专利名称:探头和探测卡制造方法
技术领域:
本发明一般涉及经改进的设计和制造探测卡组件的方法,尤其是运用预制元件来加速设计和制造探测卡组件。
背景技术:
图1示出在设计与制造半导体装置如微电子“芯片”方面涉及的一般活动的典型流程的简化图。起初,设计出半导体装置(10),并选择和/或设计出测试仪与测试算法(12)以测试该半导体装置。然后运用半导体装置设计、测试仪和/或测试算法的数据,特地设计一种测试半导体装置的探测卡(14)。同时,一般都准备好以商业批量开始制造该半导体装置。一旦设计和制造出探测卡并准备好制造半导体装置,就按商业批量制造半导体装置(18)。在半导体装置制造时,每一个都要测试(20),把合格品运给客户(22)。
图2示出用于在步骤20测试半导体装置的典型测试装置简化的框图。测试仪120产生要输入被测半导体装置160的测试信号,然后测试仪120监视被测半导体装置160产生的响应信号,测试仪120通过探测卡组件100与被测半导体装置160联系。
如图2和图3(示出探测卡组件100的截面)所示,典型的探测卡组件100包括一块印制电路板102,后者一般有若干测试仪触点130,通过连接线122(图3中未示出)连接半导体测试仪120(图3中未示出)。探头106附接于印制电路板102,它包含的探针108与正被测试的半导体装置160上的测试点162接触。
如图3所示,印制电路板102上面或内部的电气迹线150把测试仪触点130接至探头组件106并最终接至探针108,因而一方面在半导体测试仪120上,另一方面在探针108上建立了输入与输出(未示出)之间的电气通路。同样如图3所示,探头106通常经连接线152,例如焊球连接线或插针,焊接至印制电路板102、探头156或二者。印制电路板102上面或内部的迹线150将测试仪触点130连接至连接线152,探头106上的迹线154将连接线152连接至探针108。
因此,探测卡组件100实际上起着接口的作用,在测试仪120与被测装置160之间为测试与响应信号提供各种电气通路。众所周知,为满足被测装置160特定的测试要求和测试仪120的测试规范,必须专门设计探测卡组件100。例如,探测卡组件100的探针108必须定为成与被测装置160上的测试触点162图案匹配,而探测卡组件100必须专门设计成使各探针108通过测试仪触点130电气连接到合适的测试仪连接线122。为此,如图1所示,只有在设计出半导体装置(10)和选择了测试仪和/或测试算法之后,才能开始设计和制造探测卡组件14。
众所周知,半导体装置只有在测试(20)之后才能运送给客户(22),而探测卡组件是测试系统的必要元件。因此,即使完成了半导体装置的制造准备步骤(16),也要到完成了探测卡的设计与制造(14)之后才能着手半导体装置的制造、测试和运输(18、20、22)。这样,若探测卡设计制造(14)比半导体装置制造准备(16)时间更长,而这种情况正日益增多,则设计制造探测卡所化的额外时间就延长了图1所示的全过程,推迟了向客户运送半导体装置的最后步骤(22)。所以,要求用一种方法来缩短设计制造探测卡组件的步骤。
发明内容
本发明一般涉及探测卡组件的制作方法,这类探测卡组件用于测试半导体装置。对一种或多种预定的设计,预制探测卡组件的一种或多种元件,然后接收有关新设计半导体装置的设计数据与测试该半导体装置所用的测试仪与测试算法的描述数据,利用收到的数据定制一种或多种选择的预制元件,接着用选择和定制的元件构成探测卡组件。使用预制元件缩短了设计制造探测卡组件的过程。
图1示出设计制造半导体装置涉及的一般活动的典型流程的简图。
图2示出用于测试半导体装置的典型测试系统的简化框图。
图3示出一般探测卡组件和被测半导体装置的截面图。
图4示出本发明一示例实施例。
图5示出执行图4步骤402的示例步骤。
图6示出示例的预制印制电路板和探头座。
图7示出执行图4步骤408的示例步骤。
图8A示出对探头座作定制化的示例方式。
图8B示出联接到印制电路板的定制探头座。
图9A示出探头座两侧的定制化。
图9B示出联接到印制电路板的定制探头座。
图10A示出在定制层内形成电路元件。
图10B示出对定制部分有选择地添加电路元件。
图11A~11C示出一示例性带埋置退耦小平面(embedded decouplingplanelets)的探头座。
图12示出选择性连接图11A~1C的小平面而形成较大的退耦平面。
图13A与13B示出一示例性带埋置阻抗改变小平面的探头座。
图14示出包括介入器的探测卡组件。
图15示出包括测试仪电缆接口的探测卡组件。
图16示出一示例性预制的探头座。
图17是图16的剖视图。
图18示出对图17的示例探头座作定制化的示例方式。
图19A与19B是图18的剖视图。
图20示出对图17的示例探头座作进一步定制化的示例方式。
图21A与21B是图20的剖视图。
图22示出对图17的示例探头座添加示例的探针与电子元件。
图23是图22的剖视图。
图24示出一示例性预制的探头座。
图25A与25B是图24的剖视图。
图26示出对图24的示例探头座作定制化的示例方式。
图27A~27C是图26的剖视图。
图28示出对图24的示例探头座添加示例的探针与电子元件。
图29A与29B是图28的剖视图。
图30示出一示例性预制的探头座。
图31~34示出图30中探头座的部分视图。
图35示出对图30的示例性探头座作定制化。
具体实施例方式
本发明针对一种改进的设计制造探测卡组件的方法。以下说明书描述本发明的若干示例性实施例和应用,但本发明并不限于这些实施例和应用,或者描述实施例与应用操作的方式。
图4示出本发明原理对半导体装置的设计、制造和运输过程的示例性应用。如图所示,初始步骤是设计一新的半导体装置(404),诸如微电子“芯片”。还必须选择和/或设计测试该半导体装置的测试仪和/或测试算法(406)。与这两个步骤分开的是,最好在这些步骤之前先预制出半标准的探测卡组件(402)。一旦完成了半导体设计(404)并选出测试仪和/或测试算法(406),就在步骤408运用有关半导体设计和测试仪和/或测试算法的数据对预制的半标准探测卡组件作定制化。使用预制的半标准探测卡组件,简化和缩短了探测卡组件的设计与制造过程(408)。在图4所示的全过程中,因设计与制造探测卡组件的步骤(408)是一关键步骤,故缩短这一步就可缩短图4的全过程。
为后来对特定的半导体装置设计和测试仪和/或测试算法的定制化(408)有多种方式来预制半标准的探测卡组件(402)。图5示出半标准探测卡组件预制步骤(402)的一实施例,图7示出用半标准探测卡组件设计与制造探测卡组件步骤(408)的一实施例。
在图5的步骤502,对一种或多种标准设计,预制标准印制电路板。设计为“标准”,指它们不用任何特定的半导体设计和测试算法驱使。印制电路板为“预制”,指它们在半导体设计步骤(404)和图4的测试仪和/或测试算法选择步骤(406)完成之前,可先作且最好作设计与制造。当然,标准设计一般对应于普通的半导体设计或设计方法以及普通的测试仪配置与测试算法或方法。
本发明不依赖于使用任何特定类型的印制电路板。图6示出可供本发明使用的示例印制电路板的剖视图,可以看出,印制电路板602包括与测试仪(图6未示出)电气连接的测试仪触点604、606、608、610。印制电路板602一般为圆形,有许多测试仪触点;为了简明,只示出四个触点604、606、608、610。电气连接线612将测试仪触点604、606、608、610连接至触点620、622、624与626。应该理解,连接线612示意性示出,可以取多种物理形式,如位于印制电路板602顶侧(见图6的透视图)或内部的导电迹线可将测试仪触点604、606、608、610连接至通路(未示出),该通路则通过印制电路板延伸至触点620、622、624、626;或者,印制电路板602可以包含一孔或腔(可装配探头630),而触点620、622、624、626都位于该孔或腔内。1998年4月14日提交的共同待批美国专利申请号09/060,308描述了另一例可使用的非专用印制电路板,该申请全部通过引用包括在这里。须指出,该印制电路板可用适合建立一平台的任何材料或材料的组合来制作,该平台用于支承测试仪触点604、606、608、610和触点620、622、624、626,其之间有电气连接线。
对印制电路板建立标准设计不限制指标(criteria)。再参照图6,一例非专用的指标是测试仪触点604、606、608、610的图案,即把印制电路板602预制成具有测试仪触点604、606、608、610特定的图案,如便于连接已知的测试仪(图6中未示出)。另一例非专用的建立标准设计的指标是触点620、622、624、626与探头630连接的图案。而且,印制电路板602可以预制成具有任一数量触点620、622、624、626的预定的图案。再一例非专用的标准设计指标是布线612将测试仪触点604、606、608、610连接至触点620、622、624、626的图案,而且可将印制电路板602预制成具有任一数量这种布线612预定的图案。更明白地说,可将印制电路板602预制成若干预定尺寸之一。当然,标准设计可以基于上述示例指标的任一种组合或任何其它合适的指标。
再次参照图5,在步骤504,将半标准探头座预制成一种或多种预定的半标准设计。设计为“半标准”,指其初始设计与制造不受任一特定半导体装置设计或测试算法的驱使,但它们被设计成以后对特定的半导体装置设计、测试仪和/或测试算法定制化。探头座为“预制”,指起初它们最好在完成图4的半导体装置设计步骤404和测试仪和/或测试算法选择步骤406之前先被设计与制造。当然,半标准设计一般对应于普通的测试仪配置和测试算法或方法。
本发明不依赖于使用任何特定类型的探头。图6示出可供本发明使用的示例探头座630的截面图。在图6所示的示例性探头座630中,探头座630包括触点632、634、636、638与印制电路板602上的触点620、622、624、626形成电气连接。通路640、642、644、646通过探头座630对触点648、652、654提供电气连接。这些通路构成布线路径,或者叫布线图案。如下所述,可将定制的探针图案(未示出)与触点648、650、652、654之间定制的互连线加到探头座630的底面(见图6的透视图)。
图6所示的示例探头座630较佳地由实心和分层的陶瓷材料构成。但应指出,该探头座可用适合建立平台的任一种材料或材料组合构成,该平台用于支承触点632、634、636、638和触点648、650、652、654,其之间有电气连接线。还要指出,可以制作通路640、642、644、646或者换用其它连接器,使得探头座630一面的触点被设置成与另一面触点不同的图案。1998年3月16日提交的美国专利申请号09/042,606揭示了一种可供本发明使用的非专用可替换的硅基探头,其整个内容通过引用包括在这里。
与印制电路板一样,对建立预制的半标准设计的指标不加限制。再参照图6,一例非专用的指标是触点632、634、636、638用于接触印制电路板602的图案,即预制的探头座具有这类触点特定的图案,如可以被设计成与预制的印制电路板602之一上的触点620、622、624、626的图案相匹配,如图6所示。建立探头座初始设计的另一例非专用的指标是触点648、650、652、654将连接至探针(图6中未示出)的图案,同样地,可将探头座630预制成具有任一种这类触点的预定的图案。又一例非专用的标准设计指标是通路或布线640、642、644、646的图案,它把探头座630一侧的触点连接至另一侧的触点。可将探头座630预制成具有任一种这类通路或布线预定的图案。与印制电路板602一样,可将探头座630预制成若干预定尺寸之一。当然,半标准设计可以基于上述示例指标的任意组合或任何其它合适的指标。
现参照图7(示出执行图8步骤408的示例过程),把有关特定待测试半导体装置设计的数据接收成有关准备使用的测试仪和测试算法的数据(702)。数据可以包括(无限制)诸如半导体装置上的测试点位置、准备输入所选一个个测试点的测试信号的信息、各测试点预期的响应信息和/或其它半导体装置的测试信息。运用在步骤702收到的半导体装置设计数据、测试仪和/或测试算法数据,在步骤704、706选择一预制的标准印制电路板和半标准探头座。再应用在步骤702收到的这些数据,把选择的探头座定制成符合半导体装置设计、测试仪和/或测试算法的特定测试要求(708)。此外,通过将定制的探头座与选择的印制电路板组合在一起,组装成探测卡组件(710)。要注意,图7所示和上述的所有步骤不一定按图示次序执行,如在定制探头座之前,可以先将探头座与标准印制电路板组合起来,之后再定制探头座。
图8A示出定制探头座的示例方式。图8A的探头座630类似于上述对图6讨论的探头座630。较佳地用陶瓷等非导电材料制成,其多个通路640、642、644、646(为简化讨论,只示出四条)用于将探头座一侧的触点632。634、636、638(同样只示出四个,以便于讨论)的图案电气连接至探头座630另一侧的类似触点(只示出四个)图案。
在图8A实例中,以导电与绝缘材料图案层(802)形式对探头630的809侧作定制化。探针810、812、814(为了简化,只示出三根)的定制图案形成在最外层,该探针图案定制成与待测试半导体装置(图8A未示出)上的测试触点图案相匹配。定制化层802限定的导电路径,形成从通路640、642、644、646到探针810、812、814的信号路径(应指出,定制化层相对探头座的尺寸不必按比例)。在图8A的特例中,导电路径806将通路640连接至探针812。同样地,导电路径808把通路642接至探针814。导电路径807先从通路646垂向伸出,但接着转入页面,故在图8A中看不到。它将通路646与探针810相接(注意,通路810相对通路812、814进入页面)。通路644不使用,故不接探针。这样,定制定位的探针810、812、814被加到探头座630而对应于待测试半导体装置上的诸特定测试点,而定制层802提供从通路640、642、644、646到诸探针的定制布线路径。
应该指出,本发明可使用任一类适合接触被测试半导体装置上诸测试点的探针。通常,探针将包括一块形成在定制化层802外层上或内部的触片,和形成在该触片上的细长导电结构。细长导电结构的例子包括但不限于针状探针与眼镜蛇状探针。另一例可用的细长导电结构是有弹性的弹簧状结构,美国专利号.5,476,211、5,917,707与6,184,053 B1都描述过这类结构的实例,这些专利的全部内容通过引用包括在这里。当然,探针只是简单的触片,若半导体上的测试点是突起的细长弹簧状连接器或其它抬高或延伸的测试点,则它们特别有效。特别适合半导体装置上抬高或延伸的测试点的其它合适的“探针”,包括形成在定制化层802外层里的导电凹槽或插口,本文所用的术语“探针”,包括所有前述的结构与类似结构。
图8A的示例定制化层802,可在探头座630上用半导体领域熟知的普通石印(lithographic)术(包括激光图案化技术)逐层形成,或者与探头座630分开形成,然后与探头座连接。当然,定制化层802还可用前述技术的组合来形成。用一个或多个选择的预制半定制层相连接而形成定制化层802,也在本发明范围内。
一旦定制了探头座630,就把它连结到选择的印制电路板602,如图8B所示。显然,探针810、812、814(示出其中的三根)的定制图案已形成,并对这些探针特地连接了测试仪触点604、606、608、610(示出其中第四个)。在图8B的例中,测试仪的触点604连接探针812,触点606连接探针814,触点608不使用故不连接探针,触点610连接探针810。
如图9A与9B所示,可在探头座630两侧形成定制化。如所示,根据标准的配置,定制化层950对通路640、642、644、646与印制电路板602上相应触片之间的连接线作更改或定制。就是说,虽然印制电路板602上的触片620仍通过导电路径954连接至通路640,但是印制电路板602上的触点622现还通过导电路径960(许多路径伸入图9A与9B所示视图的页面)连接至通路646,而触点624通过导电路径956连接至通路642。本例中触点626和通路644不使用,故不连接。
在图5~9B示例过程中,尽管只对探头应用定制化而印制电路板完全是标准的,但是也可选择地或附加地对印制电路板应用定制化,例如可对印制电路板的下面(从图9A与9B的透视图看)应用9A与9B所示的部分或全部示例性定制化层950。同样地,定制化层(未示出)可加到其上设置了测试仪触点604、606、608、610的印制电路板602的上面,以便定制测试仪(未示出)与印制电路板之间的连接线。其实,以一种和多种全标准或半标准配置方式预制印制电路板602和探头座630的任一个或多个表面,以后再定制半标准表面,也在本发明范围内。
可在上述定制化层内任意形成诸电路元件。图10A示出在定制化层1050内形成的示例性电阻器1006与电容器1014。在图10A的例中,根据对图8A~9B的上述讨论,在探头座630中的通路640与端子1008之间形成了导电路径1004。导电路径1004内埋置的电阻材料1006对该路径添加了一电阻器。可在定制化层1050内用半导体领域中己知的普通石印术(包括激光图案化技术)形成电阻材料1006,在通路642与端子1012之间形成类似的导电路径1010。如图10A所示,沿着导电路径1010形成电容器1014。以同样的方法,可在定制化层1050内埋置任意数量与类型的电路元件。实际上,应用制作半导体装置的普通石印术(包括激光图案化技术)在定制化层内形成微电子电路如集成电路,也在本发明范围内。因此,还可将微处理器、存储器等电路元件做入定制化层1050。
图10B示出将选择的电路元件配入定制化的另一种方法。与探头座630一样,示例的探头座1030包含的通路1040、1042、1044、1046,提供了从探头座一侧到另一侧的导电路径。但与探头座630不同,探头座1030包括埋置的电路元件。如该例所示,探头座1030包括埋置的电阻器1062、电容器1070和电容器1076,通路1060、1066、1068、1072、1074对这些埋置的电路元件提供信号路径。定制层1020有选择地包括埋置的电路元件。在图10B的例子中,电阻器1062包含在通路1040与触点1026之间的定制导电路径1022、1024中,串联电容器1070包含在通路1042与触点1034之间的定制导电路径1028、1032中,而接地电容器1076包含在通路1044与触点1038之间的定制导电路径1036中。
图11A~12示出将定制的退耦电容包含在探测卡组件里的一种方法。如图11A所示,示例的探头座1130包括若干埋置的平行电源与接地小平面,用于使电源(未示出)退耦。如下所述,诸小平面能选择地连接成较大的退耦平面。
图11A示出带埋置的电源与接地小平面的示例半标准探头1130的顶视图。该例中(如图11B与11C所示),电源小平面1120、1140、1160、1180和接地小平面1204、1208(只示出两个)均埋置在探头1130内,从图11A的透视图看,电源小平面位于接地小平面的上方。为此,图11A只示出电源小平面1120、1140、1160、1180,它们被示为虚线(标示被埋置)。
若干信号通路(本例为四条)穿过每组平行的电源与接地小平面(如信号通路1122、1124、1126、1128穿过电源平面1120与接地平面1204)。图11C是探头1130通过这四条通路中的两条截取的截面,这些通路穿过两组平行的电源与接地小平面的每一组。如图11C所示,信号通路1126、1128提供从探头1130一侧到另一侧的信号路径,因而两信号通路穿过一组平行的电源与接地小平面1120、1204。电源小平面1120内的绝缘孔1220让信号通路1126穿过电源小平面1120,并使信号通路1126与电源小平面1120绝缘。接地小平面1204内的绝缘孔1224同样地让信号通路1126穿过接地小平面1204,同时使信号通路1126与接地小平面1204绝缘。类似的绝缘孔1222、1226、1230、1232、1234、1236让信号通路1128、1146、1148穿过电源与接地小平面1120、1204、1140、1208。
再参照图11A,电源通路1132、1152、1172、1192对埋置的电源小平面1120、1140、1160、1180提供电气连接,而接地通路1134、1154、1174、1194同样对相应埋置的接地平面1204、1208(图11B与11C只示出两个)提供电气连接。图11B是探头1130通过电源通路1132、1152和接地通路1134、1154截取的截面。如图11B所示,电源通路1132对电源小平面1120提供电气连接,而接地通路1134对接地小平面1204提供电气连接。类似地,电源通路1152和接地通路1154分别向电源小平面1140和接地小平面1208提供电气连接。
每组几乎平行的电源与接地小平面向探头提供与电源(未示出)并联的退耦电容。有选择地连接邻近的电源通路1132、1152、1172、1192和邻近的接地通路1134、1154、1174、1194,能建立成更大的退耦平面组。例如像图12所示,用有效地连接电源小平面1120、1140的迹线1260电气连接电源通路1132、1152。同样地,迹线1270电气连接接地通路1134、1154,有效地连接了对应于电源小平面1120、1140的接地小平面(未示出)。以图8A中定制化层802、图9A中950和图10A中1050类似的方式,可在加到探头1130里的定制化层内形成极限1260、1270。以这一方法,可将1130等半标准探头座预制成包含多组起初不连接的退耦电源与接地小平面,之后可以有选择地连接这几组退耦电源和接地小平面,形成定位与定尺寸的定制退耦电源与接地平面。
应该指出,图11A~12所示的几组平行电源与接地平面中每组只包括一个电源平面与一个接地平面。平行的组可任意包括一个以上的电源平面和/或一个以上的接地平面。为简化讨论,图11A~12示出一个电源平面和一个接地平面。
虽然上述的定制连接耦合小平面的方法具有一般适用性,但在同时测试半导体晶片上多个芯片时尤其有利。通过像上述那样有选择地连接小平面,就能建成通常对应于每块正被测试芯片的有效退耦平面。
图13A与13B示出在探头座等半标准元件中定制通路阻抗。如图13A与13B所示,示例的预制探头座1330包括几组几乎平行的埋置导电小平面1304、1310、1320、1326,它们包围着信号通路1306、1312、1322、1328。图13A是顶视图,只示出每组1304、1310、1320、1326中最上面的小平面,它们被示为虚线,表示埋置。如图13B所示,它是图13A的截面图,每组小平面包括两个几乎平行的小平面。但要指出,这些组不要求包括两个小平面,每组可以只包括一个小平面或两个以上小平面。
如图13B所示,绝缘的孔1360、1362使信号通路1306穿过小平面1304、1340而不与小平面电接触。图13B还示出,绝缘孔1364、1366同样让信号通路1312穿过小平面1310、1342。虽然图13B未示出,但在小平面1320。1326内对信号通路1322、1328设置了类似的绝缘孔。小平面通路1302、1308、1318、1324对小平面1304、1310、1320、1326提供电气接入。这在图13B中显示得很清楚,小平面通路1302电气连接至一组几乎平行的小平面1304与1340,而小平面通路1308电气连接至另一组几乎平行的小平面1310、1342。信号通路的阻抗可通过有选择地将其有关小平面通路接地(接地连接未示出)而得以调节。如要改变信号通路1312的阻抗,可将其有关小平面通路1308接地。在定制化层(未示出)诸如图8A~10B所示的层中,通过在探头座1330一侧或两侧建立一条从所选小平面通路到接地连接线(未示出)的导电迹线,可将任一条小平面通路1302、1308、1318、1324有选择地连接至接地连接线(未示出)。
这样,可将半标准探头座如1330预制成包括多组起先无效的接地小平面组,以便改变信号通路阻抗。之后,通过将选择的小平面组接地而有选择地激活某几组接地小平面,定制半标准探头座,从而改变有关的信号通路的阻抗。
虽然以上对包括印制电路板与探头的称为标准探测卡设计讨论了本发明的应用,但本发明的原理可以有利地应用于各种探测卡设计。实际上本发明不要求应用于任何特定的探测卡类型或设计,而能广泛地适用于所有的探测卡类型与设计。
带插入器的探测卡是一例非专用的有利于应用本发明的探测卡设计。如图14所示和美国专利号5,974,662(其内容通过引用包括在这里)所述,这种探测卡包括位于印制电路板1402与探头1430之间的插入器1420。印制电路板1402是普通印制电路板,具有与测试仪(未示出)电气连接的测试仪触点1404。测试仪触点1404电气连接至触点1406,后者又通过互连线1408与插入器1420上的触点1410电气连接。插入器1420的一侧的触点1410较佳地利用通路(未示出)与其另一侧的触点1411电气连接。互连线1412将插入器1420上的触点1411电气连接至探头1430上的触点1414,而后者则较佳地利用通路(未示出)接至探针1416。探针1416与被测半导体装置1460上的测试点1432电气连接。互连线1408与1412较佳地是有弹性的弹簧状互连元件,上述美国专利好.5,476,211、5,917,707和6,184,053B1都描述过这类例子。探针1416也是有弹性的弹簧状互连元件。
印制电路板1402类似于参照图6讨论的印制电路板602,同样地,探头1430类似于参照图6讨论的探头630。像探头630或1430一样,插入器1420用陶瓷材料构成,导电通路在此穿过,且任选地端接在插入器一侧或两侧上的导电端子里。
图14的探测卡可按上面讨论并示于图4~13B的原理构成,即可将印制电路板1402、插入器1420与探头1430中的一个或多个预制成一种或多种全标准设计,而将其余的印制电路板、插入器与探头中的一个或多个预制成一种或多种半标准设计。然后根据收到的有关特定半导体设计、测试仪和测试该半导体的测试算法的数据,选择预制的全标准和/或半标准印制电路板1402、插入器1420与探头1430,并对半导体设计、测试仪与测试算法定制半标准元件。可使用任何上述定制化方法。例如可对印制电路板1402、插入器1420和/或探头1430的任一面增设定制化层,如802、950与1050。在一较佳实施例中,印制电路板1402与插入器1420为全标准,只对探头1430加定制化。
图15示出有利于应用本发明的另一例非专用的探测卡设计。图15中,测试仪电缆1502(接至图15中未示出的测试仪)电气连接至电缆接口1504。互连线1508把电缆接口1504上的触点1506电气连接至插入器1520上的触点1510,互连线1508较佳为有弹性的弹簧状互连线,如上述美国专利号5,476,211、5,917,707与6,184,053B1描述的互连线。互连线1512同样将插入器1520上的触点1511连接至探头1530上的触点1514,该互连线较佳为弹簧状互连线。探头1530上的探针1516排列成接触被测半导体装置1560上的测试点1532。2001年6月20日提交的共同待批专利申请号09/886,521描述了这类探测卡组件,其内容通过引用包括在此。
图15的探测卡组件可按上面讨论并示于图4~13B的原理构成。即可将电缆接口1504、插入器1520与探头1530中的一个或多个预制成一种或多种全标准设计,其余的印制电路板、插入器与探头中的一个或多个预制成一种或多种半标准设计。然后,收到有关特定半导体设计、测试仪和半导体测试该半导体的测试算法的数据后,选出预制的全标准和/或半标准电缆接口1504、插入器1520和探头1530,并对半导体设计、测试仪和测试算法定制半标准元件。可以应用上述任一种定制化方法。例如可对电缆接口1504、插入器1520和/或探头1530的任一面添加定制化层,如802、950与1050。在一较佳实施例中,电缆接口1504与插入器1520为全标准,只对探头1530作定制。
图15的探测卡组件可作各种修改,包括但不限于取消插入器1520,使电缆接口1504与探头1530直接连接,不必通过插入器连接。本发明原理适用于对图15所示的探测卡组件作这类变化。
可把本发明原理有利地应用于其它探测卡类型或设计,包括但不限于上述美国专利申请号09/042,606描述的带硅基探头的探针组件;和美国专利申请号09/528,064(2000年3月17日提交,通过引用包括在这里)描述的带多重插入器的探针组件。
图16与17示出的另一示例性半标准探头座,在图5的步骤504制备,再在图7的步骤706选择。如图16与17所示,该探头座包括基片1602,较佳地用非导电材料制作,如陶瓷或其它耐用材料。该半标准探头座包括置于基片1602表面的预制导电材料初始层1604。,该导电材料初始层1604含有接地平面1608和多块信号触片1606a~1606p。接地平面1608与信号触片1606a~1606p用间隙1610相互电隔离,在间隙1610中设置绝缘材料。
虽然信号触片1606a~1606p可用任何图案或布设设置,但最好选图16所示的二维网格图案,其中信号触片一般相互均匀地隔开。而在一较佳实施例中,信号触片1606a~1606p之间的间隙1610约为2~20密耳,尤其合适的是4密耳。同样在一较佳实施例中,信号触片1606a~1606p的设置节距约为20~100密耳,尤其合适为60密耳(这里的节距指信号触片上的点与相邻信号触片上的相同点之间距离)。当然,前述的间距与节距只是示例,本发明并不受此限制。
在一较佳实施例中,如图16与17所示,信号触片16061~1606p大于通路1628与基片1602表面的截面面积。这被认为容易进行连接信号触片1606的迹线的路径选择。此外,信号触片16061~1606p较佳地一般为缺角的方形,如图16所示,据信该形状有助于提高信号触片在基片1606表面上的密度,并使其在基片表面所占的面积为最小,且便于迹线与之连接。但对本发明而言,信号触片1606的尺寸或形状都不是关键,可应用任何尺寸或形状。
应该理解,虽然图16示出16块信号触片1606a~1606p,但可以使用任意数量的信号触片,其实在众多场合中使用了成百上千块信号触片。再者,虽然接地平面1608示为单一平面,但也可包括多个平面。
如图17所示,信号通路1628将信号触片1606a~1606p电气连接至端子1612a~1612p(图17中只能看到端子1612e~1612h)。同样如图17所示,信号通路1628可以包括水平部分,使基片一侧的端子1612a~1612p与另一侧的信号触片1606a~1606p偏移。当然,信号通路1628的水平部分可以倾斜而非水平,或者信号通路1628完全垂直而没有水平或倾斜部分(图17未示出垂直通路的例子)。当然,有些信号通路1628可以是完全垂直,而另一些包括水平或倾斜部分。
可在基片1602中埋置一个或多个(图17示出两个)导电平面1616、1618。在图16与17的例中,导电平面1616、1618。在图16与17示出的例子中,导电平面1616、1618一般平行于探头座1602的外表面,且与探头座外表面的形状与尺寸相近。然而,导电平面1616、1618的形状、尺寸与配置并不是关键,可以使用其它形状、尺寸与配置。如下面更详尽描述的那样,导电平面1616、1618可以接至电压源或地,可控制屏蔽阻抗,或相反影响信号通路1628的电学特性。在图16与17的例中,通路1624把基片1602表面的接地平面1608电气连接至导电平面1616,通路1626则把埋置的平面1616电气连接至导电平面1618。分别设置在埋置平面1616、1618中的孔1620、1622让信号通路1618穿过这些平面,不会将信号通路1618电气连接至埋置平面1616、1618。孔1620、1622含有绝缘材料。
图18~23示出图16与17中探头座的示例性定制化(图7步骤708)。如图18、19A与19B所示,在预制的探头座1602上方形成一层绝缘材料1802(接地平面1608和信号触片1606a~1606p示成虚线,表示在绝缘材料1802下面)。一种非限制的合适绝缘材料是聚酰亚胺。在绝缘层1802中留下或形成孔1804a~1804d、1804f~1804p和1806a~1806c。如下所述,在绝缘层1802上方形成定制导电层,并在初始预制的导电层1604与该定制导电层之间要求互连的地方设置孔1804a~d、1804f~p和1806a~c。本领域的技术人员熟悉在探头座1602上方形成绝缘材料1802并在绝缘层中设置孔1804a~d、1804f~p与1806a~c的各种方法,可使用任一方法。
如图20、21A与21B所示,在绝缘层1802上方形成定制导电材料层,该层包括但不限于与预制的导电层1604的导电互连线、探针触片、电子元件触片、导电迹线和/或其它元件。图20的元件2004a~d和2004f~p示出了几例导电互连线,它们形成于绝缘层1802中留出的孔内。图20的元件2008a~d示出的几例探针触片,是有待形成或附接探针元件的导电区,该探针元件用于探测被测半导体装置上的触片。图20的元件2010a与2010b是几例电子元件触片,它们是有待形成或附接电容器等电子元件端子的导电区。图20的元件2012、2014、2016、2018、2020、2022和2024示出的几例迹线,在导电互连线、探针触片与电子元件触片之间提供电气连接。本领域技术人员熟悉各种导电材料图案层的形成方法,可应用任一种方法。
在图20、21A与21B的例中,信号触片2004f、2004g、2004j与2004k用于测试集成电路。探针触片2008a~d形成于与集成电路上相应测试点一致的位置。探针触片2008a通过迹线2014和互连线2004g电气连接信号触片1606g,探针触片2008b通过迹线2016和互连线2004f连接信号触片1606f,探针触片2008c同样通过迹线2018和互连线2004j连接信号触片1606j,而探针触片2008d通过迹线2020和互连线2004k连接信号触片1606k。
该例中,电容器准备接在探针触片2008d与地之间,因而迹线2020将一块电子元件触片2010b电气连接探针触片2008d,另一电气元件触片2010a则通过迹线2022和互连线2006b电气连接地平面1608。需要的话,还可包括用于其它电子元件如电阻器、二极管、微处理器、微控制器、存储器等的触片。本例中,只有信号触片1606f、1606g、1606j与1606k同被测试集成电路有信号往来(可包含电源和/或接地连接),因此其它信号触片可接至地平面1608,可改善探头的电学性能。在图20的例中,信号触片1606a~d、1606h和1606l通过迹线2012与互连线2004a~d、2004h和2004l相互连接。信号触片1606a~d、1606h与1606l也通过迹线2012与互连线2006a连接地平面1608。不用的信号触片1606i和1606m~p同样相互连接地平面1608,即信号触片1606i和1606m~p通过迹线2024与互连线2004i和2004m~p相互连接,并通过迹线2024与互连线2006c这些信号触片连接地平面1608。在图20、21A与21B的例中,信号触片1606e虽然不用于测试集成电路,但因靠近探针触片2008b,故不连接地平面1608。不过,信号触片1606e也可连接地平面1608和/或其它不用的信号触片。
要指出,为便于图示,图20的迹线2012、2014、2016、2018、2020、2022与2024虽被示成相当细,但这些迹线中的任一条或多条可以做得更粗。实际上,较有利的是将一条或多条这种迹线形成为比绝缘层1802占用更多不用区的平面,同时将这种迹线与定制导电层中不准备电气电气连接该迹线的其它部分绝缘起来。本领域技术人员将明白,增大迹线尺寸可提高其电学特性。或者将这种迹线做成导电材料网格。
如图22与23所示,可在每块探针触片2008a~d上形成或放置探针2202。这样,从探针2202到信号触片1606再到端子1612构成导电路径。如图22与23所示,可在元件触片2010a与2010b上形成或放置电容器2204等电子元件。
显然,探针2202专门放置在标准探头座1602上,而在探针2202之间通过选择的信号触片1606至探头座1602上选择的端子1612形成定制的电气连接。此外,可在探头座1602上专门放置电气元件,包括但不限于电容器、电阻器、有源电子器件等。
还应明白,虽图中未示出,但可在含迹线2012、2014等的定制图案导电层上方形成第二绝缘材料层,接着在该第二绝缘层中形成带通路(类似于通路2004、2006)的另一定制图案导电层,以在第一与第二定制图案导电层之间形成电气连接。同样地,可在第二定制图案导电层上方形成绝缘材料与定制图案导电材料的附加交替层。此时,可在最外面的定制图案层上形成把元件(如探针2008与电容器2204)紧固于探针基片1602外表面的触片。电路元件如电阻器、电容器、二极管、有源电子电路等,当然可以形成或埋置在一层或多层绝缘与图案导电层的交替层内。
如上例所述,对探头座1602添置了绝缘层1802、定制导电层和探针2202后,探头座1602就可经历附加选用的处理步骤。之后,如参照图7的步骤710和图8A~15所述,可将探头座1602连接至其它元件(如图8B的印制电路板602、图14或15的插入器1420、1520等),形成探针卡组件。
应指出,可对通过探测卡组件连接地平面1608的不用的信号触片1606中一片提供接地连接或参考电压,或让地平面1608浮置。另一种办法是设置一根与被测试集成电路上的接地触片接触的探针2202,使它与地平面1608电气连接。当然,还可应用前述方法的某种组合。
图24、25A与25B示出一种图16和17所示半标准探头座的变型。图24、25A与25B示出的该探头座也可在图5的步骤504制备,再在图7的步骤706选择。
如图24、25A与25B所示,该示例的探头座包括基片2402,较佳地用陶瓷等非导电材料或其它耐用材料制作。该半标准探头座包括位于基片2402表面的预制初始图案化导电材料2404,该层包括信号触片2406a~p和地触片2408a~d。信号触片2406a~p相互电隔离,并与地触片2408a~d电隔离。
虽然信号触片2406a~p能以任何图案或布局设置,但优先应用图24的二维格栅图案,其中信号触片通常相互均匀地隔开。而在一较佳实施例中,两相邻信号触片2406a~p间的间距约为2~15密耳,尤其合适的为4密耳。在另一较佳实施例中,信号触片2406a~p设置的节距为15~50密耳,尤其以30密耳最合适。当然,前述的间距与节距只供优选与示例,本发明并不受此限制。
在一较佳实施例中,如图24与25A所示,信号触片24061~p大于通路2428与基片表面2402的截面积,据信便于迹线连接信号触片1606的路径选择。此外,信号触片24061~p较佳地一般为缺角的方形,如图24所示。据信该形状有助于提高信号触片在基片2406表面上的密度,并尽量减小信号触片在基片2406表面上的密度,并使信号触片在基片表面占据的面积最小化,而且还便于把迹线接至信号触片。不过,信号触片2406的尺寸或者形状均非本发明的关键,可使用任何尺寸或形状。
应该理解,虽然图24示出16块信号触片2406a~p和4块接地触片2408a~d,但可以使用任何数量的信号与接地触片。实际上,众多场合使用了成百上千块信号触片。
如图25A与25B所示,信号通路2428把信号触片2406a~p电气连接至端子2412a~p(图25A只看得见端子2412a~d,图25B只看得见2412i~1)。像图17的实例一样,如图25A所示,信号通路2428包括水平或倾斜部分,并在基片2402中埋置了一个或多个(图25A与25B示出两个)导电平面2416、2418,它们类似于上述图17的导电平面1616、1618。
在图24、25A与25B的例子中,如图25B所示,接地触片2408a~d由通路2424电气连接导电平面2416,导电平面2416通过通路2426电气连接导电平面2418。如图25A所示,导电平面2416、2418分别设有孔2420、2422,使信号通路2418穿过这些平面而不将信号通路2418电气连接导电电平面2416、2418。孔2420、2418含有绝缘材料。
图26~29B示出图24、25A与25B中探头座的示例定制化(图7步骤708)。类似于上述图16与17的探头座定制化,如图26、27A~27C所示,在预制的探头座2402上方形成绝缘材料层2602,在其上方再形成图案化导电层(图26中,信号触片2406a~p和接地触片2408a~d示成虚线,表示它们在绝缘层2602与图案化导电层下面)。绝缘层2602与图案化导电层一般类似于上述图18~21B绝缘层1802与图案化导电层。
如参照图18、19A与19B所述,孔留在预制的初始导电层2404(信号触片2406a~p和接地触片2408a~d)与图案化导电层之间处于连接的绝缘材料2602中。如上参照图20、21A与21B所述,在绝缘层2602上方形成的定制图案化导电层,包括但不限于与信号触片2406a~p的导电互连线、与接地触片2408a~d的导电互连线、探针触片、电子元件触片、导电迹线和/或其它元件。图26的元件2604a~p和2606a~d示出几例形成在绝缘层2602中所留的孔里的导电互连线,通过绝缘层2602在初始图案化导电层2404与定制图案化导电层之间提供电气连接。图26的元件2608a~d示出几例探针触片,它们是准备形成或附接探针元件的导电区,以便探测被测半导体装置上的触片。图26的元件2610a与2610b示出几例电子元件触片,它们是准备形成或附接电容器等电子元件端子的导电区。图26的元件2612、2614、2618、2618、2620示出几例迹线,可在导电互连线、探针触片与电子元件触片之间提供电气连接。
在图26、27A~27C的例中,测试集成电路只使用信号触片2406f、2406g、2406i与2406k。探针触片2608a~d形成的位置与集成电路上相应的测试点一致。探针触片2608a通过迹线2614与互连线2604g电气连接信号触片2406g,探针触片2608b通过迹线2616与互连线2604f接信号触片2406f。同样地,探针触片2608c通过迹线2618与互连线2604i接信号触片2406i,而探针触片2608d通过迹线2620与互连线2604k接信号触片2406k。
在该例中,准备在探针触片2608d与地之间接一电容器;因此,迹线2620把一块电子元件触片2610b电气连接探针触片2608d,而另一块电子元件触片2610a通过迹线2612与互连线2606b电气连接接地触片2408d。需要的话,还可包括电阻器、二极管、微处理器、微控制器、存储器等其它电子元件的触片。本例中,只有信号触片2406f、2406g、2406j与2406k同被测集成电路有信号往来(包括电源与接地连接),因而其它信号触片可接地,提高探头座的电学性能。在图26的例中,迹线2612与互连线2604d、2604e、2604h、2640i、2604l和2604m~p将各不用的信号触片2406a~d、2406e、2406h、2406i、2406l与2406m~p相互连接,而互连线2606a~d将迹线2612接至各接地触片2408a~d。
如参照图20所述,为便于显示,虽然把图26的迹线2612、2614、2616、2018与2020示成相对细,但其中任何一条或多条可以做得更粗。例如,可将一条或多条迹线形成比绝缘层2602占用更多不用面积的平面(或网格),同时把这种迹线与定制导电层不打算电气连接的迹线的其它部分绝缘起来。
如图28、29A与29B所示,可在每块探针触片2608a~d上形成或放置探针2802,提供从探针2802到信号触片2406再到端子2412的导电路径。在图28、29A与29B的例中,在元件触片2610a与2610b上形成或放置一电子元件,如电容器2804。
这样,在标准探头座2402上定制放置了探针2802,并且通过选择的信号触片2406到探头座2402上选择的端子2412,在探针2802之间建立了定制的电气连接。此外,还在探头座2402上定制放置了诸电气元件,包括但不限于电容器、电阻器、有源电子元件等。当然,如上例所述,对探头座2402增设了绝缘层2602和定制导电层后,探头座2402就可经历附加选择的处理步骤。如以上参照图16~23的实例所讨论的,可以添加附加交替的绝缘材料层和定制图案化导电材料层。之后,如通常参照图7步骤710和图8A~15所述,将探头座2402与其它元件(如图8B的印制电路板602、图14或15的插入器1420、1520等)相连,形成探测卡组件。
应指出,可对通过该探测卡组件连接接地触片2408的一块不用的信号触片2406提供接地连接或参考电压。或者,让互连的不用信号触片2406与接地触片2408浮动(left floating)。再不然,可提供一根位置与待测集成电路上接地触片相接触的探针2802,并电气连接至互连的不用信号触片2406和接地触片2408。当然,也可使用上述诸法的组合。
图30示出另一则半标准探头座,可在图5步骤504制备,再在图7步骤706选择。如图30所示,该示例性探头座有一基片3002,较佳地用非导电材料如陶瓷或其它耐用材料制作。该半标准探头座在基片3002一面有一预定图案的导电触片。
触片排列图案设计成便于定制路径选择,下面将作描述。一示例图案示于图30。在图30中,诸触片初步排成水平(相对图30)组3004、3006、3008、3010、3012、3014。组3004和3014包括电源触片与电容器触片,组3006、3008、3010、3012包括信号触片。信号触片通过基片3002的通路(未示出)接至基片反面的端子(未示出)。例如,像信号触片1060~(h)经图17的通路1628接端子1612(e)~(h)一样,图30的信号触片以同样方法接至基片3002反面的端子。组3004和3014的电源与电容器触片接至基片3002中或上面的一个或多个电源或接地平面或连接线。如将要描述的,水平组3006、3008、3010、3012中信号触片间的尺寸与间距,随离基片3002上某一点如中心点3019的距离而增大。
图31示出第一水平组触片3004的一部分31(图31示出第一水平组触片3004中接近穿过图30中基片3002中的虚线3018的一部分触片)。如上个所述,第一水平组触片3004包括电容器触片与电源触片。在图31的第一水平组触片3004的示例配置中,第一水平组3004里有三行独立的触片。这些水平的三行包括一行收容旁通电容器接地端子的触片3102、一行收容旁通电容器电源端子的触片3104和一行电源触片3106。行3102中收容旁通电容器接地端子的各触片都接地。例如,行3102中的各触片可接至埋置于或设置在基片3002上的接地平面。当然,有一个或多与于基片3002有关的接地平面。行3104中收容旁通电容器电源端子的各触片都接电源。例如,行3104的各触片可接至埋置于或设置在基片3002上的电源平面。同样地,有一个或多个与基片3002有关的电源平面。行3106的各电源触片也接电源(如电源平面),而且将会看到,可对被测集成电路提供电源。行3106的各电源触片在内部接至行3104的一块或多块触片。实际上,行3106的各电源触片较佳地在内部接至行3104中直接位于该电源触片上方的触片。
图32示出基片3002上第二水平组触片3006的一部分32(图32示出第二水平组触片3008中接近中心线3018的一部分触片)。如上讨论,第二水平组触片3006还包括尺寸与间距随每块触片离中心点3019的距离而变化的信号触片。在图32的示例图案中,第二水平组触片3006的信号触片,各3202、3204、3206、3208、3210都排出四块一列,信号触片间的尺寸与间距随一特定触片离中心点3019(图30)的距离而增大。
在32的示例图案中,信号触片间的两个间距随特定触片离中心点3019的距离而变。图32中,第一间距标为“A”,是列中(如列3202、3204、3206、3208或3210)相邻触片的垂直(相对图32)距离;第二间距标为“D”,是相邻列中触片间的水平(相对图32)距离。
图33示出基片3002上第三水平组触片3008的一部分33(图33示出第三水平组触片3008接近中心线3018的一部分触片)。如上讨论,第三水平组触片3008包括尺寸与间距随各触片离中心点3019(图30所示)的距离而变的信号触片。在图33的示例图案中,第三水平组3008的信号触片,各3302、3304、3306、3308、3310都排出四块一列,每列之间设一单块信号触片3312、3314、3316、3318。如下详述,信号触片间的尺寸与间距随一特定触片离基片3002上的中心点3019(图30所示)的距离而增大。
在图33的示例图案中,触片间的三种间距随一特定触片离图30的中心点3019的距离而变。第一间距在33中标为“A”,是一列中(如列3302、3304、3306、3308、3310)相邻触片间的垂直(相对图33)距离;第二间距标为“B”,是相邻列中触片间的水平(相对图33)距离;第三间距标为“C”,是各块信号触片3312、3314、3316或3318和相邻列触片3302、3304、3306、3308、3310的中心点之间的水平(相对图33)距离。
图34示出基片3002上第四水平组触片3010的一部分34(图34示出第四水平组触片3010接近中心线3018的一部分触片)。如上讨论,第四水平组触片3010也包括尺寸与间距随各触片离中心点3019(图30)的距离而变。在图34的示例图案中,第四水平组触片3010的信号触片包括单行信号触片3402,信号触片间的尺寸与间距随一特定触片离基片3002的中心点3019(图30)的距离而增大。
在图34的示例图案中,触片间一种间距随一特定触片离中心点3019的距离而变。该间距在图34中标为“E”,如图34所示,是相邻触片间的水平(相对图34)距离。
在图30的图案中,第五组水平触片3012类似于第二组水平触片3006。在图30的图案中,第六组水平触片3014一般类似于第一组水平触片3004,不过是第一组水平触片的倒置或镜像。
如上讨论,水平组3006、3008、3010与3012中一特定信号触片的尺寸及其离相邻触片的间距,随特定信号触片离基片3002上某一点(如基片3002中央的点3019)的径向距离而变(较佳为增大)。在一实施例中,触片间的尺寸与间距选成在表1列出的范围内。
表I
表I(和表II~IV)中,“离中心距离”指中心点3019与触片中心之间的水平距离(相对图30),以英寸计;“触片尺寸”指方形触片的边长(密耳—);“A”、“B”、“C”、“D”和“E”指间距(密耳),与图32~34规定的标号相同。实际上,可在上述诸范围内对触片尺寸与间距选择具体的数值。例如,下面三张表格从上述范围内对触片尺寸与间距选出了几例有利的实施方案。
实例1表II
实例2表格III
实例3表格IV
为了说明,参照上述例1(表II)例子,那些中心点离中心点3019在0~0.25英寸的第二水平组触片3006的信号触片,一般是边长约7.42126密耳的方形,这种信号触片列(如列3202、3204、3206、3208、3210)的触片垂直间距(“A”)应是9.02126密耳,而该列与正在移离中心线3018的相邻之间的水平间距(“D”)为35.42126密耳。
仍参照表II实例1,但现在涉及第二水平组触片3006中中心点离中心点3019为0.26~0.5英寸的各信号触片,这些触片一般为边长约9.92126密耳的方形。这种信号触片列(如列3202、3204、3206、3208、3210)的触片垂直间距(“A”)为11.52126密耳,该列与政咱月中心线3018的相邻的水平间距(“O”)为37.92126密耳。
在表II列出的其它范围之一中,第二水平组触片3006中中心点偏离中心点3019的各信号触片,其尺寸和“A”与“D”间距同表2规定的相似。
仍参照表II实例1,但现在涉及第三水平组触片3008的各信号触片,那些中心点离中心点3019为0~0.25英寸的信号触片,通常是边长为7.42126密耳的方形,若这种信号触片位于四平列之一中(如图33的3302、3304、3306、3308、3310),则该列的触片垂直间距(“A”)应为9.02126密耳,而该列与正在移离中心线3018的相邻列的水平间距(“B”)为28.82126密耳。若这种信号触片是置于四片列(如图33的3312、3314、3316、3318)之间的各触片之一,其间距“C”)应是14.42163密耳。
仍参照表II实例1,在第三水平组触片3008中,其中心点离中心点3019为0.26~0.5英寸的各信号触片,通常为边长是9.92123密耳的方形。若这种信号触片位于四片列之一(如图33的3302、3304、3306、3308、3310),则该列的触片垂直间距(“A”)应是11.52126密耳,而该列与正在移离中心线3018的相邻列的水平间距(“B”)将为31.32126密耳。若这种触片是四片列(如图33的3312、3314、3316、3318)之间各个触片之一,其间距“C”应是15.66063密耳。
在表II所列出的其它范围之一中,第三水平组触片3008内中心点偏离中心点3019的各信号触片的尺寸和间距“A”、“C”、与“B”,与表2的规定相似。
仍参照表II实例1,但现在涉及第四水平组触片3010的各信号触片,其中心点3019为0~0.25英寸的信号触片,一般为边长7.42126的方形,这种触片与离开中心线3018方向的相邻触片的水平间距(“E”)为9.02126密耳。仍参照表II实例1,但现在涉及中心点离中心线3018为0.26~0.5英寸的第四水平组触片3010中的各信号触片,这些触片一般为边长9.92126密耳的方形,这种触片与移离中心线3018方向的相邻触片的水平间距(“E”)为11.52126密耳。
在表II列出的其它范围之一中,第四水平组触片3010内中心点偏离中心点3019的各信号触片,触片尺寸和间距“E”类似于表II的规定。
第五水平组触片3012中,触片的尺寸与间距一般都类似于第二水平组的触片3006。第一和第七水平组触片3004、3014诸触片的尺寸与间距,可以是均一的,或按上述尺寸与间距方案转移变化。
图35示出图30~34所示探头座的示例定制化(图7步骤708)。如35所示,对基片表面3002有选择地加一层定制图案化的导电材料。一般而言,该定制图案层包括诸探针触片,在其上形成或放置了接触被测半导体装置测试点的探针。该定制图案层还包括诸迹线,用于将探针触片电气连接至第一或第六水平组触片3004、3014之一中的电源触片,或电气连接至第二到第五水平组触片3006、3008、3010、3012之一中的一特定信号触片。
图35示出两块示例的探针触片3520、3522。如图35所示,触片3522通过迹线3524连接至第四水平组触片3010中信号触片3526。同样如图35所示,触片3520通过迹线3518接至第一水平组之触片3004中的电源触片3516。
虽然图35中未示出,但是在对应于被测半导体装置上各测试点的诸位置都形成了附加的探针触片,然后在探针触片上形成探针。探针可以是任一类型,上面讨论了其实例。在第一和第六水平组触片3004、3014中,把旁通电容器连接至电容器触片。例如,旁通电容器连接至电容器触片3510、3512,对形成或连接在探针触片3520上的探针提供退耦电容。
如上所述,对探头座3002添加了包括探针触片与迹线的定制导电层后,探头座3002就可经历附加任选的处理步骤。之后,通常像参照图7步骤710和图8A~15所述那样,将探头座3002连接至其它元件(如图8B的印制电路板602、图14或15等的插入器1420、1520)形成探测卡组件。
显然,虽然图中未示出,但是可在该定制导电层上方形成绝缘材料层,并在其上方形成第二定制导电层,通过绝缘层设置的导电通路在第一与第二定制导电层之间提供电气连接。其实可形成若干定制导电层,各层由绝缘层分开,通过绝缘层设置的导电通路用于定制导电层之间的电气连接。若形成一层以上的定制导电层,则通常在最外面的定制导电层上形成供准备固定于探针基片3002外表面的诸元件的触片(如探针触片3520、3522)。当然,在一个或多个交替的绝缘层与定制导电层中可以形成或埋置诸电路元件,如电阻器、电容器、二极管、有源电子电路等。
显然,图30~35示出的特定触片图案与特定的触片形状(方形)以及上述表I~IV列出的尺寸与间距变化只用于示例。可使用其它图案与触片形状以及尺寸与间距变化在预制的基片3002上形成预制的触片图案,使其中触片的尺寸、位置和/或间距触片离基片上某一点、线或区域的距离而变化,以便于安置构成加到基片的定制图案化层的探针触片和迹线。
这样,己描述了本发明诸示例的实施例和应用,显然,可作出各种修正、修改和替代的实施例与应用而保持在本发明的范围与精神内。例如,导电平面、触片、迹线等可以是实心的,或由导电材料网格构成。又如探头基片上触片图案的取向可与图示实例不同。作为一个例子,图30中触片3004、3006、3008、3010、3012、3014的水平行可以相对基片3002作对角线取向(不是图30的水平取向)。本发明只受下述权项限制。
权利要求
1.一种制作探测卡组件的方法,其特征在于,所述方法包括提供所述探测卡组件中作为预制元件的第一元件,所述第一元件包括基片和所述基片第一表面上的第一图案化导电层,所述第一图案化导电层包括与设置在所述基片第二表面上的多个端子电气连接的多块信号触片,和与埋置在所述基片内的导电平面电气连接的导电区,所述多块信号触片与所述导电区和所述埋置的平面电气绝缘;在待测半导体装置上对应于所述测试点位置的第一电子元件上形成多块接触元件触片,并与所述信号触片的第一子组电气连接;将信号触片从第二组信号触片电气连接至所述导电区;并且增设多个接触元件,使所述半导体装置上的所述测试点与所述多块接触元件触片相接触。
2.一种制作探测卡组件的方法,其特征在于,所述方法包括提供所述探测卡组件中作为预制元件的第一元件,所述第一元件包括多块信号触片,至少某些触片与相邻触片的间距随所述信号触片在所述第一元件上的位置而变化;根据关于半导体装置的设计数据,在待测半导体装置上对应于测试点位置的电子元件上形成多块接触元件触片,所述接触元件触片与所述多块信号触片逐一电气连接;并且增设多个接触元件,使所述半导体装置上的所述测试点与所述多块接触元件触片相接触。
3.如权利要求2所述的方法,其特征在于,所述方法还包括将所述第一元件与至少另一元件组合构成所述探测卡组件。
4.如权利要求3所述的方法,其特征在于,所述至少另一个元件是配置成与半导体测试仪电气连接的印制电路板、插入器和具有半导体测试仪电缆的接口中的一个。
5.如权利要求2所述的方法,其特征在于,至少一个所述测试点从所述半导体装置表面突出,所述多个接触元件包括至少一个配置成与所述突出的测试点接触的相应接触元件。
6.如权利要求3所述的方法,其特征在于,所述至少一个相应的接触元件选自触片、凹槽与插口。
7.如权利要求2所述的方法,其特征在于,所述至少某些所述多块触片的尺寸随所述触片在所述第一元件上的位置而变化。
8.如权利要求7所述的方法,其特征在于,所述至少某些所述多块信号触片的所述尺寸随所述触片离所述第一元件上的一参考位置的距离而增大。
9.如权利要求2所述的方法,其特征在于,所述至少某些所述多块触片中诸相邻触片的所述间距随所述触片离所述第一元件上一参考位置的距离而增大。
全文摘要
一种设计与制造探测卡组件的方法,包括对一种或多种预定的设计,预制探测卡组件的一个或多个元件,之后,接收有关新设计的半导体装置的设计数据连同描述用于测试该半导体装置的测试仪与测试算法的数据。利用收到的数据,选择一个或多个预制元件,再用该收到的数据定制一个或多个选择的预制元件。接着,用这些选择和定制的元件构成探测卡组件。
文档编号H01L21/66GK1920578SQ20061013619
公开日2007年2月28日 申请日期2002年7月10日 优先权日2001年7月11日
发明者G·W·格鲁比, I·K·汉德罗斯, B·N·艾尔德里格, G·L·马休, P·洛特非扎德, C·-C·程 申请人:佛姆法克特股份有限公司