专利名称::布线基板的制作方法
技术领域:
:本发明涉及布线基板。技术背景专利文献1中公开了一种在作为电介质的绝缘层之间设置线路导体,并在外层侧设置接地导体的结构的叠层型谐振器。已知一种为了控制这样构成的叠层型谐振器的频率等而修整(trimming)线路导体的方法。但是,以往,由于线路导体被绝缘层所覆盖,所以为了修整线路导体,而有必要在层叠体的一侧面露出线路导体,并切削其侧面整体。图14是在形成电路元件的绝缘层的表面配置了信号线的现有的例子的图。这里,电介质层4的表面上形成信号线6,在电介质层4的背面上形成地线8。而且,虽然未图示,但在电介质层4的表面上配置半导体元件或无源元件等电路元件,形成覆盖电路元件的模压树脂14。以往,这样,信号线6由电介质层4和模压树脂14覆盖,所以在进行信号线6的修整的情况下,如图14(a)的虛线所示,在切削装置的侧面整体,或如图14(b)所示,部分除去模压树脂14而露出信号线6之后,进行修整,必须再次重新覆盖模压树脂14。在用图14(a)所示的方法进行信号线6的修整的情况下,必须将信号线6配置于侧面附近,而产生场所制约的问题。而且,在用图14(b)所示的方法进行信号线6的修整的情况下,在部分除去模压树脂14时,需要用于设置开口部的模具,而且由于重新覆盖模压树脂,所以产生成本增加、工序也增加的问题。相关现有技术[专利文献1]特开平6-224606号公报
发明内容本发明考虑上述情况而完成,本发明的目的在于提供一种简易地进行信号线电路装置中的信号线的修整,并调整装置的特性的技术。本发明提供一种布线基板,其特征在于,在电介质基板的一个面上形成信号线,在另一面上设置了接地导体,其中,所述布线基板包括覆盖所述信号线的覆盖层;以及封闭所述信号线的封闭层,所述电介质基板由树脂材料形成,所述覆盖层的介质损耗角正切小于所述封闭层的介质损耗角正切。本发明还提供一种布线基板,其特征在于,在电介质基板的一个面上形成信号线,在所述信号线的至少一侧靠近设置接地导体,其中,所述布线基板包括覆盖所述信号线的覆盖层;以及封闭所述信号线的封闭层,所述电介质基板由树脂材料形成,所述覆盖层的介质损耗角正切小于所述封闭层的介质损耗角正切。根据本发明,提供信号线电路装置,其特征在于,包含电介质层;形成于电介质层的一面上的信号线;设置于电介质层的一面上,在电介质层的一面侧配置了其它部件时,在信号线和该其它部件之间产生空隙的间隔层。这里,在与电介质层一个面相反的面、或信号线的两侧设置地线。信号线与该地线成对,构成微带线或共面线路。这里,由于信号线设置于电介质层的一个面上,所以可以容易地进行信号线的修整。这里,间隔层被设置在形成信号线的区域的周围。而且,其它部件可以设为基板。在电介质层的表面形成了信号线的状态下,在信号线的附近配置其它部件时,由于来自其它部件的影响,信号线的特性阻抗容易变动。特别在其它部件为导电性的情况下,信号线的特性阻抗变动。因此,以往,实际上难以在电介质层的表面配置信号线。但是,如本发明这样,在信号线和其它部件之间产生空隙时,由于信号线成为被介电常数低的空气包围的状态,所以可以降低其它部件造成的影响,并抑制特性阻抗的变动。在本发明的信号线电路装置中,还可以包括在与电介质层的一个面相反面上配置的电路元件;以及在电介质层的相反面中,对电路元件进行密封的密封树脂。在本发明中,即使在电介质层上设置这样的电路元件或封闭树脂,也在与设置了封闭树脂的面相反的面上设置信号线,所以可以容易地将信号线进行修整的调整。根据本发明,提供一种信号线电路装置,其特征在于,包含基板;基板上配置的电介质层;形成于电介质层的一面上的信号线;设置于电介质层的一面上,在信号线和该其它部件之间产生空隙的间隔层。在表面形成了导电部件的基板被配置于信号线附近时,由于导电部件的影响,信号线的特性阻抗容易变化。但是在本发明中,由于配置在信号线和基板之间产生空隙的间隔层,所以可以降低基板的影响,并抑制特性阻抗的变动。这里,导电部件可以设置在基板与信号线相对的面上,也可以设置在相反侧的面上。导电部件被设置于相反侧的面上时,与信号线的距离更大,所以可以降低导电部件的影响。在本发明的信号线电路装置中,间隔层可以形成为比所述信号线的膜厚还厚。信号线可以被配置为埋入电介质层的一个面,也可以被配置为一部分或全部从一个面突出。通过这样构成,不管信号线的配置位置如何,都可以在信号线和其它部件或基板之间产生空隙,并可以降低这些部件造成的对信号线的影响。而且,信号线和其它部件或基板的距离越大,则越可以降低来自这些部件的影响。在本发明的信号线电路装置中,信号线可以形成为在电介质层连接的面的相反的面露出。在本发明的信号线电路装置中,信号线可以由比构成电介质层的材料介电常数低的绝缘材料覆盖。由此,可以将由信号线生成的电磁场封闭到绝缘材料内。以上,关于本发明的结构进行了说明,但将这些结构任意组合的结构作为本发明的方式有效。而且,将本发明的表现变换为其它的种类的结构作为本发明的方式也有效。图1是表示作为放大器的一部分使用了本发明的实施方式1的信号线电路装置的周边电路的结构的图。图2是图1的A-A,截面图。图3是图1的B-B,截面图。图4A图4B是表示将信号线电路装置配置到安装基板上的安装装置的结构的图。图5是表示图4所示的安装装置中,绝缘层的层厚、信号线和安装基板的距离,以及信号线电路装置的特性阻抗的关系的图。图6A图6B是表示信号线电路装置的各种方式的图。图7A图7B是表示信号线电路装置的各种方式的图。图8A图8B是表示信号线电路装置的各种方式的图。图9A图9E是表示图6所示的信号线电路装置的制造工序的工序截面图。图10A图IOE是表示图8所示的信号线电路装置的制造工序的工序截面图。图ll是表示作为振荡器使用了本发明的实施方式l的信号线电路装置的周边电路的结构的图。图12是表示将本发明的实施方式1的信号线电路装置用于带通滤波器的例子的图。图13是表示本发明的实施方式1的安装装置的结构的截面图。图14A图14B是表示现有的信号线电路装置的结构的截面图。图15是表示实施方式2的高频布线基板的截面图。图16是表示高频布线基板的截面的等效电路的图。图17是表示实施例3~8中,单位线路长度的传输损失与覆盖层厚度[tc]依赖性的曲线图。图18是表示传输损失(dB)与频率依赖性的曲线图。图19是具有覆盖层的共面线路的截面图。图20是表示对传输高频信号的线路进行了布线的现有的例子的图。具体实施方式(实施方式1)图1是表示作为放大器的一部分使用了本发明的实施方式1的信号线电路装置的周边电路的结构的图。这里,放大器201包括输入电路200、晶体管202、线圈204、信号线电路装置102、输出电路206。输入电路200连接到晶体管202的基极,输出电路206连接到集电极。而且,晶体管202的集电极上连接线圈204以及信号线电路装置102。晶体管202的发射极接地。后面叙述信号线电路装置102的结构的细节,信号线电路装置102包含由信号线和地线构成的微带线。这里,放大器201的特性根据晶体管202的特性和线圈204的特性而变动,但通过调整信号线电路装置102的信号线的长度,可以降低放大器201的特性的变动。对于线圈204的电感设计值为3.3nH,电感的误差为±0.5nH的情况,从图中C-C,看到的反射特性进行验证。在固定信号线的长度Lsp并将线圈204的电感值设为2.8nH以及3.8nH的情况下,反射特性的模拟结果偏离于设计值。但是,通过适当调整信号线电路装置102的信号线的长度Lst,可以符合反射特性的设计值,结果,可以使放大器201的特性符合设计值。以下,对信号线电路装置102的微带线进行详细说明。图2以及图3表示图1的第一信号线电路装置的截面图。图2表示图1的A-A,截面图,图3表示B-B'截面图。如图2所示,信号线电路装置102包含电介质层104、形成于电介质层104的表面的地线108、形成于电介质层104的背面的信号线106。信号线106为条(strip)导体,与地线108成对,并构成^1带线。电介质层104为例如由FR-4构成的基板。后面叙述构成电介质层104的材料。这里虽然没有图示,但电介质层104的表面上配置半导体元件和无源元件等电路元件。半导体元件例如是晶体管、二极管、IC芯片等,无源元件例如是片式电容器、片式电阻等。而且,虽然没有图示,但在电介质层104上形成布线图形,与电路元件电连接。在电介质层104上设置封闭电路元件的模压树脂114。图3表示安装基板120上安装了信号线电路装置102的状态。如图3所示,在电介质层104的背面形成光抗焊剂(photosolderresist)132,以及在其两侧形成外部电极112。经由通路110电连接地线108的一端(图中左侧)和外部电极112。在安装基板120的表里分别设置地线124以及地线126。信号线电路装置102的外部电极112和安装基板120的地线124通过焊料130连接。这里,焊料130以及光抗焊剂132作为用于在信号线电路装置102的信号线106和安装基板120之间产生空隙的间隔层而起作用。由此,可以在信号线电路装置102的信号线106和安装基板120之间设置高度H2的空隙。通过在信号线106和安装基板120之间插入空气那样的介电常数低的材料,降低绝缘层122的表面形成的地线124和地线126造成的影响,可以抑制微带线的特性阻抗的变动。如上所述,通过修整信号线106的端部而调整信号线106的长度,从而调整放大器201(图1)的特性。在将信号线电路装置102安装到安装基板120上之前进行修整。另外,可以通过例如激光照射等进行信号线106的修整。对信号线106进行了修整之后的端部可以由树脂等覆盖。由此,可以防止信号线106被腐蚀等。在本实施方式中,如图2所示,信号线106形成于信号线电路装置102的外部,所以可以容易地进行修整。图13表示安装装置IOO的整体图。这里,在电介质层104上配置半导体元件136和无源元件138等电路元件。这里,由在半导体元件136的下表面形成的地线108和夹着电介质层104并在其下方形成的信号线106构成微带线。接着,说明对在将信号线电路装置102安装到安装基板120上时的、电介质层104的膜厚H,和信号线106与绝缘层122之间的距离H2,和信号线电路装置102的特性阻抗的关系进行测定的结果。对如图4(a)所示,在安装基板120的绝缘层122的表面上设置了地线124的情况,和如图4(b)所示,在绝缘层122的背面设置了地线126的情况,分别测定信号线电路装置102的特性阻抗。另夕卜,微带线的特性阻抗由信号线106的宽度W和电介质层104的层厚H,的比来规定。即,减小电介质层104的层厚时,可以将信号线106的宽度W也变窄。由此,即使将信号线电路装置102安装在安装基板120上,也可以减少安装基板120造成的影响。这里,如图4所示,使用由光抗焊剂116覆盖信号线106的结构的信号线电路装置102进行测定。电介质层104的介电常数为4.4,膜厚H,为50(im、100pm、150)im、300nm时的信号线106的宽度W分别为70(am、165jim、260|im、550pm,特性阻抗都成为50Q。安装基板120的绝缘层122由FR-4构成,层厚为大约500^im。将信号线电路装置102安装到安装基板120,并测定特性阻抗。图5表示测定结果。如图5所示,将地线124设置于绝缘层122的表面上的情况下(图中表示为(a)),信号线106的表面和安装基板120之间的距离H2越大,则来自安装基板120的影响越低,可以抑制特性阻抗的变动。而且,电介质层104的层厚H,越薄,则可以将信号线106的宽度W设定得越窄,由此,可以降低来自安装基板120的影响,并可以抑制特性阻抗的变动。将电介质层104的层厚H,设为小于或等于50|im时,可以极大地抑制特性阻抗的变动。而且,在将地线126设置于绝缘层122的背面的情况下(图中表示为(b)),与层厚H,的大小无关,几乎没有来自安装基板120的影响,可以将特性阻抗的变动抑制在5%以内。而且,即使绝缘层122的膜厚和介电常数不同,也几乎没有影响。另外,特性阻抗的变动如果在5%以内,则确认对图1所示的放大电路201的特性几乎没有影响。将电介质层104的层厚H,为50^m的信号线电路装置102安装到图4(b)所示的结构的安装基板120上,并将信号线106和绝缘层122之间的空隙H2设为约25^m的情况下,特性阻抗几乎不变动。根据以上的结果,优选电介质层104的厚度Hj、于或等于50iam。由此,在安装基板120上,即使将地线设置于绝缘层122的表面或背面的任何一个上,也可以降低来自安装基板120的影响。由此,可以抑制信号线电路装置102的特性阻抗的变动。图6~图8是表示信号线电路装置102的各种方式的图。图6(a)、图7(a)、以及图8(a)表示微波传输带型信号线电路装置102。图6(b)、图7(b)、以及图8(b)表示共面型的信号线电路装置102。在图6(a)以及图6(b)中,在信号线106的下方设置空隙。由此,在将信号线电路装置102配置到安装基板120(图3)上时,可以使介电常数低的空气介于信号线106和安装基板120之间,并不受安装基板120的影响,可以抑制信号线电路装置102的特性阻抗的变动。在图7(a)以及图7(b)中,信号线106被光抗焊剂116覆盖。这样,通过由光抗焊剂116覆盖信号线106,可以将由信号线106产生的电磁场封闭到光抗焊剂116内。而且,在将信号线电路装置102安装到安装基板120上时,可以扩大信号线106和安装基板120的间隔,可以降低来自安装基板120的影响。这里,光抗焊剂116的介电常数例如可以为2.9。电介质层104的介电常数例如为4.4。这样,通过由绝缘材料覆盖信号线106,安装时由信号线106产生的电;兹场不直接辐射到空间,可以有效地进行电磁场的封闭。通过由介电常数比电介质层104低的材料覆盖信号线106,减轻对设置了这样的材料的情况的信号线电路装置102的特性的影响,从而可以得到这样的效果。在图8(a)以及图8(b)中,信号线106在绝缘层134上层叠电介质层104,并被设置在部分除去了绝缘层134的区域。绝缘层134可以由和电介质层104相同的材料构成。由此,在将信号线电路装置102安装到安装基板120上时,可以扩大信号线106和安装基板20之间的间隔,并可以减轻来自安装基板120的影响。图9是表示图6(a)所示的信号线电路装置102的制造工序的工序截面图。首先,如图9(a)所示,在金属箔400上形成光致抗蚀剂401,在形成信号线106的区域露出金属箔400。接着,通过电解镀敷法等在金属箔400的露出面上形成信号线106。接着,如图9(b)所示,在信号线106上,在表面上贴上形成地线108的电介质层104。之后,在与地线108同时形成的未图示的图形上配置电路元件等,接着由模压树脂114封闭电路元件(图9(c))。之后,例如通过研磨、研削、蚀刻、激光的金属蒸发等较薄地除去金属箔400,在除去面上形成光抗焊剂130(图9(d))。接着,通过将光抗焊剂130构图为规定形状,可以得到图6(a)所示的结构的信号线电路装置102(图9(e))。图IO是表示图8(a)所示的信号线电路装置102的制造工序的工序截面图。首先,与参照图9说明的同样,在金属荡400上形成光致抗蚀剂,在规定的区域露出金属箔400,并形成布线图形(未图示)。接着,在金属箔400上,在表面上形成设有导电箔的绝缘层134。之后,通过蚀刻将导电箔形成图形,在绝缘层134上形成信号线106(图10(a))。之后,在信号线106上,在表面上贴上形成地线108的电介质层104(图10(b))。绝缘层134和电介质层104可以由相同的材料构成。之后,在与地线108同时形成的未图示的图形上配置电路元件等,接着由模压树脂114封闭电路元件(图10(c))。之后,除去金属箔400,在除去面上形成光抗焊剂130(图10(d))。接着,选择性地除去光抗焊剂130和绝缘层134并形成凹部。由此,得到图8(a)所示的结构的信号线电路装置102。例如可以通过钻加工、激光加工、以及它们的组合的任何一种方法除去光抗焊剂130以及绝缘层134。如上所述,根据该工序,由于直至进行金属箔400的除去工序之前,金属箔400成为支承基板,所以即使将电介质层104变薄,也可以高成形性地制造信号线电路装置102。由此,可以较薄地形成电介质层104,其结果,可以使信号线106的宽度变窄。因此,即使将信号线106设置在信号线电路装置102的外部,也可以减轻来自安装基板120的影响。作为电介质层104的材料,例如可以使用环氧树脂、BT抗蚀剂等密胺衍生物、液晶聚合物、PPE树脂、聚酰亚胺树脂、氟素树脂、酚醛树脂、聚酰胺双马来酸亚胺等。作为环氧树脂,可举出双酚A型树脂、双酚F型树脂、双酚S型树脂、线型酚醛树脂、甲酚-线型酚醛环氧树脂、三酚曱烷型环氧树脂、脂环式型环氧树脂等。作为蜜胺衍生物,例示蜜胺、蜜胺氰尿酸盐、羟曱基化蜜胺、(异)氰尿酸、蜜白胺、蜜勒胺、三聚二氰胺、琥珀胍胺(廿夕、>乂夕、、7^乂)、硫酸蜜胺、石危酸乙酰胍胺、硫酸蜜白胺、硫酸胍蜜胺(夕、、7二少乂,$>)、蜜胺树脂、BT树脂、聚异氰酸、三聚异氰酸、三聚异氰酸衍生物、蜜胺三聚异氰酸盐、苯并胍胺、乙酸胍胺等蜜胺衍生物、胍类化合物等。作为液晶聚合物,例示芳香族系液晶聚酯、聚酰亚胺、聚酯酰胺、或包含它们的树脂组成物。其中,优选耐热性、加工性以及吸湿性的平衡好的液晶聚酯或含有液晶聚酯的组成物。以上,基于实施方式说明了本发明。本实施方式始终为例示,可有各种变形例,而且这样的变形例也属于本发明的范围,这一点本领域技术人员应该理解。在以上的实施方式中,说明了将信号线电路装置102使用于调整放大电路的特性的例子,但信号线电路装置102也可以例如用作振荡器、谐振器、带通滤波器等。图ll表示将信号线电路装置102用作振荡器的周边电路的结构的图。将信号线电路装置102设置于晶体管210的基极和集电极的任何一个上,或两个上,通过调整信号线106的长度,可以调整振荡频率。图12表示信号线电路装置102被用作带通滤波器的示例图。这里,在信号线电路装置102的信号线106的两侧并行设置其它的信号线140。通过修整来改变这些传输路径接近的部分的长度L,可以改变带通滤波器的中心频率。(实施方式2的现有技术)图20表示配置了传输高频信号的线路的现有例。这里,电介质基板1120的表面形成信号线1130,电介质基板1120的背面形成接地导体1140。而且,虽然未图示,但在电介质基板1120的表面配置半导体元件和无源元件等电路元件,并形成覆盖电路元件的封闭层1160。关于这样的布线基板,已知为了降低传输损失,而对电介质基板整体使用吸水率低的材料,从而可以降低电介质损失(参照特开平11-121934号公报)。但是,由于吸水率低的材料单价高,所以想要降低电介质基板整体的吸水率时,产生材料费增加、制造成本增加的问题。(实施方式2)本实施方式的某一方式的特征在于,是在电介质基板的一个面上形成信号线,在另一面上设置了接地导体的布线基板,其中包括覆盖所述信号线的覆盖层和封闭所述信号线的封闭层,所述电介质基板由树脂材料形成,所述覆盖层的介质损耗角正切小于所述封闭层的介质损耗角正切。根据上述结构,电磁场被封闭在覆盖层内,所以泄漏出封闭层和布线基板外部的电磁场减少。因此,封闭层的静电电容降低,在封闭层产生的电介质损失被抑制的同时,辐射损失也被抑制。而且,由于可以使用介质损耗角正切比较大的材料作为封闭层,所以可以降低制造成本。本实施方式的其它方式的特征在于,是在电介质基板的一个面上形成信号线,在所述信号线的至少一侧靠近设置接地导体的布线基板,其中包括覆盖所述信号线的覆盖层和封闭所述信号线的封闭层,所述电介质基板由树脂材料形成,所述覆盖层的介质损耗角正切小于所述封闭层的介质损耗角正切。根据上述结构,电磁场被封闭在覆盖层内,所以泄漏出封闭层和布线基板外部的电磁场减少。因此,在封闭层产生的电介质损失被抑制的同时,辐闭层,所以可以降低制造成本。在上述任何结构中,从提高将电磁场封闭于所述覆盖层内的效果的观点来看,所述覆盖层的介电常数也可以大于或等于所述封闭层的介电常数。而且,在上述任何的结构中,所述覆盖层的介质损耗角正切最好小于或等于所述封闭层的介质损耗角正切的十分之一。由此,由介质损耗角正切良好的覆盖层对电磁场的封闭作用引起的降低传输损失的效果显著,所以可以使用比封闭层廉价的材料有效地降低布线基板的制造成本。(实施方式2的详细说明)图15是表示实施方式2的高频布线基板1010的截面图。高频布线基板1010包含电介质基板1020、形成于电介质基板1020的一个面上的信号线1030、形成于电介质基板1020的另一个面上的接地导体1040、覆盖信号线1030的覆盖层1050、封闭由覆盖层1050覆盖的信号线1030的封闭层1060。这样,在高频布线基板IOIO上,在设置信号线1030和封闭层1060之间设置覆盖层1050。使用介质损耗角正切比封闭层1060小的材料作为覆盖层1050。电介质基板1020为由树脂材料形成的基板。作为树脂材料,例如可以使用环氧树脂、BT抗蚀剂等密胺衍生物、液晶聚合物、PPE树脂、聚酰亚胺树脂、氟素树脂、酚醛树脂、聚酰胺双马来酸亚胺等。作为环氧树脂,可举出双酚A型树脂、双酚F型树脂、双酚S型树脂、线型酚醛树脂、曱酚-线型酚醛环氧树脂、三酚曱烷型环氧树脂、脂环式型环氧树脂等。作为蜜胺衍生物,例示蜜胺、蜜胺氰尿酸盐、羟曱基化蜜胺、(异)氰尿酸、蜜白胺、蜜勒胺、三聚二氰胺、琥珀胍胺(廿夕、:/乂夕、、7^y)、硫酸蜜胺、硫酸乙酰胍胺、碌^酸蜜白胺、硫酸胍蜜胺(夕、'7二》乂,$>0、蜜胺树脂、BT树脂、聚异氰酸、三聚异氰酸、三聚异氰酸衍生物、蜜胺三聚异氰酸盐、苯并胍胺、乙酸胍胺等蜜胺衍生物、胍类化合物等。作为液晶聚合物,.例示芳香族系液晶聚酯、聚酰亚胺、聚酯酰胺、或包含它们的树脂组成物。其中,优选耐热性、加工性以及吸湿性的平衡好的液晶聚酯或含有液晶聚酯的组成物。作为覆盖层1050的材料,例如可以使用环氧树脂、丙烯基树脂、氨基曱酸乙酸乙酯树脂、聚酰胺树脂等树脂、以及它们的混合物,进而可以使用在这些树脂中混合碳黑、氧化铝、氮化铝、氮化硼、氧化锡、氧化铁、氧化铜、滑石、云母、高岭石、氧化钙、硅石、氧化钛等无机填充物的材料等。作为封闭层1060的材料,日如可以使用环氧树脂等。另夕卜,这里,虽然未图示,但在电介质基板1020的信号线1030侧,配置半导体元件和无源元件等电路元件。半导体元件例如有晶体管、二极管、IC芯片等,无源元件例如有片式电容、片式电阻等。而且,虽然未图示,但电介质基板1020上形成布线图形,并与电路元件电连接。上述封闭层1060也封闭电路元件。根据本实施方式,说明降低传输损失的原理。图16表示微带线的高频布线基板1010的截面上的等效电路。在图16的等效电路中,分别经由覆盖层1050、封闭层1060、电介质基板1020以及高频布线基板1010的外部的空气产生的每单位线路长的静电电容Cc、CM、Cs、CR并联连接到信号线1030和接地导体1040之间。包括这样的电路结构的线路整体的静电电容Ct可以由下式(1)式表示。<formula>formulaseeoriginaldocumentpage14</formula>(1)线^各的特性阻抗(Zo)使用上述Ct日于,由下式(2)表示。另外,L为由信号线1030的截面形状决定的每单位线路长度的电感。<formula>formulaseeoriginaldocumentpage14</formula>(2)在线路的特性阻抗为一定的条件下,即在CT以及L为一定的条件下,通过将比封闭层1060具有良好的介质损耗角正切的覆盖层1050配置于信号线1030和封闭层1060之间,可减少CM与CT的比CM/CT以及CR与CT的比CR/CT、分布于封闭层1060内部的电》兹场以及辐射到高频布线基板1010外部的空气的电磁场。由此,可以降低封闭层1060产生的电介质损失以及辐射损失。伴随设置覆盖层1050,覆盖层1050中也产生一定量的电磁场。但是,覆盖层1050由介质损耗角正切良好的材料构成,所以覆盖层1050中的电介质损失影响小。这样,通过设置比封闭层1060具有良好的介质损耗角正切的覆盖层1050,电磁场被封闭到覆盖层1050中,漏入封闭层1060的电磁场减少。因此,降低电介质损失大的封闭层1060中的电介质损失以及电路装置外部的辐射损失,同时抑制覆盖层1050中的电介质损失,从而可以降低线路整体的传输损失。另外,根据上述原理,覆盖层1050的介电常数越高,则越可以提高覆盖层1050中的静电电容的比例,所以可以更有效地降低传输损失。[评价l]比较有覆盖层1050的情况和没有的情况,评价了由于设置了覆盖层1050而引起的传输损失降低的效果。(实施例1)实施例1具有图15所示的层结构,信号线1030的线路宽度[W]为180|im,线路导体厚度[t]为25pm。电介质基板1020的材料为液晶聚合物,介电常数为2.85,介质损耗角正切为0.0025,厚度[H]为100pm。覆盖层1050的材料为聚酰胺,介电常数为3.9,介质损耗角正切为0.0036,厚度[tc]为40|im。封闭层1060的材料为环氧树脂,介电常数为3.6,介质损耗角正切为0.006,厚度为650(im。实施例1的覆盖层1050的介质损耗角正切比封闭层1060的介质损耗角正切小。而且,实施例1的覆盖层1050的介电常数比封闭层1060大。(比较例1)比较例1除了从实施例1除去覆盖层1050以外,为与实施例1同样的结构。(实施例2)实施例2除了将实施例1的封闭层1060的介质损耗角正切设为0.06以外,是与实施例1同样的结构。(比较例2)比较例2除了从实施例2除去覆盖层1050以外,为与实施例2同样的结构。表1表示上述实施例1、2以及比较例1、2的层结构的截面尺寸以及使用的材料的特性。[表l]<table>tableseeoriginaldocumentpage15</column></row><table><table>tableseeoriginaldocumentpage16</column></row><table>[评价结果l]对于上述层结构的实施例1、2以及比较例1、2,通过电磁场模拟来求频率10(GHz)的传输损失。表2表示实施例1、2以及比较例1、2的传输损失。比较实施例1和比较例1时,可知实施例比比较例1传输损失少约0.02(dB/cm)。以比较例1为基准的实施例1的传输损失的减少率为约18%。比较实施例2和比较例2时,可知实施例2比比较例2传输损失少约0.15(dB/cm)。以比较例2为基准的实施例2的传输损失的减少率为约32%。这样,通过在信号线1030和封闭层1060之间设置覆盖层1050,确认传输损失被改善。从实施例2以及比较例2的结果很明显,传输损失的减少率在封闭层1060的介质损耗角正切不很好的情况下特别显著。因此,即使在对封闭层1060使用介质损耗角正切不很好的材料的情况下,通过在信号线1030和封闭层1060之间设置覆盖层1050,也可以抑制传输损失,通过降低封闭层1060的单价,可以降低制造成本。另夕卜,表2也表示特性阻抗以及有效介电常数,由此可知实施例l、2具备与比较例1、2同等的特性。[评价2]在评价2中,在电介质基板1020的厚度[H]以及封闭层1060的介质损耗角正切不同的多个组合的层结构中,研究改变覆盖层1050的厚度[tc]时的传输损失,对覆盖层1050的厚度[tc]和传输损失的关系进行了评价。(实施例3)实施例3除了将电介质基板1020的厚度[H]设为50(im,并将覆盖层1050的厚度[tc]设为25|im、50(im、100|im、150|im、200(im以夕卜,与实施例1的层结构同样。(实施例4)实施例4除了将电介质基板1020的厚度[H]设为50(im,并将覆盖层1050的厚度[tc]设为25jim、50jam、100jim、150jam、200jim以外,与实施例2的层结构同样。(实施例5)实施例5除了将电介质基板1020的厚度[H]设为100(im,并将覆盖层1050的厚度[tc]设为25pm、50pm、lOO(im、150|im、2001im以外,与实施例1的层结构同样。(实施例6)实施例6除了将电介质基板1020的厚度[H]设为lOO(im,并将覆盖层1050的厚度[tc]设为25(im、50(im、100|im、150|im、200)am以外,与实施例2的层结构同样。(实施例7)实施例7除了将电介质基板1020的厚度[H]设为300^im,并将覆盖层1050的厚度[tc]设为25)im、50(im、100(im、150|im、200(im以外,与实施例1的层结构同样。(实施例8)实施例8除了将电介质基板1020的厚度[H]设为300|im,并将覆盖层1050的厚度[tc]设为25|jm、50jiim、100|im、150|iim、200)tim以外,与实施例2的层结构同样。另外,对电介质基板1020的厚度[H]为50pm、100|im、300jim的各个情况,使上述实施例中的信号线1030的线路宽度[W]变化为8CHrni、180pm、500(im,以4吏特性阻抗一定。表3中表示上述实施例3~8的层结构的截面尺寸以及使用的材料的特性。[表3]<table>tableseeoriginaldocumentpage17</column></row><table>实施例850025液晶聚合物2.850.0025300封闭层材料介电常数介质损耗角正切厚度[tc](—材料介电常数介质损耗角正切厚度[M]((im)实施例3聚酰胺3.90.003625-200环氧树脂3.60馬650实施例4聚酰胺3.90.003625-200环氧树脂3.60.06650实施例5聚酰胺3.90.003625-200环氧树脂3.60.006650实施例6聚酰胺3.90.003625-200环氧树脂3.60.06650实施例7聚酜胺3.90.003625-200环氧树脂3.60.006650实施例8聚酰胺3.90.003625-200环氧树脂3.60.06650[评价结果2]图17表示在上述实施例3~8中,每单位线路长度的传输损失与覆盖层厚度[tc]的依赖性。图17中,为了比较而将上述比较例1、2的传输损失用x标记区分。在实施例4、6以及8中,可以确认传输损失与覆盖层厚度[tc]的依赖性、即覆盖层厚度[tc]越厚,则传输损失减少的倾向越显著。相对于实施例4、6以及8中封闭层1060的介质损耗角正切都为0.06,传输损失与覆盖层厚度[tc]依赖性小的实施例3、5以及7中封闭层1060的介质损耗角正切为0.006。由此,在使用了介质损耗角正切差的封闭层1060的情况下,覆盖层1050的存在引起的封闭层1060的静电电容的降低作用更加被发挥,其结果,确定传输损失更降低。一般,封闭层1060用的材料其介质损耗角正切越好则价格越高,如上所述,如果可以使用介质损耗角正切比较差的封闭层1060,则可以削减材料费,其结果,可以使制造成本更廉价。考虑图17所示的覆盖层1050的存在引起的传输损失的降低效果,和使用介质损耗角正切比较差的封闭层1060而引起的材料费削减的效果时,覆盖层1050的介质损耗角正切最好小于或等于封闭层1060的介质损耗角正切的十分之一。[评价3]在评价3中,调查了传送损失与频率的依赖性。使用的试料为上述比较例2以及实施例6中、覆盖层厚度[tc]为100以及200^im的共三点。[评价效果3]对于上述各试料,表示在频率为020(GHz)的范围内调查线路长度[L]为5(mm)时的传输损失的结果。图18是表示传输损失(dB)与频率的依赖性的曲线图。如图18所示,如比较例2那样没有覆盖层1050的情况下,随着频率升高,传输损失大幅上升。与此相对,如实施例6那样有覆盖层1050的情况下(覆盖层厚度[tc]100nm和200)im的情况),即使传输损失的频率升高,传输损失上升的程度与没有覆盖层1050的情况相比也平缓,确认频率越高,则具有覆盖层1050所引起的传输损失抑制的效果越显著。以上,说明了实施方式2。本实施方式毕竟是例示,可以有各种变形例,而且这样的变形例也属于本发明的范围,本领域技术人员应该理解这一点。例如,图19中所示截面的共面线^^中,通过将比封闭层1260的介质损耗角正切更好的覆盖层1250设置于信号线1230和封闭层1260之间,可以以低成本实现传送损失的降低。而且,在图19的例子中,表示了在电介质基板1220的两面上配置接地导体1240a、1240b以及1240c的结构,但也可以没有经由电介质基板1220与信号线1230相反的面的接地导体1240a的结构。权利要求1.一种布线基板,其特征在于,在电介质基板的一个面上形成信号线,在另一面上设置了接地导体,其中,所述布线基板包括覆盖所述信号线的覆盖层;以及封闭所述信号线的封闭层,所述电介质基板由树脂材料形成,所述覆盖层的介质损耗角正切小于所述封闭层的介质损耗角正切。2.—种布线基板,其特征在于,在电介质基板的一个面上形成信号线,在所述信号线的至少一侧靠近设置接地导体,其中,所述布线基板包括覆盖所述信号线的覆盖层;以及封闭所述信号线的封闭层,所述电介质基板由树脂材料形成,所述覆盖层的介质损耗角正切小于所述封闭层的介质损耗角正切。3.如权利要求1所述的布线基板,其特征在于,所述覆盖层的介电常数大于或等于所述封闭层的介电常数。4.如权利要求2所述的布线基板,其特征在于,所述覆盖层的介电常数大于或等于所述封闭层的介电常数。5.如权利要求1所述的布线基板,其特征在于,所述覆盖层的介质损耗角正切小于或等于所述封闭层的介质损耗角正切的十分之一。6.如权利要求3所述的布线基板,其特征在于,所述覆盖层的介质损耗角正切小于或等于所述封闭层的介质损耗角正切的十分之一。全文摘要本发明提供一种布线基板,其特征在于,在电介质基板的一个面上形成信号线,在另一面上设置了接地导体,其中,所述布线基板包括覆盖所述信号线的覆盖层;以及封闭所述信号线的封闭层,所述电介质基板由树脂材料形成,所述覆盖层的介质损耗角正切小于所述封闭层的介质损耗角正切。文档编号H01L23/12GK101252814SQ20081009092公开日2008年8月27日申请日期2005年1月31日优先权日2004年1月29日发明者今冈俊一,山口健申请人:三洋电机株式会社