燃料电池系统以及电子装置的制作方法

文档序号:6924123阅读:102来源:国知局
专利名称:燃料电池系统以及电子装置的制作方法
技术领域
本发明涉及一种燃料电池系统以及使用该燃料电池系统的电子装置。
背景技术
燃料电池具有电解质被设置在阳极电极(燃料电极)和阴极电极(氧电极)之间 的结构。燃料被供给至阳极电极,而氧化剂被供给至阴极电极。此时,开始燃料被氧化剂氧 化的氧化还原反应,包含在燃料中的化学能被转化成电能。通过持续地供给燃料和氧化剂,这样的燃料电池能够持续发电。因而,燃料电池被 认为是与现有的一次电池或现有的二次电池不同的用于移动电子装置的新能源。即,由于 燃料电池通过利用燃料和氧化剂之间的反应来发电,所以如果将空气中的氧用作氧化剂并 且从外界持续地补给燃料,则能够将燃料电池持续地用作电源,除非燃料电池出现故障。因 此,小型化的燃料电池能够成为适于移动电子装置而无需充电的高能量密度电源。已经提出或者实验性地制造出各种类型的燃料电池,并且它们中的一部分已经被 实际应用。由于这些燃料电池的特性根据所使用的电解质而大不相同,所以根据电解质 的类型将这些燃料电池划分为各种类型。在上述的燃料电池中,使用质子传导高分子膜 (protonconductive polymer film)的高分子电解质燃料电池(PEFC)不需要电解质溶液, 并在例如大约30°C 130°C (包括两个端点温度)的相对低的温度下工作。因而,PEFC被 认为是能够小型化并适合作为移动电子装置的电源的燃料电池。作为燃料电池的燃料,能够使用诸如氢和甲醇的各种材料。特别地,由于液态燃料 具有比气体高的密度并易于存储,所以诸如甲醇的液态燃料被期望作为用于移动电子装置 的燃料电池的燃料。特别地,直接甲醇燃料电池(DMFC)不需要从燃料提取氢的重整器,其 结构简单并且可以容易地减小其尺寸,其中,在该直接甲醇燃料电池中将甲醇直接供应至 PEFC的阳极电极并发生反应。在DMFC中,如化学式1所示,燃料甲醇在阳极电极的催化 剂层被氧化成二氧化碳。(化学式1)阳极电极CH30H+H20 — C02+6H++6e"此时产生的氢离子通过设置在阳极电极和阴极电极之间的电解质膜被移动至阴 极电极,在阴极电极的催化剂层中与氧反应生成水,如化学式2所示。(化学式2)阴极电极6H++(SA)O^ef+ — 3H20整个DMFC中所发生的反应由结合化学式1和化学式2所得的化学式3表示。(化学式3)整个DMFC CH3OH+ (3/2) O2 — C02+2H20作为将甲醇供应至DMFC的阳极电极的方法,已经提出了液体供给型方法和气体 供给型方法。液体供给型方法是一种通过使用泵等将液体燃料直接供给至阳极电极的方 法。此时,在DMFC中,水由在阳极电极中的电极反应(化学式1)所消耗。因而,通常出现将甲醇水溶液供给至阳极电极以补充被消耗掉的水的情况。然而,在该方法中,容易发生甲醇通过电解质膜从阳极电极侧移动至阴极电极侧的甲醇渗透(methanol crossover),从而降低了甲醇利用率,并且除非降低燃料浓度,否则 反应效率不能提高。然而,如果降低燃料浓度,除了能量密度降低之外,过多的水到达阴极 电极,这导致了溢流现象(flooding phenomenon)。此外,在该方法中,由阳极电极的电极反应(化学式1)产生的二氧化碳附着在阳 极电极上,从而阻止了将甲醇供给至阳极电极。因此,引起输出降低或不稳定。同时,气体供给型方法是一种在液相部和气相部之间配置气-液分离膜 (gas-liquid separator)并将气态的甲醇供应至阳极电极的方法。在该方法中,可以将在 阴极电极生成的水(化学式2)逆向扩散至阳极电极侧,防止了水留在阴极电极侧,并且能 够补给在阳极电极上的电极反应(化学式1)所消耗的水的可更替部分。因而,能够使用高 浓度的甲醇,电解质膜中的湿度能够通过自湿润来保持,并且电解质膜能够表现出高的质 子传导率。此外,阳极电极产生的二氧化碳不会变成气泡,并且易于排出。在气体供给型DMFC中,为了最大程度地示出特性,期望将足量的用于实现发电的 气化燃料持续均勻地供给至由燃料电池组成的发电部。为了将液态燃料气化,可以利用发 电部所产生的反应热。此外,通过使用多孔体作为气-液分离膜,能够提高向液态燃料的热 传导(例如,参照专利文献1)。[专利文献1]日本未审查专利申请公开第2001-15130号[专利文献2]日本未审查专利申请公开第2006-221948号

发明内容
然而,在专利文献1所述的现有技术中,存在受环境温度或发电部的发电状态的 影响,热传导变得过多的可能性。在这种情况下,由于过多的热传导,气体燃料过多地供给 至发电部。结果,渗透增大或者发电部的温度过度升高,从而发电效率降低。已经提出通过提供其量为燃料电池中的反应所需量的燃料来提高燃料电池的发 电效率(例如,参考专利文献2)。然而,在现有技术中,输入到燃料气化部中的热量依赖于 来自装置的辐射以及气化室中的自然对流。因此,向燃料气化部或液体燃料的热传导有可 能不足,并存在改善的余地。考虑到上述问题,本发明的一个目的在于提供一种燃料电池系统以及使用该燃料 电池系统的电子装置,其中,利用该燃料电池系统能够避免气化燃料过多供给或者供给不 足,并能够高输出地进行稳定发电。在根据本发明的燃料电池系统中包括下列构件(A)至(D)。因此,能够将更加适量 的气化燃料提供给发电部,从而实现高输出和发电稳定性。(A)发电部,包含介于阳极电极和阴极电极之间的电解质;(B)燃料供给控制部,提供液体燃料,该液体燃料的量基于与发电部的发电量相对 应的化学计量燃料消耗量;(C)燃料气化部,与阳极电极相邻配置,并具有气化室,来自燃料供给控制部的液 体燃料被供给至该气化室;以及(D)热传导部,形成在气化室中,并将在发电部中产生的热传导至供给到气化室的液体燃料。“基于化学计量燃料消耗量的量”指的是基于化学计量的燃料消耗量所计算出的量,并不必等于化学计量燃料消耗量。例如,“基于化学计量燃料消耗量的量”可以是大约 (化学计量燃料消耗量)X 1.5。在根据本发明的燃料电池系统中,燃料供给控制部将其量基于与发电部的发电量 相对应的化学计量燃料消耗量的液体燃料供给至相邻于阳极电极配置的燃料气化部的气 化室。由于在气化室中形成热传导部,所以发电部中所产生的热通过热传导部传导至液体 燃料。从而,不存在因过多的热传导而导致的气化燃料过多地供给的可能性。同时,不存在 因热传导不足而导致的气化燃料供给不足的可能性。确保气化了适量的液体燃料,并且将 气化的燃料供给至发电部。根据本发明的电子装置包括燃料电池系统。该燃料电池系统由上述本发明的燃料 电池系统构成。本发明的电子装置包括根据上述的本发明的具有高输出且能够稳定发电的燃料 电池系统。因而,在本发明的电子装置中,能够实现与增加的电力消耗相关的多功能化和高 性能化。根据本发明的燃料电池系统,燃料供应控制部将其量基于与发电部的发电量相对 应的化学计量燃料消耗量的液体燃料供给至气化室。此外,在气化室中设置热传导部,该热 传导部将发电部中所产生的热传导至供给到气化室的液体燃料。因而,能够避免燃料的过 多供给或供给不足等。因此,能够获得高输出,并且能够改善发电的稳定性。本发明的燃料 电池系统也适用于具有高电力消耗、多功能以及高性能的电子装置。


图1是示出了包括根据本发明第一实施方式的燃料电池系统的电子装置的示意 性结构图。图2是示出了图1所示的发电部和燃料气化部的示图。图3是示出了图2所示的燃料气化部的另一实例的示图。图4是示出了根据本发明第二实施方式的发电部和燃料气化部的结构的示图。图5是示出了图4的修改例的示图。图6是示出了根据本发明第三实施方式的发电部和燃料气化部的结构的示图。图7是示出了根据本发明第四实施方式的发电部和燃料气化部的结构的示图。图8是示出了图7的修改例的示图。图9是示出了根据本发明第五实施方式的发电部和燃料气化部的结构的示图。图10是示出了根据本发明第六实施方式的发电部和燃料气化部的结构的示图。图11是示出了图9的修改例的示图。图12是示出了图9的另一修改例的示图。图13是示出了实施例的结果的示图。图14是示出了比较例1的结果的示图。图15是示出了该实施例的长期发电特性的示图。图16是示出了比较例2的长期发电特性的示图。
具体实施例方式将在下文中详细描述本发明的实施方式。(第一实施方式)图1示出了具有根据本发明第一实施方式的燃料电池系统的电子装置的示意性 结构。该电子装置例如是诸如移动电话和笔记本式PC (个人计算机)的电子装置。该电子 装置包括燃料电池系统1和由燃料电池系统1产生的电能驱动的外部电路(负载)2。例 如,燃料电池系统1具有发电部10、燃料供给控制部20以及燃料气化部30。图2示出了发电部10和燃料气化部30的一个实例。例如,发电部10是包含介 于阳极11和阴极12之间的电解质膜13的DMFC。阳极11和阴极12具有这样一种结构, 在该结构中,含钼(Pt)、钌(Ru)等的催化剂层形成在碳布(carbon cloth)等的表面上,并 且诸如钛(Ti)网状物的集电体设置在其背面。电解质膜13由例如聚全氟烷基磺酸树脂 (“Nafion(注册商标),”杜邦(Du Pont)制造)或者其他具有质子传导性的树脂膜制成。 阳极电极11、阴极电极12以及电解质膜13由垫圈(未示出)固定。在发电部10的阴极电极12的外部,设置有包装构件14。包装构件14例如为2. Omm 厚,并由通常可购买到的诸如钛(Ti)板和耐酸金属板的材料制成。对材料本身没有特别限 制。在包装构件14中设置有空气(即氧)可以通过的通孔,并且通过该通孔将空气(即 氧)供给至阴极电极12。图1所示的燃料供给控制部20旨在根据发电部10的发电量来提供液态燃料,该 液态燃料的量基于化学计量燃料消耗量。燃料供给控制部20例如包括燃料箱21、燃料泵 22、控制部23以及燃料供给通道24。控制部23旨在控制发电部10的发电状态,并同时控 制燃料泵22的燃料供给量。图2所示的燃料气化部30相邻于发电部10的阳极电极11设置,并具有气化室 30A,其中,来自燃料供给控制部20的液体燃料供给至该气化室。更具体地,燃料气化部30 具有与阳极电极11接触配置的内侧构件(inner member) 31和与内侧构件31对向地配置 的外侧构件(outer member) 320由内侧构件31和外侧构件32围成的内部空间是气化室 30A。气化室30A的高度D例如在Imm以内,具体地约为0. 5mm。内侧构件31和外侧构件32由具有高的热传导性和良好的耐腐蚀性的材料制成, 例如不锈钢、铝(Al)和钛(Ti)。在内侧构件31中,设置有气化燃料通过的通孔。气化室 30A由诸如氟橡胶和硅橡胶的密封材料33密封,并与外部隔离。密封材料33可以预先与外 侧构件32形成为一体,或者可以是与外侧构件32分离的构件。图2示出了内侧构件31是平板状而外侧构件32是具有包围了气化室30A五个侧面(图2的横截面示出其3个侧面)的凹形结构的情况。然而,外侧构件32不必具有一体 化的凹形结构。外侧构件32可以具有通过将框架附接至平板构件而形成的凹形结构。在气化室30A中,将凸出部41设置成热传导部以将在发电部10中所产生的热传导至供给到气化室30A的液体燃料。因此,在燃料电池系统1中,能够避免气化燃料的过多 供给或供给不足,并可高输出地进行稳定发电。凸出部41从外侧构件32的内壁表面朝向内侧构件31的内壁表面形成。在凸出 部41中,形成了燃料供给通道24的端部。在凸出部41的端部和内侧构件31的内壁表面之间设置了间隙G。在间隙G中,热被有效地传导至从燃料供给通道24所供给的液体燃料, 从而液体燃料能够被气化。间隙G期望例如在Imm内,具体地约0. 5mm,因为由此可获得更 好的效果。在如上所述凸出部41被设置在气化室30A的部分内侧的情况下,存在另一个优点 在于,与气化室30A自身的高度D降低的情况相比,因气化导致的燃料体积的增加能够被更 多地被吸收。如图3所示,凸出部41可以从内侧构件31的内壁表面朝向外侧构件32的内壁表面形成。在这种情况下,凸出部41的端部期望被设置成与燃料供给通道24的端部的开口 相对。此外,如图2那样,期望在凸出部41的端部和内部构件31的内壁表面之间设置间隙 G。因此,在间隙G中,热量被有效地传导至从燃料供给通道24的端部供给的液体燃料,从 而液体燃料能够被气化。与图2相同,间隙G例如希望在Imm以内,具体地约0. 5mm。例如,可以按如下方式制造燃料电池系统1。首先,将由上述材料制成的电解质膜13夹在在由上述材料制成的阳极电极11和 阴极电极12之间,并将所得的结构热压结合。因此,阳极电极11和阴极电极12与电解质 膜13接合而形成发电部10。在阴极电极12的外部,配置由上述材料制成的包装构件14。接下来,制备由上述材料制成的内侧构件31和外侧构件32。如图2或图3所示的 凸出部41形成在内侧构件31和外侧构件32中的一个中。将内侧构件31和外侧构件32 组装在一起,并且所得的组装件由密封材料33密封。从而,形成了具有气化室30A的燃料 气化部30,并且凸出部41形成在气化室30A中。燃料气化部30相邻于阳极电极11配置。接下来,将发电部10和燃料气化部30集成至具有由燃料箱21、燃料泵22、控制部 23和燃料供给通道24构成的燃料控制部20,以及外部电路2的上述系统中,并且将燃料供 给通道24的端部连接至气化室30A。从而,完成了图1所示的燃料电池系统1。在燃料电池系统1中,将作为燃料的甲醇提供给阳极电极11,并引发反应以产生 质子和电子。质子穿过电解质膜13移动至阴极电极12,并与电子和氧反应生成水。在阳极 电极11、阴极电极12以及整个发电部10上引发的反应如化学式4所示。从而,将作为燃料 的甲醇的化学能转化成电能,电流从发电部10流出,并驱动外部电路2。化学式4阳极电极 10 :CH30H+H20 — C02+6H++6e"阴极电极20 :6H++(3/2)02+6e> — 3H20整个发电部10 =CH3OH+ (3/2) O2 — C02+2H20在发电部10的操作中,通过控制部23来测量发电部10的操作电压和操作电流。 基于测量结果,可以计算发电部10的发电量和燃料供给量,其中,该燃料供给量基于与发 电部10的发电量相对应的化学计量燃料消耗量。控制部23控制燃料泵22,并通过燃料供 给通道24将液体燃料提供给气化室30A,其中,液体燃料的量基于与发电部10的发电量相 对应的化学计量燃料消耗量。因而,即使热传导因环境温度、发电部10的发电状态等的影 响而变得过多,也不可能过多地供给气体燃料。因而,避免了因燃料过多而导致的渗透,发 电部10的温度不会过度上升,避免了降低发电效率。此外,在气化室30A内形成凸出部41作为热传导部。因而,通过凸出部41,将在 发电部10中生成的热传导至液体燃料,液体燃料被气化。从而,不存在由于热传导不足造成的气化燃料供给不足的可能性。因此,确保了适量的液体燃料被气化并被供给至发电部 10。此外,由于气化室30A的温度上升,燃料和水蒸气的分压增大,从而获得了有利于 电极反应的状态。同时,热从发电部10被有效地除去,避免了因电解质膜13的干燥而导致 的发电输出降低。
如上所述,在该实施方式中,燃料供给控制部20将液体燃料供给至气化室30A,其 中,液体燃料的量基于与发电部10的发电量相对应的化学计量燃料消耗量。另外,凸出部 41作为热传导部形成在气化室30中以将发电部10中所产生的热传导至被供给到气化室 30A的液体燃料。因而,能够避免燃料的过多供给、供给不足等。因此,可获得高输出,并能 够改善发电的稳定性。因而,本发明适用于具有高功耗、多功能以及高性能的电子装置。此外,由于气化室30A的温度能够上升,燃料和水蒸气的分压增大,并且可以获得 有利于电极反应的状态。同时,热从发电部10被有效地除去,避免了因电解质膜13的干燥 而导致的发电输出降低。(第二实施方式)图4和图5示出了根据本发明第二实施方式的发电部10和燃料气化部30的结构。 该实施方式具有与上述第一实施方式相同的结构,只是凸出部41的端部与图4中的外侧构 件32的内壁表面接触以及凸出部41与图5中的内侧构件31的内壁表面接触,并且该实施 方式能够以与上述第一实施方式相同的方式来制造。凸出部41与外侧构件32的内壁表面或者内侧构件31的内壁表面上的邻近燃料 供给通道24的端部的部分接触。因此,在该实施方式中,发电部10的热量通过凸出部41 传导至外侧构件32或内侧构件31。热量通过外侧构件32或内侧构件31被传导至从燃料 供给通道24供给的液体燃料,从而能够将液体燃料气化。此外,可以根据凸出部41的位置 来限制外侧构件32和内侧构件31中的希望被加热的区域,或者根据凸出部41的尺寸控制 传导至液体燃料的热量。此外,在该实施方式中,由于不必控制间隙G的公差,所以制造步 骤能够变得更容易。(第三实施方式)图6示出了根据本发明第三实施方式的发电部10和燃料气化部30的结构。在该 实施方式中,在外侧构件32的内壁表面上设置扩散供给至气化室30A的液体燃料的扩散板 50。因此,在该实施方式中,从燃料供给通路24供给的液体燃料由扩散层50在平面方向上 扩散,燃料能够被更加有效均勻地气化。扩散板50由诸如多孔聚乙烯和多孔聚丙烯的树脂制成。扩散板50设置在燃料供 给通道24的出口或出口附近。凸出部41的端部可以与扩散板50接触。另外,可以在凸出 部41的端部与扩散板50之间设置间隙G。(第四实施方式)图7示出了根据本发明第四实施方式的发电部10和燃料气化部30的结构。在该 实施方式中,燃料气化部30仅有外侧构件32。S卩,外侧构件32与阳极电极11对向地配置, 气化室30A介于其间。凸出部41的端部与阳极电极11接触。因此,在该实施方式中,可以 省略内侧构件31,以获得更薄更小的燃料气化部30。如图8所示,可以在凸出部41的端部和阳极电极11之间设置图2或图3所示的间隙G。此外,尽管未示出,但是在该实施方式中,与第三实施方式相同,可以在外侧构件32的内壁表面上设置扩散板50。(第五实施方式)图9示出了根据本发明第五实施方式的发电部10和燃料气化部30的结构。在该实施方式中,内侧构件31和外侧构件32被一体化。因此,可以获得更薄更小的燃料气化部30。此外,尽管未示出,在该实施方式中,如第三实施方式,可以在外侧构件32的内壁表面上设置扩散板50。(第六实施方式)图10示出了根据本发明第六实施方式的发电部10和燃料气化部30的结构。在该实施方式中,在气化室30A内部的一部分中设置了作为热传导部的由多孔体或无纺布制成的扩散热传导构件42。因此,在该实施方式中,可以增大液体燃料和扩散热传导构件42之间的接触面积,可以将热量容易地传导至液体燃料,由此能够有效地进行气化。此外,通过在气化室30A内部的一部分中设置扩散热传导构件42,能够确保用来吸收气化燃料的体积增大的部分的空间。作为多孔体,具有良好热传导性的诸如镍、不锈钢和钛的金属的泡沫体或烧结体是优选的。另外,在气化室30A的高度D在Imm内,例如,大约0. 5mm的情况下,可以使用诸如树脂的具有相对低的热传导性的材料的多孔体。在该实施方式中,从燃料供给通道24供给的液体燃料在扩散热传导构件42内部扩散,同时热被传导至此,因此可以有效地气化燃料。如图11所示,扩散热传导构件42可以设置在整个气化室30A内。在这种情况下,由于燃料供给量由图1所示的燃料供给控制部20适当地控制,所以不存在过多地供给气化燃料的可能性。此外,如图12所示,可以在外侧构件32的内壁表面上设置扩散板50。通过由扩散板50来提高液体燃料在平面方向上的扩散,能够更加有效均勻地气化燃料。实施例进一步地,将描述本发明的具体实施例。制造了具有图1和图12所示的发电部10、燃料供给控制部20以及燃料气化部30的燃料电池系统1。此时,在外侧构件32的内壁表面上设置了扩散板50,在几乎整个气化室30A内设置了由镍泡沫体构成的多孔体制成的扩散热传导构件42。对于所得到的燃料电池系统1,还检测了发电部10与时间相关联的输出的变化和温度的变化。结果示于图13 中。此时的平均输出是380mW。作为该实施例的比较例1,以与该实施例相同的方式来制造燃料电池系统,只是不进行燃料供给控制部的燃料供给控制,并且省略了扩散板和扩散热传导构件。对于比较例1,检测了发电部10与时间相关联的输出的变化和温度的变化。结果示于图14中。此时的平均输出是230mW。(长期发电特性)对于前述实施例的燃料电池系统1,测定了长期发电特性。结果示于图15中。此时的平均输出是410mW。作为比较例2,以与比较例1相同的方式制造燃料电池系统,只是进行了燃料供给 控制部的燃料供给控制,并且省略了扩散板和扩散热传导构件。对于比较例2,检测了长期 发电特性。结果示于图16中。此时的平均输出是350mW。 如从图13和图14所证实的,比较实施例和比较例1,在未进行燃料供给控制部的 燃料供给控制并且未设置扩散板和扩散热传导构件的比较例1中,燃料供给变得过多,渗 透增加,发电部的温度剧烈上升,以及发电输出急剧下降。同时,在通过扩散板50和扩散热 传导构件42改善向液体燃料的热传导性并同时进行燃料供给控制部的燃料供给控制的实 施例中,即使时间流逝,发电部10的温度和发电特性都仍是稳定的。此外,根据该实施方 式,能够获得是比较例1的大约1.7倍的高的平均输出。即,发现了以下情况。即,在将液态燃料(其量基于与发电部10的发电量相对应 的化学计量燃料消耗量)供给至气化室30A并通过在气化室30A中设置由多孔体制成的扩 散热传导层42和扩散板50将发电部10所产生的热传导至供给到气化室30A的液体燃料 的情况下,防止了气化燃料的过多供给,从而能够进行高输出的稳定发电。更进一步地,如通过图15和图16所示的长期发电数据所证实,比较实施例和比较 例2,在进行燃料控制部的燃料供给控制并且未设置扩散板和扩散传导构件的比较例2中, 输出在大约14000秒时开始急剧降低,并且平均输出变低。在比较例2中,由于没有设置扩 散板和扩散热传导构件,所以热量没有被充分地传导至液体燃料,从而气化燃料的供给不 足。然而,在通过扩散板50和扩散热传导构件42改善了液态燃料的热传导性并同时进行 了燃料供给控制部20的燃料供给控制的实施例中,可以进行连续稳定地发电,并且平均输 出高达比较例2的1.2倍。S卩,发现了以下情况。即,在将液态燃料(其量基于与发电部10的发电量相对应 的化学计量燃料消耗量)供给至气化室30A并通过在气化室30A中设置由多孔体制成的扩 散热传导层42和扩散板50将发电部10中所产生的热传导至供给到气化室30A的液体燃 料的情况下,防止了气化燃料的供应不足,增大了输出,并且能够进行连续地长时间稳定发 H1^ ο已经参照实施方式和实施例描述了本发明。然而,本发明不限于上述实施方式和 实施例,并可以作出各种修改。例如,在上述实施方式和实施例中,已经给出了发电部10、燃 料供给控制部20、燃料气化部30、凸出部41以及扩散热传导构件20的具体描述。然而,发 电部10、燃料供给控制部20、燃料气化部30、凸出部41、以及扩散热传导构件20可以是其 他结构,或者可以由其他材料制成。更进一步地,例如,在上述实施方式和实施例中,已经给出了包含一个发电部10 的情况的描述。然而,本发明能够应用于以垂直方向(层压方向)或水平方向(层压面内 方向)层叠多个发电部10以构成燃料电池组的情况。特别地,在多个发电部10以水平方 向层叠的情况下,根据燃料气化部30的面内温度分布或来自发电部10的热传导分布,燃料 气化量可能存在偏差。可是,根据本发明,即使在上述平板发电体的情况下,通过在燃料气 化部30的气化室30A内设置凸出部41或扩散热传导构件42,能够确保气化适量的燃料,并 且能够将气化燃料供给至发电部10。此外,在这种情况下,可以不需要可能引起电力消耗增 加的加热器、喷雾器等。
此外,例如,每个元件的材料和厚度,或者发电部10的发电条件等并不限于在上述实施方式和上述实施例中所描述的那些,而可以采用其他材料、其他厚度或其他发电条 件。此外,例如,液体燃料可以是除了甲醇之外的诸如乙醇和二甲醚的其他液体燃料。而且,在上述实施方式和上述实施例中,利用自然通风进行对阴极电极12的空气 供应。然而,可以利用泵等强力供应空气。在这种情况下,可供应氧或含氧的气体来代替空 气。
权利要求
一种燃料电池系统,包括发电部,包含介于阳极电极和阴极电极之间的电解质;燃料供给控制部,提供其量基于与所述发电部的发电量相对应的化学计量燃料消耗量的液体燃料;燃料气化部,相邻于所述阳极电极配置,并具有气化室,来自所述燃料供给控制部的所述液体燃料被供给至所述气化室;以及热传导部,形成在所述气化室中,并将所述发电部中产生的热传导至供给到所述气化室的所述液体燃料。
2.根据权利要求1所述的燃料电池系统,其中,所述燃料气化部具有相邻于所述阳极 电极配置的内侧构件和与所述内侧构件对向配置的外侧构件,所述气化室在所述内侧构件 和所述外侧构件之间,以及所述热传导部是从所述内侧构件的内壁表面朝向所述外侧构件的内壁表面形成的凸 出部,或者是从所述外侧构件的内壁表面朝向所述内侧构件的内壁表面形成的凸出部。
3.根据权利要求2所述的燃料电池系统,其中,在所述凸出部的端部和所述外侧构件 的内壁表面或所述内侧构件的内壁表面之间设置间隙。
4.根据权利要求2所述的燃料电池系统,其中,所述凸出部的端部与所述外侧构件的 内壁表面或所述内侧构件的内壁表面接触。
5.根据权利要求2所述的燃料电池系统,其中,所述内侧构件和所述外侧构件是一体 化的。
6.根据权利要求1所述的燃料电池系统,其中,所述燃料气化部具有与所述阳极电极 对向设置的外侧构件,所述气化室在所述阳极电极和所述外侧构件之间,以及所述热传导部是从所述外侧构件的内壁表面朝向所述阳极电极形成的凸出部。
7.根据权利要求6所述的燃料电池系统,其中,在所述凸出部的端部和所述阳极电极 之间设置间隙。
8.根据权利要求6所述的燃料电池系统,其中,所述凸出部的端部与所述阳极电极接触。
9.根据权利要求2所述的燃料电池系统,其中,在所述外侧构件的内壁表面上设置扩 散供给至所述气化室的所述液体燃料的扩散板。
10.根据权利要求1所述的燃料电池系统,其中,所述热传导部是设置在所述气化室的 至少一部分中的扩散热传导构件,所述热传导部由多孔体或无纺布制成。
11.根据权利要求10所述的燃料电池系统,其中,在外侧构件的内壁表面上设置扩散 供给至所述气化室的所述液体燃料的扩散板。
12.一种电子装置,其包括燃料电池系统,其中,所述燃料电池系统包括发电部,包含介于阳极电极和阴极电极之间的电解质;燃料供给控制部,提供其量基于与所述发电部的发电量相对应的化学计量燃料消耗量 的液体燃料;燃料气化部,相邻于所述阳极电极配置,并具有气化室,来自所述燃料供给控制部的所 述液体燃料被供给至所述气化室;以及热传导部,形成在所述气化室中,并将所述发电部中产生的热传导至供给到所述气化 室的所述液体燃料。
全文摘要
本发明提供了能够避免气化燃料过多供给或者供给不足,并可高输出地进行稳定发电的燃料电池系统和使用其的电子装置。在气化室(30A)内,设置凸出部(41)作为热传导部,以将发电部(10)中产生的热传导至供给到气化室(30A)的液体燃料。在凸起部(41)的端部和内侧构件(31)的内壁表面之间设置间隙(G)。在间隙(G)中,热量被有效地传导至从燃料供给通道(24)的端部供给的液体燃料,液体燃料被气化。凸出部(41)可以与在内侧构件(31)的内壁表面上的燃料供给通道(24)端部附近的部分接触,由此发电部(10)的热量通过凸出部(41)被传导至内侧构件(31),热量通过内侧构件(31)被传导至液体燃料,液体燃料被气化。因此,可以根据凸出部(41)的位置限制要加热的区域,或者根据凸出部(41)的尺寸控制传导至液体燃料的热的量。
文档编号H01M8/02GK101803096SQ20088010792
公开日2010年8月11日 申请日期2008年9月25日 优先权日2007年9月28日
发明者志村重辅, 福岛和明, 高木裕登 申请人:索尼公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1