专利名称::高密度等离子体工艺中蚀刻速率偏移的减小的制作方法
技术领域:
:本发明涉及高密度等离子体工艺。
背景技术:
:在半导体技术发展中面临的持久性挑战之一是需要在衬底上增加电路元件的密度和互连,而在电路元件之间不会引入寄生相互作用(spuriousinteractions)。典型地通过提供采用电绝缘材料填充的间隙和沟槽以使元件物理h且电学上隔离,来防止不必要的相互作用。随着电路密度增加,然而,这些间隙的宽度减小,这增加了间隙的孔径比,并使填充间隙而不留下空洞更加困难。在间隙没有被完全填充时形成空洞是不期望的,因为它们可以诸如通过捕获在绝缘材料内的杂质,而对已完成的器件的操作产生不利影响。在该间隙填充应用中采用的普通技术是化学气相沉积("CVD")技术。常规热CVD工艺向衬底表面提供反应气体,在该衬底表面上发生热诱导化学反应来生成所需膜。等离子体增强CVD("PECVD")技术通过向接近衬底表面的反应区施加射频("RF")能量,来促使反应气体的激发和/或离解,从而产生等离子体。等离子体中的物种的高反应性减少发生化学反应所需的能量,因而与常规的热CVD丄艺相比,降低该CVD丄艺所需的温度。利用卨密度等离子体("HDP")CVD技术nj以进一歩发挥这些优势,其中致密等离子体在低真空压力下形成,因此等离子体物种甚至更具反应性。虽然这些技术每个都广义地落入在统称的"CVD技术"中,但它们中的每个都具有使它们更加适合或不太适合某些特定应用的特征。HDP-CVD系统形成等离子体,该等离子体比标准、电容耦合等离子体CVD系统的密度大至少约2个数量级。HDP-CVD系统的实例包括电感耦合等离子体系统和电子回旋共振(ECR)等离子体系统,以及其他系统。HDP-CVD系统一般在比低密度等离子体系统更低的压力下操作。在HDP-CVD系统中使用的低腔室压力提供具有长平均自由程和减小的角分布的激活物种(activespecies)。这些因素,连同等离子体密度,有助于来自等离子体的相^大的成分到达紧密地分隔开的间隙的甚至最深部分,并且与在低密度等离子体CVD系统中所沉积的膜相比,提供具有改进的间隙填充能力的膜。允许利用HDP-CVD技术所沉积的膜具有改进的间隙填充特征的另一因素是促使通过高密度等离子体溅射同时沉积膜。HDP沉积工艺的溅射成分减慢在诸如凸起表面的拐角的某些特征图形上的沉积,从而导致HDP沉积膜的间隙填充能力的增加。一些HDP-CVDF系统引入氩或类似重惰性气体,以进一歩促进溅射效果。这些HDP-CVD系统典型地利用衬底支撑基座内的电极,该电极能够形成电场从而朝衬底偏置等离子体。在整个HDP沉积工艺中能够施加电场,以进一步促进溅射并为已知膜提供更好的间隙填充特征。开始认为由于同时沉积/溅射的特点,因此HDP-CVD可以填充几乎在任何应用中产生的间隙或沟槽。然而,半导体厂商己经发现对HDP-CVD工艺能够填充的间隙的孔径比存在实际限制。例如,普通用于沉积氧化硅间隙填充膜的一个HDP-CVD工艺由包括硅烷SiH4、氧分子02和氩Ar的工艺气体形成等离子体。已经报道当该工艺用于填充某些窄-宽度高孔径比间隙时,由工艺气体中的氩引起的溅射可以妨碍间隙填充效果。具体而言,已经报道由工艺中的氩所溅射的物质以比在正在填充的间隙的侧壁的下部更快的速率再沉积在正在填充的间隙的侧壁的上部上。反过来,如果在间隙被完全填充之前再生长的上部区域接合,则可以导致在间隙中形成空洞。图1给出在沉积的不同阶段氧化硅膜的示意剖面图,以说明--胜CVD工艺中相关的可能间隙填充限制。以稍微放大的形式示出间隙填充问题以更好地说明该问题。图1的顶部示出初始结构104,其中间隙120由具有水平表面122的两个相邻特征图案124和128限定,以及被标示为132的在间隙底部的水平表面。如结构108中所示,gp,图中从顶部数第二部分,常规的HDP-CVD氧化硅沉积工艺导致在间隙120底部的水平表面132上以及在特征图案124和128上方的水平表面122上的直接沉积。然而,由于随着氧化硅膜生长从氧化硅膜溅射出的材料的再组合还导致在间隙120的侧壁140上的间接沉积(被称为"再沉积")。在某些小宽度、高孔径比应用中,氧化硅膜的不断生长导致在侧壁140的上部的形成物136,该形成物136以超过膜在侧壁下部横向生长的生长速率朝彼此生长。在结构108和112屮示出,这个趋势,并且在结构116中的最终结果是在膜内形成空洞144。形成空洞的可能性与再沉积的速率和特征非常直接相关。因此,本领域中仍存在对改进间隙填充技术的一般需要。
发明内容本发明的实施方式提供在多个衬底上沉积膜的方法。在第一组实施方式中,通过向处理腔室提供时效前驱物(seasonprecursor)气流对处理腔室进行吋效处理。通过施加至少7500W的源功率,由时效前驱物形成高密度等离子体,其中在处理腔室的顶部分配有大于70%的源功率。利用高密度等离子体沉积在一个点处具有至少5000A的厚度的时效层。向处理腔室中顺序传送多个衬底中的每个衬底以在多个衬底中的每个衬底上执行包括蚀刻的工艺。在顺序传送多个衬底中的每个衬底之间清洁处理腔室。在不同实施方式中,至少5000A的厚度可以包括至少7500A的厚度或者可以包括至少10,000A的厚度。时效前驱物气流可以提供为,诸如SiH4的含硅气流和诸如02的含氧气流。含氧气体的流率可以小于含硅气体的流率,或者可以是含硅气体的流率的0.8倍以下。在一些例子中,附加提供与含硅气体和含氧气体不发生反应的气体气流,有时具有小于200sccm的流率。在第二组实施方式中,对处理腔室进行时效处理,以及向处理腔室中顺序传送多个衬底中的每个衬底以在多个衬底中的每个衬底上执行包括蚀刻的工艺。通过执行处理腔室的局部清洁、然后加热处理腔室并然后完成处理腔室的清洁,而在顺序传送多个衬底中的每个衬底之间清洁处理腔室。执行处理腔室的局部淸洁和完成处理腔室的清洁各包括向处理腔室流入卤素前驱物,和由该卤素前驱物形成高密度等离子体。合适的卤素前驱物的一个实例是F2。可以执行超过清洁终点(endpointoftheclean)的75%的局部清洁。可以通过向处理腔室流入加热气体并且由加热气体形成高密度等离子体来加热处理腔室。加热气体的实例包括02、Ar和He等。可以通过施加在顶源和侧源之间近似相等分配的源功率形成高密度等离子体。通过参照说明书和附图的其余部分可以实现对本发明的特点和优点的进一歩理解。图1给出说明在现有技术的间隙填充工艺期间空洞的形成的示意剖面图;图2是包括多个浅沟槽隔离结构的局部完成的集成电路的简化剖面图3A和3B是分布示出结构中开口区域和密集堆积区域的间隙填充特征的示意图4A是概述在本发明的实施方式中用于在衬底上沉积膜的流程图4B是概述可以与图4A的方法一起使用的特定沉积工艺的流程图,该特定沉积工艺中沉积步骤和蚀刻歩骤交替出现;图4C是概述可以在某些实施方式中采用的作为图4A的方法的一部分的对处理腔室进行时效处理的方法的流程图4D是概述可以在某些实施方式中采用的作为图4A的方法的一部分的清洁处理腔室的方法的流程图-,图5A是可以实施本发明的方法的高密度等离子体化学气相沉积系统的一个实施方式的简化图5B是可以结合图5A的示例性处理系统使用的气环的简化剖面图。具体实施例方式本发明的实施方式涉及合并蚀刻步骤的在衬底上沉积膜的方法。在本发明的特定示例性应用中,提供利用高密度等离子体CVD工艺沉积氧化硅层以填充衬底表面中的间隙的方法。根据本发明的技术所沉积的氧化硅膜具有优异的间隙填充能力,并能够填充,例如,浅沟槽隔离("STI")结构中出现的间隙。因而通过本发明的方法所沉积的膜适合在制造多种集成电路中使用,包括在具有小于45nm数量级的特征尺寸的那些集成电路中使用。发明人的一个发现,作为他们对该沉积方法研究的一部分,在于在该方法的蚀刻部分期间存在随着处理衬底越多,蚀刻速率越小的系统趋势。即使在每个衬底的工艺条件基本相同时,"蚀刻速率飘移(etch-ratedrift)"也发生。图2示出可以根据本发明的实施方式填充的结构类型,图2给出局部完成的集成电路200的简化剖面图。在包括多个STI结构的衬底204上形成该集成电路,其中每个STI结构通常是通过在衬底204的表面上形成薄焊盘氧化层220,然后在焊盘氧化层220上形成氮化硅层216形成的。然后,利用标准光刻技术对氮化层和氧化层构图,并穿过在衬底204中的氮化物/氧化物叠层蚀刻沟槽224。图2示出集成电路,该集成电路可以包括具有晶体管或其他有源器件的相对密集堆积的区域208,并可以包括相对隔离的开口区域212。在开口区域212中的有源器件可以通过比在密集堆积的区域208中的分离(separation)大多于"个数量级的分离而彼此分离,但认为如在此所使用的"开口区域"是其中间隙的宽度为在"密集区域"中的间隙宽度的至少五倍的区域。本发明的实施方式提供利用具有较好间隙填充性质的沉积工艺使用诸如二氧化硅的电绝缘材料来填充沟槽224的方法。在一些例子中,在间隙填充工艺之前,在衬底上沉积初始衬垫层,作为原位蒸汽产生("ISSG")或其他热氧化层,或者可以为氮化硅层。在填充沟槽224之前沉积该衬垫的一个优点是提供适当的圆角,这可以有助于避免在所形成的晶体管中早期栅极击穿的所述影响。如在此所使用的,高密度等离子体工艺是等离子体CVD工艺,包括同时沉积和溅射成分,并应用具有以1011ions/cm3或更大数量级的离子密度的等离子体。高密度等离子体的组合沉积和溅射特征的相对级别可以依赖于一些因素,如用于提供气体混合物的流率,为了维持等离子体所施加的源功率级别,施加给衬底的偏置功率等。这些因素的组合可以用"沉积/溅射比率"方便地量化,有时表示为D/S以定义该工艺的特征Z)二(净沉积速率)+(无图案溅射速率)7=(无图案溅射速率)该沉积/溅射比率随着沉积增加而增加,并随着溅射增加而减小。如D/S的定义中所使用的,"净沉积速率"指当沉积和溅射同时发生时测得的沉积速率。"无图案溅射速率(blanketsputteringrate)"是在无沉积气体的条件卜~执行工艺配方时测得的溅射速率;处理腔室内的压力被调整到沉积期间的压力,以及溅射速率在无图案热氧化物上测得。如本领域的技术人员所知,其他等效测量可以用于量化HDP工艺的相对沉积和溅射贡献(contribution)。常用的可选比率是"蚀亥lj/沉积比率",£=(仅源沉积速率)-(净沉积速率)D=(仅源沉积速;^,该"蚀刻/沉积比率"随着溅射增加而增加并随着沉积增加而减小。如在E/D的定义中使用的,"净沉积速率"再次指当沉积和溅射同时发生时测得的沉积速率。然而,"仅源沉积速率(source-onlydepositionrate)"指当工艺配方在没有溅射的情况下执行时测得的沉积速率。在此以术语D/S比率来描述本发明的实施方式。虽然D/S禾BE/D不是精确的倒数,但它们是反相关(inverselyrelated),并且本领域的技术人员将理解它们之间的转换。一般通过包括还可以起溅射剂的作用的前驱物气体气流,以及在--些例子中起溅射剂的作用的流动气体气流,获得对于HDP-CVD工艺中的已知步骤的所需D/S比率。由前驱物气体包含的元素反应以形成具有所需成分的膜。例如,为了沉积氧化硅膜,前驱物气体可以包括诸如硅烷SiH4的含硅气体,以及诸如氧分子02的氧化气体反应物。通过包括具有所需掺杂剂的前驱物气体可以向膜添加掺杂剂,诸如通过包括SiF4气流以使膜氟化,包括PH3的气流以使膜磷化,包括B2H6的气流以使膜硼化,包括N2的气流以使膜氮化等。流动气体可以与H2气流或包括He气流的惰性气流,或者诸如Ne、Ar或Xe的甚至更重的惰性气流一起提供。通过不同流动气体提供的溅射级别直接与它们的原子质量(或在H2的情况中分子质量)相关,利用H2产生甚至比He更少的溅射。本发明的实施方式通常提供具有平均分子质量小于5amu的流动气体气流。这可以通过利用单个低质量气体,诸如基本上纯H2的气流或者基本上纯He的气流来获得。可选地,有时,气流可以由多种气体提供,诸如通过既提供H2气流又提供He气流,它们在HDP-CVD处理腔室中混合。可选地,有时气体可以预先混合从而H2/He的气流以混合态提供给处理腔室。还可以提供单独的较高质量气体气流,或者在预先混合物中包括较高质量气体,同时预先混合物的相对流率和/或浓度选择为维持小于5amu的平均分子质量。在高孔径比结构中,一般情况下,已经发现采用相对高流率的低质量流动气体,以与更传统采用诸如Ar的流动气体相比改善间隙填充能力。这被认为是通过利用He或H2作为流动气体所实现的再沉积减少的结果。但即使采用这种低质量流动气体,在沉积期间也存在拐角压边(cornerdipping)的风险。参照图3A和3B可以理解该影响,图3A和3B示出分别对于在密集堆积区域中的间隙和对于在开口区域中的间隙,HDP工艺的溅射成分(component)的影响。具体地说,图3A中的间隙304是高孔径比间隙,具有利用HDP-CVD工艺所沉积的材料,该材料在水平表面上形成尖端(cust)结构308。当材料312响应沿路线316的等离子体离子的碰撞而从尖端308溅射时,发生再沉积。所溅射的材料312沿着路线320,到达间隙304的相对侧上的侧壁324。这种影响是对称的,因此当材料被溅射得远离间隙的左侧而到达右侧时,材料也被溅射得远离间隙的右侧而到达左侧。材料的再沉积保护不会过量溅射而导致拐角压边。在开口区域中,如图3B中所示的开口区域330中,不存在这种对称。在该例子中,沉积造成类似尖端308'的形成,但当材料312'响应沿路线316'的等离子体离子的碰撞而沿路线320'被溅射时,间隙的相对侧太远而不能发生具有保护性的再沉积。图3B中的结构的拐角经受如图3A中的结构的拐角相同的材料的溅射,但是没有接收从间隙的相对侧所溅射的材料的补偿效果。因此,存在压边拐角并损坏下方结构的增加的风险。图4A的流程图概括了本发明的方法,图4A提供所述方法的概述。这些方法应用于在公共处理腔室中数个衬底的操作,其中每个衬底上执行多个工艺。在区块402,方法开始,对处理腔室进行时效处理,即,利用材料涂覆处理腔室的内部结构,该材料的一个实例包括Si02。在区块404,衬底被传送到处理腔室中,从而在区块406在那个衬底上执行工艺。即使在工艺的应用的总结果是材料的净沉积时,该工艺包括有效蚀刻(significantetching)。在区块410,衬底被传送出处理腔室,在区块412清洁该处理腔室。在区块414实施检查整个衬底操作是否已经完成。典型的衬底操作可能包括五个衬底,在不同特定的实施方式中还可以使用更多或更少数量的衬底。如果衬底操作没有完成,则在区块404向处理腔室中传送该操作屮的下个衬底,并且对该下个衬底重复该方法。一旦全部衬底操作已经完成,那么在区块402利用在区块406的相同工艺或利用不同工艺再次时效处理该处理腔室,以便为另衬底操作准备。图4B给出在区块406可以采用的那些工艺的详细内容。在该实例中,利用沉积/蚀刻/沉积工艺在衬底上获得沉积,而更-一般而言,本发明的方法可以应用于具有有效蚀刻成分(significantetchingcomponent)的其他类型的工艺。衬底典型地是诸如200mm或300mm直径的半导体晶片。在区块420,前驱物气体气流提供至腔室,前驱物气体气流包括硅前驱物气流、氧前驱物气流和流动气体气流。表l提供了用于使用单硅烷SiH4、氧分子02和H2的气流沉积未掺杂的硅酸盐玻璃("USG")的示例性的流率,但是应该理解如前所述也可以使用包括掺杂剂源的其它前驱物气体和其它流动气体。表I:用于USG沉积的示例性流率<table>tableseeoriginaldocumentpage12</column></row><table>如表所示,对于200-mm和300-mm直径的晶片,前驱物气体的流率类似,但是流动气体的流率一般更高。在区块422中,通过将能量耦合入腔室,由气态气流(gaseousflow)形成高浓度的等离子体。用于产生高浓度等离子体的通用技术是电感耦合射频能量。D/S比不仅由气体的流率确定,而且还由耦合入腔室的功率密度确定,由可以施加到衬底的偏置的强度确定,由腔室内的温度确定,由腔窒内的压力确定,以及由其它因素确定。对于在区块424中膜的初始部分的沉积,在某些实施例中,可以选择该处理参数以提供超过20的D/S比率,而同时提供900-6000A/min(埃/分钟)的相对低的沉积速率。发明人已经发现对于很小的特征尺寸,--般利用低沉积速率和高D/S比率的这种组合来改善间隙填充特征。在沉积完成之后,在区块426中,结束沉积前驱物气流,然后在区块428检査膜是否己经达到所需的厚度。本发明的实施方式包括由蚀刻阶段分隔开的至少两个沉积阶段,根据正在填充的间隙的具体特征可以频繁地具有5-15个沉积阶段或者甚至更多的沉积阶段。在区块430,通过流入卤素前驱物开始工艺的蚀刻阶段,卤素前驱物通常包括诸如NF3或含氯氟烃的氟前驱物。在区块432,利用高源功率密度由卤素前驱物形成高浓度等离子体。在一些实施方式中,源功率密度在大约80,000和140,000W/m2之间,这对于300-mm直径晶片相当于在大约6000和IO,OOO瓦之间的总源功率,而对于200-mm直径晶片相当于在大约2500和4500瓦之间的总源功率。发明人已经发现使用高源功率使得沉积剖面(depositionprofile)比使用低源功率更加对称。在一些实施方式中,总源功率分布在顶和侧源中,从而源功率的主要部分由侧源提供。例如,侧源功率可以是顶源功率的1-5倍,并且在一特定实施方式中,侧源功率是顶源功率的3倍。在区块434中,使用产生的卤素等离子体以回蚀刻(etchback)沉积的膜。虽然材料可以被蚀刻的具体量相对取决于衬底结构的具体结构,但是通常在后面的蚀刻周期中材料可以被蚀刻的量大于在前面的蚀刻周期中材料被蚀刻的量。这是衬底的整个布局由于沉积和蚀刻步骤的顺序而改变的事实的一般结果。这种步骤的顺序的一般趋势是在周期的蚀刻阶段布局变得越趋向于蚀刻越大的量。在区块436,结束卤素前驱物流,在区块420中,通过再次流入硅前驱物、氧前驱物和流动气体的气流,从而工艺可以返回到沉积阶段。通常期望在各沉积阶段期间对于材料的沉积将使用相同的前驱物,并且在蚀刻阶段对于去除材料将使用相同的前驱物,但是对于本发明这不是必须的。材料在各沉积阶段所沉积的量通常在300至1000A之间,同时当每个周期使用更大的沉积量时整个工艺需要更少的周期。为了沉积相同量的材料,当每个周期沉积300A时,需要在每个周期沉积IOOOA时大约六倍的周期。图4C示出在一些实施例中在区块402可以使用的时效处理工艺。在区块440,时效处理工艺开始,在腔室内建立时效条件。在一些实施方式中,该条件包括在25和65毫托(mtorr)之间的腔室压力。在区块442提供时效前驱物气流,在时效处理包括Si02涂层的实施方式中,前驱物可以包括诸如硅烷的含硅气体和含氧气体。例如,硅前驱物可以包括SiHU以及氧前驱物可以包括o2。在-些实施方式中,含氧气体的流率小于含硅气体的流率,可以是含硅气体的流率的0.9倍以下,可以是含硅气体的流率的0.8倍以下,可以是含硅气体的流率的0.7倍以下,可以是含硅气体的流率的0.6倍以下,或者可以是含硅气体的流率的0.5倍以下。例如,在使用SiH^和02的一个实施方式中,02的流率是300sccm和SiH4的流率是470sccm,流量比大约等于0.65。在区块442提供的气流有时还可以包括不发生反应的气体,诸如使用He、Ne或Ar的实施方式。所述不发生反应的气体的流率典型地小于200sccm以减少溅射效/左,并可以是Osccm。在区块444,如上所述通过向处理腔室中耦合能量而由时效前驱物形成高密度等离子体。能量优选地优先与顶源功率的施加耦合,并且在本发明的实施例中,能量具有在腔室的顶部所施加的源功率70%以上,在腔室的顶部所施加的源功率80%以上,在腔室的顶部所施加的源功率的90%以上,或者甚至在腔室的顶部所施加的源功率的100%。所施加的典型功率大于7500W,在一个实施方式中,利用在处理腔室的顶部全部所施加的大约9000W功率。在区块446,该高密度等离子体用于沉积时效处理层。虽然通常预期时效处理层的厚度可以是不均匀的,但在一些实施方式中,在一个点处其具有至少5000A的厚度,在一个点处具有至少6000A的厚度,在一个点处具有至少7500A的厚度,在一个点处具有至少10,000A的厚度,或者在一个点处具有至少12,500A的厚度。在时效处理层沉积后,在区块448,停止时效前驱物气流。图4D给出了根据本发明的实施方式在图4A的区块412清洁腔室的一个方法的流程图。该清洁方法包括两步清洁,并且在清洁的两个步骤之间执行加热工艺。因此,在区块460,在衬底完成处理后,诸如F2的卤素前驱物被流入处理腔室。在区块462,高密度等离子体由卤素前驱物形成,并且在区块464,利用高密度等离子体执行局部清洁。在一些实施方式中可以执行大于75%的工艺终点的局部清洁。在完成了第一清洁步骤之后,在区块466停止卤素前驱物流。在区块468,这种气流用加热气流替代,其中在区块470加热等离子体由该加热气体形成。仅作为举例,在不同实施方式中,加热气体可以包括Q2、Ar和/或He,以及12,000W的示例性源功率以相等的顶部和侧部分配被施加并且持续30到120秒的时间。这种中间加热起抵消在清洁期间发生的腔室的一般冷却的作用。在区块472停止加热气流之后,在区块474可以再次:宋用卤素前驱物气流,以及在区块475再次形成高密度等离子体,用于完成腔室清洁。示例性衬底处理系统发明人己经用由SantaClara,California(加利福尼亚州圣克拉拉市)的APPLIEDMATERIALS,INC.(应用材料有限公司)制造的ULTIMA系统实施本发明的实施方式,上述系统的-般描述提供在共同转让的美国专利U.S.No.6,170,428屮,该专利申请是由FredC.Redeker,FarhadMoghadam,HirogiHanawa,TetsuyaIshikawa,DanMaydan,ShijianLi,BrianLue,RobertSteger,YaxinWang,ManusWong和AshokSinha在1996年7月15是提交的,其发明名称为"SYMMETRICTUNABLEINDUCTIVELYCOUPLEDHDP-CVDREACTOR",这里,将其全部公开结合进来作为参考。下面结合图5A和5B提供该系统的概述。图5A示例性示出了在一个实施方式中这种HDP-CVD系统510的结构。系统510包括腔室513、真空系统570、源等离子体系统580A、偏置等离子体系统580B、气体输送系统533和远程等离子体清洁系统550。腔室513的上部分包括由诸如铝的氧化物或铝的氮化物的陶瓷介电材料制成的拱顶514。拱顶514限定了等离子体处理区域516的上边界。等离子体处理区域516在底部是以衬底517的上表面和衬底支撑件518为界的。加热板523和冷却板524在拱顶514之上并且与拱顶514热连接。加热板523和冷却板524允许将拱顶温度控制在大约100°C至200°C的范围上在大约±10。C内。这允许针对各种工艺优化拱顶温度。例如,希望拱顶温度对于清洁或蚀刻工艺保持比沉积工艺更高的温度。拱顶温度的精确控制还减小腔室内剥落或者颗粒量并且提高沉积层和衬底之间的粘着。腔室513的下部分包括将腔室连接至真空系统的主体构件522。衬底支撑件518的基座部分521被安装在主体构件522上并且与主体构件522形成连续的内表面。衬底由机器人托板(未示出)通过腔室513的侧壁中的插入/移出开口(未示出)以传递入腔室513并且传递出腔室5B。升降销(未示出)在马达(也未出)的控制下升高然后降低,以将衬底从在上安装位置557的机器人托板上移至下处理位置556,在下处理位置衬底放置在衬底支撑件518的衬底接收部分519上。衬底接收部分519包括静电吸盘520,该静电吸盘520在衬底处理期间将衬底固定到衬底支撑件518上。在优选的实施方式中,衬底支撑件518由铝的氧化物或铝的陶瓷材料制成。真空系统570包括节流阀主体(throttlebody)525,该节流阀体525容纳双叶片节流阀(twin-bladethrottlevalve)526并且附接至闸式阀527和涡轮分子泵528。应该注意到节流阀主体525提供对气流的最小阻塞,并且允许对称抽气。闸式阀527能够允许使泵528与节流阀主体525隔离,并且能够通过限制当节流阀526完全打开时的排气能力来控制腔室压力。节流阀、闸式阀和涡轮分子泵的布置允许精确且稳定地控制腔室的压力高达大约1毫托至大约2毫托。源等离子体系统580A包括安装在拱顶514上的顶线圈529和侧线圈530。对称的接地屏蔽(未示出)减小线圈之间的电耦合。顶线圈529由顶源射频(SRF)发生器531A供电,而侧线圈530由侧SRF发生器531B供电,并且对于各线圈允许独立的功率级别和工作频率。这种双线圈系统允许控制腔室513内的辐射离子浓度,从而提高等离子体的均匀性。侧线圈530和顶线圈529通常是电感性地驱动(inductivelydriven),这不需要辅助电极。在具体实施方式中,顶源射频发生器531A提供在标称2MH下高达2,500瓦的射频功率,而侧源射频发生器531B提供在标称2MH下高达5,000瓦的射频功率。顶射频发生器和侧射频发生器的工作频率可以偏离标称工作步骤(例如,分别至1.7-1.9MHz禾卩1.9-2.0MHz)以提高等离子体发生效率。偏置等离子体系统580B包括偏置射频("BRF")发生器531C和偏置匹配网络532C。偏置等离子体系统580B电容耦合衬底部分517至主体构件522,其起到辅助电极的作用。该偏置等离子体系统580B用于提高由源等离子体系统580A造成的等离子体物种(例如离子)向衬底表面的传输。在具体实施方式中,如下面将要讨论的,偏置等离子体产生器提供在小于5MHz的频率下高达10,000瓦的RF功率。RF发生器531A和531B包括数字控制的合成器,并且在大约1.8至大约2.1MHz之间的频率范围上工作。如本领域普通技术人员所理解的,各发生器包括RF控制电路(未示出),该RF控制电路测量从衬底和线圈反射回发生器的功率,并且调节工作频率以获得最低的反射功率。RF发生器通常设计为在具有50欧姆的特征阻抗的负载F工作。RF功率可以由具有与发生器不同特征阻抗的负载反射回来。这能够减少传输至负载的功率。另外,由负载反射回发生器的功率可以使发生器过载荷并且损坏发生器。l到为等离子体的阻抗根据等离子体的浓度以及其它因素在从小于5欧姆至大于卯0欧姆的范围内,并且还因为反射的功率可以是功率的函数,所以根据反射的功率调节发生器的频率增加从RF发生器传递至等离子体的功能并且保护发生器。减少反射功率并且提高效率的另--种方法是采用匹配网络。匹配网络532A和532B使发生器531A和53IB的输出阻抗与它们各自线圈529和530相匹配。RF控制电路当负载改变时可以通过改变匹配网络中的电容器的值来调谐两匹配网络,以使发生器与负载相匹配。RF控制电路当从负载反射回发生器的功率超过一定限制时可以调谐匹配网络。提供恒定匹配并且有效地禁止RF控制电路调谐匹配网络的一种方法是设置超过反射功率的任意期望值的反射功率限制。这可以通过保持匹配网络在等离子体的最近条件下不变来帮助在一些条件下稳定等离子体。其它测量还可以帮助稳定等离子体。例如,RF控制电路能够用于确定输送给负载(等离子体)的功率,并且可以增加或减少发生器输出功率以保持输送的功率在沉积层期间基本上不变。气体输送系统533通过气体输送管线538(仅示出了其中的一些)向腔室提供来自几个源534A-534E腔室的气体用于处理衬底。如本领域普通技术人员能够理解的,用于源534A-534E的实际源和至腔室513的输送管线538的实际连接根据在腔室内执行的沉积和清洁工艺而改变。气体通过气环(gasring)537和/或顶喷嘴545导入腔室513中。图5B为示出了气环537的附加细节的腔室513的简化、部分截面图。在一实施方式中,第一和第二气体源534A和534B以及第一和第二气体流量控制器535A'和535B'通过气体输送管线538(仅示出了其中的一些)向气环537中的环气室(ringplenum)536提供气体。气环537具有多个源气体喷嘴539(为了说明仅示出了其中之一),多个源气体喷嘴539在衬底上提供均匀的气体气流。喷嘴长度和喷嘴角度可以改变以允许在单独的腔室内针对特定工艺来调整均匀分布和气体利用效率。在优选的实施方式中,气环537具有由铝的氧化物陶瓷制成的12个源气体喷嘴。气环537还具有多个氧化剂气体喷嘴540(仅示出了其中之一),在优选的实施方式中,多个氧化剂气体喷嘴与源气体喷嘴539共平面并且比源气体喷嘴539短,并且在一实施方式中,多个氧化剂气体喷嘴接受来自主体气室(bodyplenum)541的气体。在一些实施方式中,需要源气体和氧化剂气体在注入腔室513之前不混合。在其它实施方式中,通过在主体气室541和气环气室536之间提供孔(未示出)氧化剂气体和源气体在注入腔室513之前可以混合。在一实施方式中,第三、第四和第五气体源534C,534D和534D,以及第三和第四气体流量控制器535C和535D'通过气体输送管线538向主体气室提供气体。除了阀门,诸如543B(其它阀门未示出)可以切断从流量控制器至腔室的气体。在实施本发明的一些实施方式中,源534A包括硅烷SiH4源,源534B包括氧分子02源,源534C包括硅烷SiH4源,源534D包括氦He源,并且源534D'包括氢分子H2源。在使用易燃、有毒或腐蚀性气体的实施方式中,需要在沉积之后除去留在气体输送管线中的气体。例如,这可以使用诸如543B的3通阀来完成,以使腔室513与输送管线538A隔离,并且将输送管线538A与真空前极管道544相通。如图5A所示,其它类似的阀,诸如543A和543C,可以结合在其它气体输送管线上。这种三通阀可以放置为尽可能接近腔室513以使不能通气的气体输送管线(在三通阀和腔室之间)的体积最小。另夕卜,两通(通-断)阀(未示出)可以放置在质量流量控制器("MFC")和腔室之间或在气体源和MFC之间。再次参照图5A,腔室513还具有顶喷嘴545和顶通风口546。顶喷嘴545和顶通风口546允许独立控制气体的顶气流和侧气流,这提高膜均匀性并且允许精细地调节膜的沉积和掺杂参数。顶通风口546为绕顶喷嘴545的环形开口。在一实施方式中,第一气体源534A提供源气体喷嘴539和顶喷嘴545。源喷嘴MFC535A'控制输送至源气体喷嘴539的气体的量,而顶喷嘴MFC535A控制输送到顶气体喷嘴545的气体的量。类似地,MFC535B和535B'两个可以用于控制由诸如源534B的单个氧气源至顶通风口546和氧化剂气体喷嘴540二者的氧气流。在一些实施方式中,氧气不从任意侧喷嘴提供给腔室。提供至顶喷嘴545和顶通风口546的气体可以在流入腔室513之前保持分离,或者所述气体可以在流入腔室513之前在顶气室548内混合。同一气体的分离源可以用于提供腔室的各种部分。提供远程微波发生等离子体清洁系统550以从腔室部件上周期性地沉积残留物。该清洁系统包括从反应器腔体533中的清洁气体源534E(例如,单分子氟、三氧化二氮、其它碳氟化合物或等效物)产生等离子体的远程微波发生器551。由这种等离子体产生的活性物种(reactivespecies)通过施加器管道(applicatortube)555经过清洁气体输入端口554传输至腔室513。用于容纳清洁等离子体的材料(例如,腔体553和施加器管道555)必须耐等离子体的攻击。由于所需要的等离子体物种的浓度随着从反应器腔体553的距离而降低,所以反应器腔体553和输入端口554之间的距离应该保持尽可能短。在远程腔体内产生清洁等离子体允许使用高效微波发生器,并且不会使腔室部件遭受在形成等离子体中在原位出现的辉光放电的温度、辐射或轰击的影响。R此,相对敏感的部件,诸如静电吸盘520,不需要覆盖原位等离子体清洁工艺中所要求的挡片(dummywafer)或者其它保护。在图5A中,等离子清洁系统550所示为设置在腔室513上方,但是也nT以使用其它位置。可以靠近顶喷嘴提供导流板561以将由顶喷嘴中提供的源气体的气流引导入腔室,并且引导远程产生的等离子体的气流。由顶喷嘴545提供的源气体被引导通过中央通道进入腔室,而由清洁气体输入端口554提供的远程产生的等离子体物种通过导流板561被引导至腔室513的侧面。本领域技术人员应该认识到在不脱离本发明精神的情况下,具体参数能够针对不同的处理腔室和不同的工艺条件而改变。其它变型对于本领域技术人员来说也是显然的。这些等效物和变型意欲包括在本发明的范围内。因此本发明的范围并不限于上述的实施方式,而是由所附权利要求书限定。权利要求1.一种在多个衬底上沉积膜的方法,该方法包括对处理腔室进行时效处理,其中对所述处理腔室进行时效处理包括向处理腔室提供时效前驱物气流;通过施加至少7500W的源功率,由所述时效前驱物形成高密度等离子体,其中在所述处理腔室的顶部分配有大于70%的源功率;以及利用所述高密度等离子体沉积在一个点处具有至少5000的厚度的所述时效层;向处理腔室中顺序传送多个衬底中的每个衬底以在所述多个衬底的每个衬底上执行包括蚀刻的工艺;以及在顺序传送所述多个衬底中的每个衬底之间清洁所述处理腔室。2.根据权利要求1所述的方法,其特征在于,所述至少5000A的厚度包括至少7500A的厚度。3.根据权利要求1所述的方法,其特征在于,所述至少5000A的厚度包括至少10,000A的厚度。4.根据权利要求1所述的方法,其特征在于,向所述处理腔室提供所述时效前驱物气流包括向所述处理腔室提供含硅气体气流;以及向所述处理腔室提供含氧气体气流。5.根据权利要求4所述的方法,其特征在于,所述含氧气体的流率小于所述含硅气体的流率。6.根据权利要求4所述的方法,其特征在于,所述含氧气体的流率是所述含硅气体的流率的0.8倍以下。7.根据权利要求4所述的方法,其特征在于,所述含硅气体包括SiH4以及所述含氧气体包括02。8.根据权利要求4所述的方法,其特征在于,向所述处理腔室提供时效前驱物气流还包括提供与所述含硅气体和所述含氧气体不发生反应的气体气流。9.根据权利要求8所述的方法,其特征在于,与所述含硅气体和所述含氧气体不发生反应的所述气体的流率为小于200sccm的流率。10.根据权利要求1所述的方法,其特征在于,在顺序传送所述多个衬底中的每个衬底之间清洁所述处理腔室包括执行所述处理腔室的局部清洁;然后,加热所述处理腔室;以及然后,完成所述处理腔室的清洁。11.一种在多个衬底上沉积膜的方法,该方法包括对处理腔室进行时效处理;向所述处理腔室中顺序传送所述多个衬底中的每个衬底,以在所述多个衬底中的每个衬底上执行包括蚀刻的工艺;以及在顺序传送所述多个衬底中的每个衬底之间清洁所述处理腔室,其中在顺序传送所述多个衬底中的每个衬底之间清洁所述处理腔室包括执行所述处理腔室的局部清洁;然后,加热所述处理腔室;以及.然后,完成所述处理腔室的清洁。12.根据权利要求ll所述的方法,其特征在于,执行所述处理腔室的局部清洁包括向所述处理腔室流入卣素前驱物;以及由所述卤素前驱物形成高密度等离子体。13.根据权利要求12所述的方法,其特征在于,所述卤素前驱物包括F2。14.根据权利要求ll所述的方法,其特征在于,完成所述处理腔室的清洁包括向所述处理腔室流入卤素前驱物;以及由所述卤素前驱物形成高密度等离子体。15.根据权利要求14所述的方法,其特征在于,完成所述卤素前驱物包括&。16.根据权利要求ll所述的方法,其特征在于,所述处理腔室的局部清洁包括执行大于70%的清洁的终点的局部清洁。17.根据权利要求11所述的方法,其特征在于,加热所述处理腔室包括:向所述处理腔室流入加热气体;以及由所述加热气体形成高密度等离子体。18.根据权利要求17所述的方法,其特征在于,所述加热气体包括选自02、Ar和He的气体。19.根据权利要求17所述的方法,其特征在于,由所述加热气体形成高密度等离子体包括施加在顶部源和侧部源之间近似相等分配的源功率。20.根据权利要求ll所述的方法,其特征在于,对所述处理腔室进行时效处理包括向所述处理腔室提供时效前驱物气流;通过施加至少7500W的源功率,而由时效前驱物形成高密度等离子体,其中在所述处理腔室的顶部分配有大于70%的源功率;以及利用所述高密度等离子体沉积在--个点处具有至少5000A的厚度的时效层。全文摘要本发明涉及高密度等离子体工艺中蚀刻速率偏移的减小。本发明提供通过向处理腔室提供时效前驱物气流来时效处理腔室。通过施加至少7500W的源功率,而由所述时效前驱物形成高密度等离子体,其中在所述处理腔室的顶部分配有大于70%的源功率。利用所述高密度等离子体沉积在一个点处具有至少5000的厚度的所述时效层。向处理腔室中顺序传递多个衬底中的每个衬底以在所述多个衬底的每个衬底上执行包括蚀刻的工艺。在顺序传递衬底之间清洁所述处理腔室。文档编号H01L21/00GK101414551SQ20081021564公开日2009年4月22日申请日期2008年9月8日优先权日2007年9月7日发明者权今和,李永S,王安川,贾森·托马斯·布洛金,赫门特·P·芒吉卡,麦诺基·韦列卡申请人:应用材料股份有限公司