燃料电池系统及其起动完成度显示方法

文档序号:6922768阅读:204来源:国知局
专利名称:燃料电池系统及其起动完成度显示方法
技术领域
本发明涉及到一种燃料电池系统及其起动完成度显示方法。进一 步详细叙述的话,本发明涉及到对燃料电池起动时的信息显示的改良。
背景技术
一般地,燃料电池(例如固体高分子型燃料电池)通过层积多个 以隔板夹持电解质的电池单元而构成。此外,燃料电池系统构成为除 了这种燃料电池之外,还具有向该燃料电池供给或从该燃料电池排出 反应气体(燃料气体和氧化气体)的配管系统、充放电力的电力系统 以及集中控制系统整体的控制系统等。
在这样的燃料电池系统中, 一般地,从燃料电池起动开始到形成
为可供给电力的状态(所谓待命(Ready on)状态)为止需要一定的时 间。因此,例如在燃料电池车中,具有显示从起动后到形成为可供给 电力的待命状态为止的时间的单元(例如参照专利文献l)。
专利文献l:日本特开2004-158333号公报
然而,如上所述的到达待命状态(起动完成状态)为止的时间在 以往显示的是根据燃料电池的温度推测的时间,因此推测精度低,到 起动完成为止的剩余时间有出入。

发明内容
因此,本发明的目的在于提供一种燃料电池系统及其起动完成度 显示方法,其能够更高精度地显示到燃料电池的起动完成为止的时间。一般的,在燃料电池系统中,仅通过温度预测到燃料电池起动完 成所需的时间比较困难,因此现状是难以正确地通知用户还要等待多 长时间。本发明者对于此点进行了进一步深入研究,得到了能够解决 所述课题的新的见解。本发明是基于所述见解而做出的,在具有通过 燃料气体和氧化气体的电化学反应进行发电的燃料电池的燃料电池系
统中,在以起动时的燃料电池的温度为起点、起动完成时该燃料电池 的温度为终点的测量仪表上显示当前的燃料电池温度的比率。
根据这样的燃料电池系统,能够通过显示在测量仪表上的温度比 率将到起动完成为止的预测高精度地通知用户。而且,在本发明的情 况下,不是仅根据温度预测时间,而基于该温度自身显示在测量仪表 上,即不推测时间而是仅以温度的比例作为对象进行显示,因此能够 比以往更为正确地通知还需要等待多长时间。即,通过该燃料电池系 统显示温度的比率作为起动完成的预测,由此能够排除时间推测精度 不佳所产生的恶劣的影响。
该情况下,优选的是,在异常检査起动时,在测量仪表上显示实 际经过时间相对于异常检査完成所需时间的比率。在这样的燃料电池 系统中,能够在显示伴随着升温的起动完成的预测的测量仪表上也显 示异常检查完成的预测。
此外,优选的是,对实际经过时间相对于异常检查完成所需时间 的比率和燃料电池温度的比率进行比较,显示较小一方的值。能够显 示考虑了伴随着升温的起动完成的预测和异常检査完成的预测这两者 后的起动完成的预测。
进而,本发明的燃料电池系统的起动完成度显示方法为,在以起 动时燃料电池的温度为起点、起动完成时该燃料电池的温度为终点的 测量仪表上显示燃料电池的当前温度的比率,表示起动完成的预测。


图1是本发明的一个实施方式中的燃料电池系统的结构图。 图2是本发明的一个实施方式中的测量仪表的一个例子,是表示 0 5%的起动完成状态的概要图。
图3是表示10 15%的起动完成状态时的测量仪表的概要图。 图4是表示卯%以上的起动完成状态时的测量仪表的概要图。
具体实施例方式
以下,对本发明的优选实施方式基于附图进行说明。
图1 图4表示了本发明的实施方式。本发明所述的燃料电池系 统构成为在以起动时的燃料电池2的温度为起点、起动完成时该燃料 电池2的温度为终点的测量仪表G上显示当前燃料电池温度的比率。 以下,首先对由燃料电池2等构成的燃料电池系统1的整体结构进行 说明,然后对组装到该燃料电池系统1的气液分离器30的具体结构进 行说明。
图l表示了搭载在燃料电池车辆上的燃料电池系统1的概要结构。 另外,此处表示了能够用作燃料电池车辆(Fuel Cell Hybrid Vehicle) 的车载发电系统的系统的一个例子,然而所述燃料电池系统1也能够 应用在搭载于各种移动体(例如船舶或飞机等)或者机器人等可自动 行驶的构造中的发电系统中,进而也可应用在定置的发电系统中。
本实施方式所述的燃料电池系统1具有燃料电池2,其接受反 应气体(氧化气体和燃烧气体)的供给而通过电化学反应产生电力; 氧化气体配管系统3,其向燃料电池2供给作为氧化气体的空气;燃料 气体配管系统4,其向燃料电池2供给作为燃料气体的氢气;制冷剂配 管系统5,其向燃料电池2供给制冷剂来对该燃料电池2进行冷却;电 力系统6,其充放电系统的电力;以及控制部7,其集中控制系统整体。体电池构成为在由离子交换膜构成的电解质的一侧面具有空气极,在另一侧面具有燃料极,进而具有从两侧夹持空气极和燃料极的一对隔板。向一侧的隔板的燃料气体流路供给燃料气体,向另一侧的隔板的氧化气体流路供给氧化气体,进而通过这些各反应气体发生化学反应来产生电力。在该燃料电池2上安装有检测发电中
的电流的电流传感器2a。
氧化气体配管系统3具有使供给到燃料电池2的氧化气体流过的空气供给流路11和使从燃料电池2排出的氧化废气流过的排气流路12。在空气供给流路11上设有经由过滤器13取入氧化气体的压縮机14以及对通过压縮机14压送的氧化气体进行加湿的加湿器15。压縮机14通过未图示的马达的驱动来取入大气中的氧化气体。此外,流过排气流路12的氧化废气通过背压调整阀16在加湿器15供于水分交换后,最终作为废气排出到系统外的大气中。
燃料气体配管系统4具有作为氢供给源的燃料罐21;从燃料罐21供给到燃料电池2的氢气流过的氢供给流路22;用于使从燃料电池2排出的氢废气(燃烧废气)返回到氢供给流路22的合流点Al的循环流路23;将循环流路23内的氢废气压送到氢供给流路22的氢泵24;以及与循环流路23分支连接的排气排水流路25。
燃料罐21例如由高压罐、贮氢合金等构成,并且在本实施方式中的燃料电池车辆中搭载有多个,构成为能够储存例如35MPa或者70MPa的氢气。打开后述的截止阀26后,氢气从燃料罐21流出到氢供给流路22。氢气通过后述的调节器27、喷射器28而最终减压至例如200kPa左右,并被供给到燃料电池2。另外,在本实施方式中以这样的燃料罐21作为氢供给源,然而除此之外,也可以通过如下部件构成氢供给源由烃类的燃料生成富氢的改性气体的改性器;以及使在该改性器生成的改性气体形成为高压状态并蓄压的高压气体罐。在氢供给流路22上设有截止或者容许来自燃料罐21的氢气的供给的截止阀26、调整氢气的压力的调节器27、以及喷射器28。此外,在喷射器28的下游侧、氢供给流路22和循环流路23的合流部Al的上游侧设有检测氢供给流路22内的氢气的压力的压力传感器29。进而,在喷射器28的上游侧设有检测氢供给流路22内的氢气的压力和温度的压力传感器和温度传感器(图示省略)。由压力传感器29等检测出的与氢气的气体状态(压力、温度)相关的信息被用于后述的喷射器28的反馈控制或清洁控制。
调节器27为将其上游侧压力(一次压力)调压为预先设定的二次压力的装置。在本实施方式中,采用对一次压力进行减压的机械式减压阀作为调节器27。机械式的减压阔的结构可以采用如下公知结构-.具有隔着隔膜形成背压室和调压室的壳体,并且通过背压室内的背压在调压室内将一次压力减压至规定的压力而作为二次压力。
喷射器28为电磁驱动式的开闭阀,可通过利用电磁驱动力直接地以规定的驱动周期驱动阀芯远离阀座来调整气体流量、气体压力。喷射器28具有阀座,该阀座具有喷射氢气等的气体燃料的喷射孔,并且具有喷嘴体,将所述气体燃料供给导向至喷射孔;和阀芯,相对于所述喷嘴体可沿轴线方向(气体流动方向)移动地被收容保持,并对喷射孔进行开关。例如在本实施方式中,喷射器28的阀芯被作为电磁驱动装置的电磁线圈驱动,通过对该电磁线圈供电的脉冲状励磁电流的接通/切断,能够两级、多级或者无级地切换喷射孔的开口面积。进而,根据从控制部7输出的控制信号,控制喷射器28的气体喷射时间和气体喷射时期,从而高精度地控制氢气的流量和压力。这样,喷射器28以电磁驱动力直接开闭驱动阀(阀芯和阀座),该驱动周期可控制在高响应的区域,因此具有较高响应性。
另外,通过喷射器28的阀芯的开闭调整气体流量,并且使供给到喷射器28下游的气体压力减压至比喷射器28上游的气体压力低,因此也可以将喷射器28看作是调压阀(减压阀、调节阀)。此外,在本实施方式中,也可以被看作是可变调压阀,所述可变调压阀可使喷射器28的上游气体压力的调压量(减压量)变化,以根据气体要求在规定的压力范围中与要求压力一致。
在本实施方式中,将这样的喷射器28配置于比氢供给流路22和循环流路23的合流部Al靠上游侧的位置(参照图1)。此外,如图1中的虚线所示,在采用多个燃料罐21作为燃料供给源的情况下,将该喷射器28配置于比从所述燃料罐21供给的氢气合流的部分(氢气合流部A2)靠下游侧的位置。
在循环流路23上经由气液分离器30和排气排水阀31连接有排气排水流路25。气液分离器30从氢废气回收水分。排气排水阀31通过接受控制部7的指令而动作,从而将由气液分离器30回收的水分和循环流路23内的包含杂质的氢废气(燃烧废气)排出(清洁)到外部。将该排气排水阀31打开后,循环流路23内的氢废气中的杂质的浓度下降,循环供给的氢废气中的氢浓度上升。在排气排水阀31的上游位置(循环流路23上)和下游位置(排气排水流路25上)分别设有检测氢废气的压力的上游侧压力传感器32和下游侧压力传感器33。
此外,虽未特别详细图示,经由排气排水阀31和排气排水流路25排出的氢废气通过稀释器(图示省略)被稀释并与排气流路12内的氧化废气合流。氢泵24通过马达(图示省略)的驱动,将循环系统内的氢气循环供给到燃料电池2。氢气的循环系统由氢供给流路22的合流点Al的下游侧流路、形成于燃料电池2的隔板上的燃料气体流路以及循环流路23构成。
制冷剂配管系统5具有与燃料电池2内的冷却流路连通的制冷剂流路41;设于制冷剂流路41上的冷却泵42;对从燃料电池2排出的制冷剂进行冷却的散热器43;以及检测从燃料电池2排出的制冷剂
的温度的温度传感器44。冷却泵42通过马达(图示省略)的驱动将制冷剂流路41内的制冷剂循环供给到燃料电池2。由温度传感器44检测出的制冷剂的温度(=从燃料电池2排出的氢废气的温度)用于后述的清洁控制中。
电力系统6具有高压DC/DC转换器61、蓄电池62、牵引变换器63、牵引马达64以及未图示的各种辅机变换器等。高压DC/DC转换器61为直流的电压变换器,具有调整从蓄电池62输入的直流电压而向牵引变换器63侧输出的功能以及调整从燃料电池2或者牵引马达64输入的直流电压而向蓄电池62输出的功能。通过这样的高压DC/DC转换器61的功能实现蓄电池62的充放电。此外,通过高压DC/DC转换器61对燃料电池2的输出电压进行控制。
蓄电池62层积蓄电池单元而以一定的高电压作为端子电压,并且能够通过未图示的蓄电池计算机的控制充电剩余电力或者辅助性地供给电力。牵引变换器63将直流电流变换为三相交流,并供给到牵引马达64。牵引马达64例如是三相交流马达,构成搭载有燃料电池系统l的燃料电池车辆的主动力源。
辅机变换器是控制各马达的驱动的电动机控制部,其将直流电流变换为三相交流而供给到各马达。辅机变换器例如是脉宽调制式的PWM变换器,根据来自控制部7的控制指令将从燃料电池2或者蓄电池62输出的直流电压变换为三相交流电压,从而控制各马达中产生的转矩。
控制部7检测设于车辆上的加速用的操作部件(油门等)的操作量,接受加速要求值(例如,来自牵引马达64等负载装置的要求发电量)等控制信息,控制系统内的各种设备的动作。另外,负载装置中除了牵引马达64,也包括用于使燃料电池2动作所需要的辅机装置(例如压縮机14、氢泵24、冷却泵42的各马达等)、与车辆的行驶相关的各种装置(变速机、车轮控制部、转向装置、悬架装置等)中使用的致动器、乘员空间的空调装置(空气调节器)、照明、音响等电力消耗装置。
这样的控制部7由未图示的计算机系统构成。所述计算机系统具有CPU、 ROM、 RAM、 HDD、输入输出接口以及显示器等,通过以CPU读取存储在ROM中的各种控制程序并执行希望的计算来进行反馈控制、清洁控制等各种处理、控制。
接着,对搭载有如上所述的燃料电池系统1的车辆(燃料电池车)中的用于计算起动完成的结构进行说明(参照图2等)。
在本实施方式的燃料电池车中,设有用于显示燃料电池系统1起动时的燃料电池2的起动状态的测量仪表G。该测量仪表G具有以燃料电池2的温度为起点、起动完成时的该燃料电池2的温度为终点的显示部(参照图2),并且设置在驾驶员等能够看到的位置,例如设置在燃料电池车的驾驶座的仪表板等上。另外,本实施方式中的测量仪表G的底部附近显示有累计指示仪,并且在正对的左上方附近显示有燃料电池2的概要图(参照图2等)。
本实施方式的测量仪表G例如由沿横向延伸的仪表M构成(参照图2等)。该仪表M具有多个闪烁的例如为矩形的显示部,根据燃料电池2的温度点亮相应的量(个数)。
此外,在本实施方式的燃料电池系统1中,在低温起动(在低温状况下的起动)时和异常检査起动(检查燃料电池2的异常时的起动)时切换发送到测量仪表G的起动完成时间。在各种起动时的起动完成时间的计算方法如以下举例表示。另外,以下有时将燃料电池表示为FC。(1) 低温起动时
利用从FC温度等计算出的比例来显示起动完成的进展度。具体来
说,根据下式计算进展度。起动完成进展度-(当前FC温度-起动时FC 温度)/ (待命目标温度-起动时温度)
随着计算出的起动完成进展度(起动完成时间)的增加,测量仪 表G的仪表M的点亮部位增加。
这样一来,在本实施方式中,在以起动时的FC温度(燃料电池温 度)作为起点、起动完成时的FC温度作为终点的测量仪表G上显示当 前的燃料电池温度的位置。在这种情况下,不用推测到起动完成为止 的时间,仅观察温度的比例即可通知到起动完成为止的预测,因而能 够排除推测时间时低精度导致的恶劣的影响。
(2) 异常检查起动时
在异常检査起动时,利用"相对于起动完成为止的估计时间的进 展度"计算起动完成的进展度。如下式可以看出,该情况下的进展度 是实际的经过时间相对于异常检査完成所需要的时间的比率。即,在 此,可以由以下式子算出。起动完成进展度=(从起动开始的经过的时 间)/ (异常检査起动估计时间)
随着计算出的起动完成进展度(起动完成时间)的增加,测量仪 表G的仪表M的点亮部位增加。
(3) 产生上述(1)和(2)的两种请求的情况 在燃料电池系统1中,在同时产生上述(1)的低温起动和(2)
异常检査起动两种请求的情况下,在本实施方式中,采用两者的最小 值。g卩,计算出基于(1)的起动完成进展度和基于(2)的起动完成 进展度二者,再将二者中较小的一方的值(进展度)显示在测量仪表G 上。由此,能够避免基于一种计算方法的高于实际的进展度被显示出 来。(4)起动时间的显示
另外,在预热起动时或上次里程(卜V ^ y)异常产生后下次起
动时到待命为止有时需要耗费时间,因此在本实施方式中通过显示器 显示来进行通知。作为向这种情况的起动时间显示画面的切换时刻,
在向仪表M发送画面显示请求并且下述切换条件成立时进行画面显 示。
〈切换条件成立的情况〉
"低温起动必要时"和"在起动时实施异常检查时"的任意一个, 且为"准备灯闪烁(-起动中)"。
〈切换条件不成立的情况〉 在上述切换条件不成立时或者"准备灯点亮"时。
如上述所说明的那样,在本实施方式的燃料电池系统1中,构成 为计算出低温起动时燃料电池2的起动完成时间并进行显示时,不用 推测时间,而仅仅观察温度的比例并显示在测量仪表G上,因此能够 更高精度地显示到该燃料电池2起动完成为止的时间。即,在本实施 方式中,并不是推测时间,而是将温度作为参数计算出起动完成时间, 显示温度的比例,从而显示到起动完成为止的状况,因而与通过温度 来推测时间的情况相比,能够简便且高精度地通知到起动完成为止所 需要的时间。如上所述,虽然现状是很难通过温度来预测燃料电池2 的起动所需要的时间,但根据本发明的燃料电池系统1,能够在起动时 更准确地向用户传达需要等待多久。并且,如上所述,在本实施方式 中还具有如下优点不需要计算出时间,而是显示温度来表示起动状
况(低温起动时),因而减少了用于计算时间的处理。
另外,上述实施方式是本发明的优选实施方式的一例,但不限于 此,在不脱离本发明的主旨的范围内可以实施各种变形。例如,在本实施方式中,表示了在测量仪表G上的仪表M附近的信息为日语的情 况(参照图2等),但上述信息也可以用英语等表述。
根据本发明,能够根据该燃料电池的温度上升的状况确切地传达 进展状况,从而能够更高精度地显示起动完成为止的预测。
因此,本发明可以广泛用于具有这种要求的燃料电池系统。
权利要求
1.一种燃料电池系统,其具有通过燃料气体和氧化气体的电化学反应进行发电的燃料电池,该燃料电池系统具有显示装置,该显示装置在以起动时所述燃料电池的温度为起点、起动完成时该燃料电池的温度为终点的测量仪表上显示当前的燃料电池温度的比率。
2. 根据权利要求1所述的燃料电池系统,在异常检查起动时,在所述测量仪表上显示实际经过时间相对于 异常检查完成所需时间的比率。
3. 根据权利要求2所述的燃料电池系统,对实际经过时间相对于异常检查完成所需时间的比率和燃料电池 温度的比率进行比较,显示较小一方的值。
4. 一种燃料电池系统的起动完成度显示方法, 在以起动时燃料电池的温度为起点、起动完成时该燃料电池的温度为终点的测量仪表上显示所述燃料电池的当前温度的比率,以表示 起动完成的的预测。
5. 根据权利要求4所述的燃料电池系统的起动完成度显示方法, 在异常检査起动时,在所述测量仪表上显示实际经过时间相对于异常检査完成所需时间的比率。
6. 根据权利要求5所述的燃料电池系统的起动完成度显示方法, 对实际经过时间相对于异常检査完成所需时间的比率和燃料电池温度的比率进行比较,显示较小一方的值。
全文摘要
本发明提供一种燃料电池系统及其起动完成度显示方法,其根据燃料电池的温度上升状况适当地传达进展状况,更高精度地显示到起动完成为止的预测。为了实现上述目的,在以起动时的燃料电池的温度为起点、起动完成时该燃料电池的温度为终点的测量仪表(G)上显示当前的燃料电池温度的比率。通过显示温度的比率作为起动完成的预测,从而排除了推测时间时精度较低引起的恶劣的影响。在异常检查起动时,也可以在测量仪表(G)上显示实际的经过时间相对于异常检查完成所需时间的比率。此外,优选的是,对实际经过时间相对于异常检查完成所需时间的比率和燃料电池温度的比率进行比较,显示较小一方的值。
文档编号H01M8/10GK101682059SQ20088001793
公开日2010年3月24日 申请日期2008年6月16日 优先权日2007年6月15日
发明者今井敦志, 马屋原健司 申请人:丰田自动车株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1