、第二铜线路层604和第二级间电介质层610的顶面(或者可选 地,如果存在的话,第二硬掩模层611的顶面)都通过GCIB处理帽封以 形成帽封膜614、 616、 618和620。该第二实施例与第一实施例的区别在 于,组成GCIB气体团簇离子的元素被选择使得熔入的物质在铜表面(铜 帽封膜614和618)上保持导体特性。然而,熔入元素也被选择使得当熔 入到每个互连级的电介质区域中的级间电介质和/或电介质硬掩模材料(级 间电介质或硬掩模帽封膜616和620)的表面中时该相同的元素形成绝缘 膜。增强的电介质扩散阻挡(阻挡膜622用于第一互连级,阻挡膜624用 于第二互连级)优选地是通过GCIB沉积形成的,但是也可以利用传统技 术形成。这些阻挡膜还增强了 GCIB熔入帽封的过孔刻蚀停止性能和扩散 阻挡性能。
GCIB烙入工艺优选地应用在每个互连级的顶面处以形成铜和级间电 介质帽封。如上所述,在铜互连和级间电介质的CMP平坦化后,优选地 使用GCIB现场清洁。图5G图示了其中级间电介质层608和610在其顶 面上没有硬掩模层609和611的布线方案600G。下面将对用于构造布线方 案600G的工艺给出描述。
图5B示出了布线方案600G的初步阶段600B。建立在衬底601上的 互连级由传统沉积的第一级间电介质608构成,其中沟槽和过孔已经形成 并且衬有阻挡层612。铜已经利用传统技术沉积在沟槽和过孔中。该结构 的上表面已被平坦化和清洁。第一铜线路层602和第一级间电介质层608 的上表面被示为具有残留污染物603。在这一阶段和每个后续互连级(假 定多于一个互连级)的每个阶段的顶面处,如上所述可以执行GCIB清洁 工艺。优选地(尽管不是本发明必需的),该GCIB清洁工艺可以是现场 清洁工艺。
图5C示出了在布线方案600G的构造中GCIB清洁步骤后的中间阶段 600C。第一铜线路层602和第一级间电介质层608的上表面已被清洁掉污 染物,并且准备用于帽封步骤。GCIB帽封工艺现在可应用于这一阶段和 每个后续互连级(假定多于一个互连级)的每个阶段的清洁顶面。(优选 地现场)GCIB熔入工艺被用于同时(或者通过独立的帽封GCIB)帽封平 坦化后的表面(铜和/或暴露的级间电介质)。GCIB帽封工艺包括利用由 反应性元素构成的GCIB照射第一铜线路层602和第一级间电介质层608 的上表面,这些反应性元素在其熔入到铜表面中时形成导电材料,但是在 其熔入到级间电介质表面中时形成电绝缘材料。另外,这些导电元素被选 择以便不具有在铜中的高固态可溶性,以避免对其导电率的不利影响。非 限制性地,具有包括元素B或Ti的气体团簇离子的GCIB是合适的,并且 与适当的电介质硬掩模材料相组合以形成绝缘氧化物、碳化物或氮化物, 电介质硬掩模材料例如但不限于Si02、 SiC、 SiCN、 SiCOH等。包含B和 Ti的某些合适的源气体包括但不限于B2H6、 TiCl4、四二乙氨基钛 (TDEAT)和四二甲氨基钛(TDMAT)。这些气体可以按其纯净形式使 用,或者与诸如Ar或Xe之类的惰性气体混合使用。在电介质表面上,这 种熔入例如形成了 Ti02和硼硅酸盐玻璃的渐变膜,而在铜表面上,其例如 形成了硼和钛的渐变膜。参考图3的GCIB装置100,可以使用优选地在 从约3kV到约50kV的范围内的束加速电势VAw,并且总气体团簇离子剂 量在从约1X10"到约lX10"离子/cn^的范围内。在铜和电介质表面上, GCIB熔入工艺的撞击能量产生了瞬时高温区,这种瞬时高温区有利于熔 入物质与现有电介质或电介质硬掩模层的反应,以形成新的绝缘(在级间 电介质或硬掩模上)材料并还在铜线路表面上形成熔入导电膜,从而限制 铜界面的扩散并提高电迁移寿命。因此,单个GCIB帽封熔入步骤在第一 铜线路层602上形成了导电帽封膜614,在第一级间电介质层608上形成 了电绝缘帽封膜616。
图5D示出了在布线方案600G的构造中在GCIB帽封步骤后的阶段 600D。 GCIB工艺可以在这一阶段和每个后续互连级的每个阶段的顶面处 执行,以形成电介质扩散阻挡膜。电介质扩散阻挡膜622优选地由氮化硅
碳构成,但是可以是氮化硅、碳化硅和其他电介质膜。传统上,其可以通
过PECVD沉积,但是优选地其是通过利用由进行反应以沉积绝缘材料的 元素形成的GCIB照射要在其上沉积阻挡膜622的帽封膜(614和616)的 表面而沉积的。具有气体团簇离子元素(例如C、 N和Si或其混合物)的 GCIB是合适的,并且可以在铜上沉积扩散阻挡膜,例如Si3N4、 SiCN和 SiC。诸如C、 N和Si之类的源气体包括但不限于CH4、 SiH4、 NI3和 N2。这些气体可以用于利用纯净气体或通过与诸如Ar或Xe之类的惰性气 体相组合来形成用于沉积的气体团簇离子。使用优选地在从约3kV到约 50kV的范围内的束加速电势VAcc,其中总气体团簇离子剂量在从约IX 1014到约lX10^离子/ci^的范围内。
图5E示出了在布线方案600G的构造中在阻挡膜622的沉积后的阶段 600E。图5F示出了在布线方案600G的构造中的阶段600F,其反映了在 GCIB帽封(包括电介质阻挡膜)的第一互连级和阻挡膜622上添加第二 互连级。第二互连级由沉积在阻挡膜622上的第二级间电介质610构成, 其中沟槽和过孔已经形成并且衬有阻挡层612。铜已经利用传统技术沉积 在沟槽和过孔中。该结构的上表面已经利用传统工艺被平坦化和清洁。第 二铜线路层604和第二级间电介质层610的上表面被示为具有残留污染物 626。在第二互连级和后续更高互连级(如果有的话)的顶面处,可以如 上所述应用GCIB清洁以及GCIB熔入和GCIBGCIB沉积步骤,以构造布 线方案600G。这些处理步骤形成了帽封膜618、 620和阻挡膜624。相应 地,按需要可以形成图5G的两互连级结构或多级互连结构。
图5H示出了在构造如图5A完整所示的布线方案600 (具有硬掩模层 609和611)的过程中的初步阶段600H。建立在衬底601上的第一互连级 由利用传统技术沉积在衬底上的第一级间电介质608构成。利用传统技术 形成的硬掩模层609覆盖了第一级间电介质608的顶面。沟槽和过孔已经 形成在第一级间电介质608中,并且衬有阻挡层612,并且铜已经沉积在 沟槽和过孔中。该结构的上表面已经利用传统的清洁工艺被平坦化和清 洁。第一铜线路层602和硬掩模层609的上表面被示为具有残留污染物 605。在这一阶段和每个后续互连级的相应阶段的顶面处,如上所述优选
地执行GCIB清洁工艺。优选地(尽管不是本发明必需的),该GCIB清 洁工艺是现场清洁工艺。
图51示出了在构造(图5A的)布线方案600的过程中在GCIB清洁 步骤后的阶段6001。第一铜线路层602和硬掩模层609的上表面己被清洁 掉污染物,并且准备用于帽封步骤。在这一阶段和每个后续互连级的相应 阶段的顶面处,如上所述可以执行GCIB帽封工艺以形成帽封层614和 616。在该实施例中,帽封层616形成在硬掩模层609上,而不是直接形 成在第一级间电介质层608上。
图5J示出了在构造布线方案600的过程中在形成帽封层614和616的 步骤后的阶段600J。如上所述,GCIB工艺可以应用于这一阶段和每个后 续互连级的每个相应阶段的顶面处,以在帽封层614和616上形成电介质 扩散阻挡膜622。
图5K示出了在构造布线方案600的过程中在阻挡膜622的沉积后的 阶段600K。
图5L示出了在构造布线方案600的过程中在GCIB帽封(包括电介质 阻挡膜)的第一互连级上添加了第二互连级后的阶段600L。在这一阶段, 第二互连级已形成在阻挡膜622上。第二互连级由已经利用传统技术沉积 在阻挡膜622上的第二级间电介质610构成。利用传统技术形成的硬掩模 层611覆盖了第二级间电介质610的顶面。传统的沟槽和过孔已经形成在 第二级间电介质610中,这些沟槽和过孔衬有传统的阻挡层612,并且铜 己经利用传统技术沉积在沟槽和过孔中。该结构的上表面已经利用传统工 艺被平坦化和清洁。第二铜线路层604和硬掩模层611的上表面被示为具 有残留污染物613。在第二互连级(如果有的话)以及在后续的更高互连 级(如果有的话),如上所述将GCIB清洁以及GCIB熔入和GCIB沉积 步骤用于布线方案600,从而形成(例如)帽封膜618和620并形成阻挡 膜624。相应地,按需要可以形成图5A的两互连级结构或多级互连结 构。
因此,所公开的技术降低了电迁移,并避免了与选择性金属帽封工艺 相关联的不希望出现的副作用。在电介质表面上,电介质在帽封后保持绝
缘,并且极薄的熔入层对于介电常数的影响可以忽略。
图6A是根据本发明第三实施例利用GCIB熔入帽封的铜互连的布线 方案700的示意图(以示例而非限制性方式示出了两个铜线路层互连 级)。该示意图示出了衬底701,衬底701支撑第一铜线路层702、第二 铜线路层704和连接这两个铜层的铜过孔结构706,其中的每一个都可以 利用传统技术形成。衬底701 —般是包含需要电气互连的有源和/或无源元 件(可能包括更低互连级)的半导体衬底。这两个铜线路层702和704以 及过孔结构706的侧壁和底部都衬有阻挡层712,阻挡层712可以利用传 统技术形成。第一级间电介质层708和第二级间电介质层710提供铜线路 之间的电绝缘,并且可以利用传统技术形成。第一级间电介质层708具有 上表面709,第二级间电介质层711具有上表面710。如下面更详细地说 明的,在每个铜线路互连级,按照传统方式沉积的阻挡层712最初覆盖了 级间电介质层708和710的上表面709和711。在本发明的该实施例中, 下文中将描述的GCIB处理从上表面709和711中去除了阻挡层712的材 料,因此,其并不出现在图6A中所示的完整结构的表面上。第--铜线路 层702的顶面和第二铜线路层704的顶面通过GCIB处理帽封以形成熔入 的帽封膜713和715。熔入的铜帽封膜713和715以及相邻的级间电介质 层708和710可以额外地分别利用电介质阻挡膜714和716帽封,以提供 改善的铜扩散性能和过孔刻蚀停止性能。电介质阻挡膜714和716优选地 是氮化硅碳,但是也可以是氮化硅或碳化硅或其他合适的电介质,并且可 以利用PECVD通过传统方式沉积,但是优选地通过GCIB沉积施加。
图6B示出了在构造布线方案700的过程中的初步阶段700B。在图示 阶段中, 一个互连级已经形成在衬底701上。该互连级由已沉积在衬底上 的第一级间电介质708构成。沟槽和过孔已经形成在第一级间电介质708 中,并且衬有阻挡层712。铜已经沉积在沟槽和过孔中。阻挡层712最初 覆盖了级间电介质层708的上表面709。铜过载(overburden)已经通过传 统CMP去除,从而停止在阻挡层712的材料上。另外,利用传统的CMP 工艺条件(被选择为优选地以比阻挡层材料高得多的速率去除铜),例如 利用相比于阻挡材料选择性去除铜的高选择性浆料,铜略微凹陷低于阻挡
层712的顶面,如图所示。该表面已经利用传统工艺清洁。第一铜线路层 702和阻挡层712的上表面被示为具有残留污染物703。在这一阶段和每 个后续互连级的每个阶段的顶面处可以应用如上所述的GCIB清洁工艺。
图6C示出了构造布线方案700的过程中在GCIB清洁步骤后的阶段 700C。第一铜线路层702和阻挡层712的上表面已被清洁掉污染物,并且 准备用于帽封步骤。现在可以应用GCIB帽封工艺。(优选地现场)GCIB 刻蚀和熔入帽封工艺被用于同时帽封第一铜线路层702的表面和刻蚀掉阻 挡层712,阻挡层712上覆于上表面709上。GCIB刻蚀和帽封工艺包括利 用由反应性元素构成的GCIB照射第一铜线路层702和第一级间电介质层 708的上表面,反应性元素在熔入到铜表面中时形成帽封材料,但是刻蚀 阻挡层712的材料。GCIB照射刻蚀掉上表面709上暴露的阻挡层712的 材料同时将帽封物质熔入到第一铜线路层702中,形成了帽封膜713。包 含元素氟和/或硫在内的源气体(包括但不限于SF6、 CF4、 C4Fs或NF3)被 用于形成GCIB。这些气体可以用于利用纯净气体或者通过与N2或与诸如 Ar或Xe之类的惰性气体相混合来形成气体团簇离子以进行熔入。这种熔 入形成了铜帽封膜,例如CuF2。使用优选地在从约10kV到约50kV的范 围内的束加速电势VAcc,并且可以使用在从约200sccm到约3000sccm的 范围内的喷嘴气体流。例如,用于刻蚀阻挡层材料同时形成铜帽封膜的优 选工艺使用流率为700sccm的N2中10% NF3的源气体混合物。GCIB刻蚀 和熔入工艺一直进行,直到所有的阻挡层材料都被去除为止,这导致第一 级间电介质层708的相对未改变的上表面709,还得到己经熔入有帽封膜 713的铜表面。由于在大部分工艺期间上表面709被阻挡层712的材料与 GCIB屏蔽,因此对上表面709的影响很小。
图6D示出了在构造布线方案700的过程中在GCIB刻蚀和帽封步骤 后的阶段700D。第一铜线路层702的上表面已经被帽封层713帽封,并且 阻挡层712已被刻蚀掉,从而暴露了第一级间电介质层708的上表面 709。该结构准备用于形成电介质阻挡膜。现在可以执行GCIB工艺以便利 用与如上所述用于沉积阻挡膜622相同的方法在帽封层713和第一级间电 介质层708的上表面709上形成电介质扩散阻挡膜714。
图6E示出了在构造布线方案700的过程中在形成电介质扩散阻挡膜 714后的阶段700E。
图6F示出了在构造布线方案700的过程中在GCIB帽封(包括电介质 阻挡膜)的第一互连级上添加第二互连级后的阶段700F。在这一阶段,第 二互连级已经形成在阻挡膜714上。第二互连级由已沉积在阻挡膜714上 的第二级间电介质710构成。沟槽和过孔已经形成在第二级间电介质710 中,并且衬有阻挡层712。铜已经利用传统技术沉积在沟槽和过孔中。阻 挡层712最初覆盖了级间电介质层710的上表面。铜过载已经通过传统 CMP去除,从而停止在阻挡层712的材料上。另夕卜,利用传统的CMP工 艺条件(被选择为优选地以比阻挡层材料高得多的速率去除铜),例如利 用相比于阻挡材料选择性去除铜的高选择性浆料,铜略微凹陷低于阻挡层 712的顶面,如图所示。该表面已经利用传统工艺清洁。第二铜线路层 704和阻挡层712的上表面被示为具有残留污染物717。在第二互连级 (如果有的话)和后续的更高互连级(如果有的话),如以上针对布线方 案700中的第一互连级所述,应用GCIB清洁以及GCIB (刻蚀和熔入帽 封)和GCIB沉积步骤,从而形成(例如)帽封膜715和阻挡膜716。相 应地,按需要可以构造图6A的两互连级结构或多级互连结构。
在上述布线方案700中的CMP铜过载去除后,如果暴露的阻挡层材 料具有不希望出现的空间不均匀的厚度,则可选地(但是优选地)以补偿 性方式使GCIB刻蚀空间不均匀。通过首先利用传统的金属膜制图仪(例 如,Rudolph Technologies METAPULSE⑧-II金属膜测量系统,可以从USA, NJ07836 Flanders, One Rudolph Road的Rudolph Technologies Inc.购得)对 工件晶片的整个表面上的阻挡层厚度制图,则可以如上所述使得阻挡层刻 蚀成为补偿性刻蚀,这导致在阻挡层材料较厚处产生较大的刻蚀,而在阻 挡层材料较薄处产生较小的刻蚀,从而使得由于阻挡层材料的初始厚度而 本该被过刻蚀的区域中的下层级间电介质的去除最小化。这种空间补偿性 刻蚀是利用所测得的阻挡层厚度图与在Allen等人的美国专利No. 6,537,606 (,606专利)中教导的技术相结合而实现的,该专利的内容通过 引用结合于此。气体团簇离子束处理设备,例如配备有根据在'606专利中
公开的技术根据测量图工作的自动补偿性刻蚀能力的Epioii Corporation nFusion GCIB处理系统(Epion Corporation, Billerica, MA),可以购得。
在本发明的该实施例中,优选地如上所述,阻挡层刻蚀和铜帽封都是 在一个步骤中利用GCIB处理执行的,以同时执行这两者。还可以(在某 些情形中可能有用)将阻挡层刻蚀和铜帽封处理作为分离的GCIB处理步 骤利用对于每一步有不同特性的GCIB加以执行。在这种情况下,在达到 图6C中所示的阶段时,最初位于级间电介质层708的上表面709上的阻 挡层材料在GCIB帽封步骤之前通过GCIB刻蚀工艺去除。在GCIB刻蚀 步骤后,该结构表现为图6G中所示,并且准备用于铜线路层和级间电介 质层帽封,其是利用前文中在本发明的各种实施例中描述的GCIB帽封工 艺执行的。在每个互连级,优选的刻蚀步骤是利用GCIB团簇离子照射要 清洁的表面,GCIB团簇离子是由包含元素氟的一种或多种源气体形成 的,这些气体包括但不限于SF6、 CF4、 QF8或NF3。这些气体可以用于利 用纯净气体或通过与N2或与诸如Ar或Xe之类的惰性气体相混合来形成 气体团簇离子,以进行刻蚀。使用优选地在从约10kV到约50kV的范围内 的束加速电势VAcc,并且可以使用在从约200sccm到约3000sccm的范围 内的喷嘴气体流。例如,用于刻蚀阻挡层材料的优选工艺使用流率为 700sccm的N2中10%柳3的源气体混合物。在需要时,GCIB刻蚀步骤可 以是前文中所述的补偿性刻蚀步骤,以补偿阻挡层材料厚度的初始空间不 均匀性。
尽管已经参考各种实施例描述了本发明,但是应当认识到,本发明也 能够具有在本发明精神内的广泛的多种进一步和其他的实施例。例如,本 领域技术人员将很清楚,本发明并不限于双镶嵌集成方案,而是可以同样 地适用于其他铜互连方案。另外,尽管本发明是针对包括各种化合物(例 如Si3N4、 SiC、 SiCN、 BN、 CuF2、 Ti02、 CuCO" B、 Ti、氮化硅、碳化 硅、氮化硅碳、氮化硼、氟化铜、二氧化钛、碳酸铜、硼、钛和硼硅酸盐 玻璃)的熔入和沉积的膜或层描述的,但是本领域技术人员将会理解,在 实施本发明时形成的许多膜和层是渐变的,并且即使在最纯净的形式,它 们也不具有化学分子式或名称暗示的精确化学当量,而是具有近似的化学 当量,并且可以额外包括氢和/或其他杂质,这对于用在相似应用中的膜来 说是正常的。
权利要求
1.一种在包括一个或多个铜互连表面和一个或多个电介质表面的结构上形成帽封结构的方法,包括以下步骤将所述结构置于低压室中;在所述低压室内形成加速的帽封GCIB;以及将所述加速的帽封GCIB引导到所述一个或多个铜互连表面和所述一个或多个电介质表面中的至少一个上,以在所述加速的帽封GCIB被引导到其上的一个或多个表面上形成至少一个帽封结构。
2. 如权利要求1所述的方法,还包括在所述帽封GCIB形成和引导步 骤之前的以下步骤在所述低压室内形成加速的清洁GCIB;以及将所述加速的清洁GCIB引导到所述一个或多个铜互连表面和所述一 个或多个电介质表面上,以清洁所述加速的清洁GCIB被引导到其上的一 个或多个表面上。
3. 如权利要求2所述的方法,其中形成加速的清洁GCIB还包括由选 自由Ar、 N2、 NHs和H2构成的组中的至少一种气体的分子生成气体团簇 离子。
4. 如权利要求2所述的方法,其中形成所述加速的清洁GCIB还包 希 利用在从约3kV到约50kV的范围内的加速电势加速清洁GCIB气体团簇 离子。
5. 如权利要求2所述的方法,其中引导所述加速的清洁GCIB导致在 从约5乂1013到约5X10"气体团簇离子/cr^的范围内的照射剂量被传输到 所述一个或多个铜互连表面和所述一个或多个电介质表面中的至少--个。
6. 如权利要求1所述的方法,其中所述一个或多个电介质表面包括级 间电介质层的一部分。
7. 如权利要求1所述的方法,其中所述一个或多个电介质表面包括位 于多孔级间电介质层的至少一部分上的硬掩模层的一部分。
8. 如权利要求1所述的方法,其中 形成所述加速的帽封GCIB还包括由如下元素生成气体团簇离子,这 些元素在熔入到铜表面中时反应形成电绝缘材料,在熔入到电介质表面中 时反应形成电绝缘材料;并且所形成的至少一个帽封结构是电绝缘帽封结构。
9. 如权利要求8所述的方法,其中所述元素由选自由C、 N、 0、 Si、 B和Ge构成的组中的至少一种元素构成。
10. 如权利要求8所述的方法,其中形成所述加速的帽封GCIB还包括 由惰性气体分子生成气体团簇离子。
11. 如权利要求8所述的方法,其中形成所述加速的帽封GCIB还包括 利用在从约3kV到约50kV的范围内的加速电势加速所生成的气体团簇离
12. 如权利要求8所述的方法,其中所述引导所述加速的帽封GCIB的 步骤导致在从约1X10"到约1X10"气体团簇离子/ci^的范围内的照射剂 量被传输到所述一个或多个铜互连表面和所述一个或多个电介质表面中的 至少一个。
13. 如权利要求8所述的方法,还包括形成位于所形成的至少一个帽 封结构上的至少一个绝缘层的步骤。
14. 如权利要求13所述的方法,其中所述形成至少一个绝缘层的步骤 采用了PECVD沉积工艺。
15. 如权利要求13所述的方法,其中所形成的至少一个绝缘层由选自 由碳化硅、氮化硅和氮化硅碳构成的组中的一种材料构成。
16. 如权利要求1所述的方法,其中形成所述加速的帽封GCIB还包括由如下元素生成气体团簇离子,这 些元素在熔入到铜表面中时反应形成导电材料,在熔入到电介质表面中时 反应形成电绝缘材料;并且所形成的至少一个帽封结构包括所述铜互连部分的被照射区域上的导 电帽封结构和所述电介质部分的被照射区域上的电绝缘帽封结构中的至少
17. 如权利要求16所述的方法,其中所述元素由来自由B和Ti构成 的组中的至少一种元素构成。
18. 如权利要求17所述的方法,其中所述气体团簇离子还包括惰性气 体分子0
19. 如权利要求16所述的方法,还包括形成在所形成的至少一个帽封 结构上的至少一层电介质扩散阻挡膜的步骤。
20. 如权利要求19所述的方法,其中所述形成至少一层电介质扩散阻 挡膜的步骤采用了 PECVD沉积工艺。
21. 如权利要求19所述的方法,其中所述形成至少一层电介质扩散阻 挡膜的步骤采用了 GCIB沉积工艺。
22. 如权利要求19所述的方法,其中所形成的至少一层电介质扩散阻 挡膜由选自由碳化硅、氮化硅和氮化硅碳构成的组中的一种材料构成。
23. 如权利要求16所述的方法,其中形成所述加速的帽封GCIB还包 括利用在从约3kV到约50kV的范围内的加速电势加速所生成的气体团簇 离子。
24. 如权利要求16所述的方法,其中所述引导所述加速的帽封GCIB 的步骤导致在从约1X10"到约lX10"气体团簇离子/ci^的范围内的照射 剂量被传输到所述一个或多个铜互连表面和所述一个或多个电介质表面中 的至少一个。
25. —种在具有一个或多个铜互连表面和覆盖电介质材料的一个或多 个阻挡层表面的结构上形成帽封结构的方法,包括以下步骤将所述结构置于低压室中;在所述低压室内形成加速的刻蚀和帽封GCIB;以及 将所述加速的刻蚀和帽封GCIB引导到所述一个或多个铜互连表面和 所述一个或多个阻挡层表面中的至少一个上,以在所述加速的刻蚀和帽封 GCIB被引导到其上的一个或多个铜互连表面上形成帽封结构,并刻蚀掉 所述加速的刻蚀和帽封GCIB被引导到其上的一个或多个阻挡层表面以暴 露下面的电介质材料。
26. 如权利要求25所述的方法,还包括以下步骤 测量作为衬底表面上的位置的函数的一个或多个阻挡层的厚度,其各 自对应于所述一个或多个阻挡层表面之一;以及生成关于所述衬底表面上所述一个或多个阻挡层厚度的图; 其中所述引导步骤还包括补偿所述一个或多个测得的阻挡层厚度以便去除最小量的暴露电介质材料。
27. 如权利要求25所述的方法,其中形成所述加速的刻蚀和帽封 GCIB还包括由包括选自由F和S构成的组中的至少一种元素的气体生成 气体团簇离子。
28. 如权利要求25所述的方法,其中形成所述加速的刻蚀和帽封 GCIB还包括由包括选自由F、 S、 Ar、 Xe和N构成的组中的至少一种元 素的气体生成气体团簇离子。
29. 如权利要求25所述的方法,其中形成所述加速的刻蚀和帽封 GCIB包括由以约200sccm到约3000sccm的喷嘴气体流率流动的源气体生成气 体团簇离子;以及利用在从约10kV到约50kV的范围内的加速电势加速所述气体团簇离子。
30. 如权利要求25所述的方法,还包括在所述刻蚀和帽封GCIB形成 和引导步骤之前的以下步骤在所述低压室内形成加速的清洁GCIB;以及将所述加速的清洁GCIB引导到所述一个或多个铜互连表面和所述一 个或多个阻挡层表面中的至少一个上,以便清洁所述加速的清洁GCIB被 引导到其上的至少一个表面。
31. 如权利要求30所述的方法,其中形成所述加速的清洁GCIB包括 由包括选自由Ar、 N2、 NH3和H2构成的组中的至少一种气体的一种或多 种气体生成气体团簇离子。
32. 如权利要求31所述的方法,其中形成所述加速的清洁GCIB还包 括利用在从约3kV到约50kV的范围内的加速电势加速所生成的气体团簇 离子。
33. 如权利要求30所述的方法,其中引导所述加速的清洁GCIB导致 在从约5X10^到约5X10"气体团簇离子/cn^的范围内的照射剂量被传输 到所述一个或多个铜互连表面和所述一个或多个阻挡层表面中的至少一个。
34. —种在具有一个或多个铜互连表面和覆盖电介质材料的一个或多 个阻挡层表面的结构上形成帽封结构的方法,包括以下步骤-将所述结构置于低压室中; 在所述低压室内形成加速的刻蚀GCIB;将所述加速的刻蚀GCIB引导到所述一个或多个阻挡层表面上,以便 刻蚀掉所述刻蚀GCIB被引导到其上的一个或多个阻挡层表面以暴露下面 的所述电介质材料;在所述低压室内形成加速的帽封GCIB;以及将所述加速的帽封GCIB引导到所述一个或多个铜互连表面上,以便 在其上形成一个或多个帽封结构。
35. 如权利要求34所述的方法,还包括以下步骤 测量作为所述衬底表面上的位置的函数一个或多个阻挡层的厚度,其各自与所述一个或多个阻挡层表面之一相关联;以及 生成关于所述衬底表面上阻挡层厚度的图;其中所述引导所述加速的刻蚀GCIB的步骤还包括补偿所述--个或多 个测得的阻挡层厚度,以便去除最小量的暴露电介质材料。
36. 如权利要求34所述的方法,其中所述加速的帽封GCIB由选自由 C、 N、 O、 Si、 B、 Ge、 Ti、 S和F构成的组中的至少一种元素构成。
37. 如权利要求34所述的方法,其中所述加速的帽封GCIB由选自包 含C、 N、 O、 Si、 B、 Ge和Ti的组中的至少一种元素构成。
38. 如权利要求36所述的方法,其中所述加速的帽封GCIB气体团簇 离子还包括选自由Ar和Xe构成的组中的至少一种气体。
39. 如权利要求37所述的方法,其中所述加速的帽封GCIB气体团簇 离子还包括选自由Ar和Xe构成的组中的至少一种气体。
40. 如权利要求34所述的方法,其中形成所述加速的帽封GCIB包括利用在从约3kV到约50kV的范围内 的加速电势加速帽封GCIB气体团簇离子;并且所述引导所述加速的帽封GCIB的步骤导致在从约1X10"到约IX 1017气体团簇离子/cm2的范围内的照射剂量被传输到所述一个或多个铜互 连表面中的至少一个。
41. 如权利要求34所述的方法,还包括在所述形成和引导步骤之前的 以下步骤在所述低压室内形成加速的清洁GCIB;将所述加速的清洁GCIB引导到所述一个或多个铜互连表面和一个或 多个阻挡层表面中的至少一个上,以便清洁所述加速的清洁GCIB被引导 到其上的至少一个表面。
42. 如权利要求41所述的方法,其中所述加速的清洁GCIB由在由 Ar、 N2、 NH3和H2构成的组中的至少一种气体分子构成。
43. 如权利要求41所述的方法,其中形成所述加速的清洁GCIB包括利用在从约3kV到约50kV的范围内 的加速电势加速清洁GCIB气体团簇离子;并且所述引导所述清洁GCIB的步骤导致在从约5乂1013到约5X10"气体 团簇离子/cm2的范围内的照射剂量被传输到所述一个或多个铜互连表面和 所述一个或多个阻挡层表面中的至少一个,以便清洁所述加速的清洁 GCIB被引导到其上的至少一个表面。
44. 如权利要求34所述的方法,其中形成所述加速的刻蚀GCIB包括 以下步骤由以约200sccm到约3000sccm的喷嘴气体流率流动的源气体生成气 体团簇离子;以及利用在从约10kV到约50kV的范围内的加速电势加速所述气体团簇离子。
45. —种在其表面上包括GCIB熔入的帽封结构的铜互连。
46. 如权利要求45所述的铜互连,其中所述帽封结构是所述表面上的 薄膜。
47. 如权利要求46所述的铜互连,其中所述薄膜是导电的。
48. 如权利要求46所述的铜互连,其中所述薄膜是电介质膜。
49. 如权利要求46所述的铜互连,其中所述薄膜由选自由C、 N、 O、 Si、 B、 Ge、 Ti、 F和S构成的组中的一种或多种元素构成。
50. 如权利要求46所述的铜互连,其中所述薄膜由选自由氧化物、碳 化物和氮化物构成的组中的至少一种材料构成。
51. 如权利要求46所述的铜互连,其中所述薄膜由选自由Si3N4、 SiCN、 BN、 CuF2、 Ti02、 CuC03、 B、 Ti和硼硅酸盐玻璃构成的组中的材 料构成。
52. 如权利要求45所述的铜互连,还包括上覆的电介质扩散阻挡膜。
53. 如权利要求52所述的铜互连,其中所述电介质扩散阻挡膜由选自 由Si3N4、 SiCN和SiC构成的组中的材料构成。
54. —种在其表面上包括GCIB熔入的薄膜帽封结构的级间电介〗贡层。
55. 如权利要求54所述的级间电介质层,其中所述薄膜由选自由C、 N、 O、 Si、 B、 Ge、 Ti、 F和S构成的组中的一种或多种元素构成。
56. —种在其表面上包括GCIB熔入的薄膜帽封结构的硬掩模层。
57. 如权利要求56所述的硬掩模层,其中所述薄膜由选自由B和Ti 构成的组中的一种或多种元素构成。
58. 如权利要求54所述的级间电介质层,还包括上覆的由选自由 Si3N4、 SiCN和SiC构成的组中的材料构成的电介质扩散阻挡膜。
59. 如权利要求56所述的硬掩模层,还包括上覆的由选自由Si3N4、 SiCN和SiC构成的组中的材料构成的电介质扩散阻挡膜。
全文摘要
本发明公开了用在互连结构中的铜互连布线层(602)的表面上的一层或多层帽封层(614),以及通过应用气体团簇离子束处理而形成用于集成电路的改善的集成互连结构的方法。本发明具有降低铜扩散并且提高电迁移寿命的结果,并且避免了选择性金属帽封技术的使用和其附带的产量问题。
文档编号H01L23/40GK101107699SQ200580046189
公开日2008年1月16日 申请日期2005年11月8日 优先权日2004年11月8日
发明者亚瑟·J·勒恩, 史蒂文·R·谢尔曼, 约翰·J·豪特拉, 罗伯特·M·杰弗肯 申请人:Tel艾派恩有限公司