专利名称:用于锂电池正极活性材料的锂锰复合氧化物及其制备方法
技术领域:
本发明涉及无机非金属材料领域,具体涉及一种用于锂电池正极活性材料的锂锰 复合氧化物及其制备方法。
背景技术:
锂电池首先由Sony公司在二十世纪九十年代研制成功并实现商品化,已经被广 泛应用于便携式电子设备中,目前正在研究其应用于电动汽车、混合动力汽车等领域。作为 一种新型的绿色能源电池,锂电池有希望取代镍氢电池和和镍镉电池,关于锂电池的研究 工作已经成为国际上一系列科技发展规划的热点之一。影响锂电池性能的关键因素之一是锂电池正极材料的活性,目前常用的锂电池正 极活性材料有LiCo02、LiNi02、Ni-CO-Mn等三元素锂氧材料,上述几种正极材料具有较高的 容量,例如1^&)02单位重量容量可以达到140-150mAh/g。但上述几种材料也有不可避免的 缺陷,如热稳定性差,因此存在严重的安全隐患;而且,上述正极材料还需要使用价格昂贵 且具有毒性的Co和Ni等元素,因此使用受到一定限制。目前,寻找高能量、循环性能稳定、 安全性高、无污染、成本低的锂电池正极材料是锂电池正极材料的一个重要研究方向。研究表明,锂锰氧化物(LMOs)用于锂电池正极活性材料时具有热稳定性好和安 全性能高的优点;而且,由于锂锰氧化物使用资源丰富、成本低廉、无毒的锰元素来代替Ni 和Co等元素,因此有希望成为最有前途的锂电池正极材料。在现有技术中,已经公开了多 种用于锂电池正极材料的锂锰氧化物。在已知的锂锰氧正极材料中,尖晶石Li4Mn5012具有 较高的理论容量(163mAh/g),但热稳定性较差;而岩盐相Li2Mn03则具有很好的热稳定性。 因此,目前研制的锂锰氧化物用于锂电池正极材料时,要么热稳定差、要么电池容量低,难 以同时满足高容量和热稳定性好的要求。考虑到现有技术存在如上的缺点,需要提供一种用于锂电池正极活性材料的锂锰 复合氧化物,该锂锰复合氧化物热稳定性好,具有良好的充放电性能。
发明内容
本发明要解决的问题在于提供一种用于锂电池正极活性材料的锂锰复合氧化物, 该锂锰复合氧化物热稳定性好,具有良好的充放电性能。为了解决以上技术问题,本发明提供一种用于锂电池正极活性材料的锂锰复合氧 化物,所述锂锰复合氧化物由通式Li4Mn5012@Li2Mn03(I)表示,通式(I)所示的锂锰复合氧 化物中,Li4Mn5012作为所述锂锰复合氧化物的核,Li2Mn03包覆在所述Li4Mn5012的外面形成 外壳。优选的,所述锂锰复合氧化物中1^^115012与1^^1103的摩尔比为10 1 1 10。优选的,所述锂锰复合氧化物中Li4Mn5012与Li2Mn03的摩尔比为5 1 1 5。本发明还提供一种锂锰复合氧化物的制备方法,包括
取Mn02颗粒与锂盐混合得到混合物;
加热所述混合物到350°C 450°C使所述Mn02颗粒表面Mn02与所述锂盐中的Li+ 发生Li+插入反应生成锂锰复合氧化物,所述锂锰复合氧化物由通式Li4Mn5012@Li2Mn03(I) 表示,通式(I)所示的锂锰复合氧化物中,Li4Mn5012作为所述锂锰复合氧化物的核,Li2Mn03 包覆在所述Li4Mn5012的外面形成外壳。优选的,所述Li+插入反应的反应温度为380°C 420°C。优选的,所述Li+插入反应的反应温度为390°C 410°C。优选的,所述Li+插入反应的反应时间为20小时 60小时。优选的,所述锂盐为硝酸锂、氯化锂、乙酸锂、硫酸锂或碳酸锂中的一种或多种。本发明还提供一种锂电池正极,包括上述技术方案所述的锂锰复合氧化物、导电剂和粘合剂。本发明还提供一种锂电池,包括上述技术方案所述的锂电池正极、负极和有机电解质溶液。本发明提供用于锂电池正极活性材料的锂锰复合氧化物,其特征在于,所述锂锰 复合氧化物由通式Li4Mn5012@Li2Mn03(I)表示,通式(I)所示的锂锰复合氧化物中,Li4Mn5012 作为所述锂锰复合氧化物的核,Li2Mni03包覆在所述Li4Mn5012的外面形成外壳。实验结果 表明,该锂锰复合氧化物作为锂电池正极材料具有良好的充放电性能。
图1为实施例1制备的锂锰复合氧化物的X射线衍射图谱;图2为实施例2和实施例3制备的锂锰复合氧化物的X射线衍射图谱;图3为实施例1制备的锂锰复合氧化物的2000倍的SEM图;图4为图1所示锂锰复合氧化物的10,000倍的SEM图;图5为图1所示锂锰复合氧化物的50,000倍的SEM图;图6为实施例3制备的锂电池前50次充放电曲线图;图7为实施例3制备的锂电池充放电循环性能结果。
具体实施例方式
为了进一步了解本发明,下面结合实施例对本发明优选实施方案进行描述,但是 应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的 限制。本发明提供一种锂锰复合氧化物,所述锂锰复合氧化物由通式I^Mn^W Li2Mn03(I)表示,通式(I)所示的锂锰复合氧化物中,Li4Mn5012作为所述锂锰复合氧化物的 核,Li2Mn03包覆在所述Li4Mn5012的外面形成外壳。按照本发明,所述锂锰复合氧化物具有核壳结构,其中,作为外壳的Li2Mn03包覆 在作为核心的Li4Mn5012的外面,对于所述锂锰氧化物中Li4Mn5012和Li2Mn03的比例,本发 明并无特别限制,优选的,所述锂锰氧化物中Li4Mn5012*Li2Mn03按照摩尔比为10 1 1 10,更优选为5 1 1 5。对于所述锂锰氧化物的粒径,本发明并无特别的限制,可 以根据需要制成不同粒径的锂锰氧化物。按照本发明,制备所述核壳结构的锂锰氧化物时,优选以Mn02颗粒为原料,然后使所述Mn02颗粒表面的Mn02与Li+发生Li+插入反应生成Li4Mn5012,随着反应时间的延 长进一步发生Li+插入反应,使颗粒表面的Li4Mn5012转换为Li2Mn03从而得到核壳结构的 Li4Mn5012-Li2Mn03O按照本发明,将Mn02与Li+发生反应生成Li4Mn5012,然后在所述Li4Mn5012 的表面生成Li2Mn03的反应过程命名为Li+插入反应。本发明提供的核壳结构的Li4Mn50^g Li2Mn03制备方法,具体包括取Mn02颗粒与锂盐混合均勻,所述锂盐优选为锂的无机盐,具体例子可以为硝酸 锂、氯化锂、乙酸锂、硫酸锂或碳酸锂中的一种或多种,但不限于此。优选的锂盐为硝酸锂。 对于Mn02颗粒与锂盐的混合方法,本发明并无特别的限制,例如使用机械或手动搅拌的方 法,只要能够将Mn02颗粒与锂盐混合均勻即可。将Mn02颗粒与锂盐混合均勻后,将混合物放在高温容器中,优选的高温容器可以 为不参与反应的陶瓷材质的坩埚,具体例子可以为刚玉坩埚。然后在混合物表面再覆盖一 层锂盐,其目的是保护Li+与Mn02的反应,避免反应物与空气直接接触。对于所述Li+插入 反应的温度,优选在为300°C 450°C,温度过低时,Li+与Mn02发生反应的速度较慢,温度 过高时,会全部转化为岩盐相。对于所述Li+插入反应的温度,更优选为350°C 430°C,更 优选为390°C 420°C。对于所述Li+插入反应的反应时间,优选为20小时 60小时,反应 时间最长以内部生成的Li4Mn5012不全部转化为岩盐相Li2Mn03为准,反应时间最短以内部 的Mn02全部转化成为Li4Mn5012为准,此时在尖晶石相Li4Mn5012表面会生成岩盐相Li2Mn03, 更优选的反应时间为24小时 48小时,壳体Li2Mn03的厚度可以通过控制Li+插入反应时 间来进行控制。对于所使用的Mn02的来源,本发明并无特别限制,优选为a -Mn02(Hollandite), a -Mn02的制备方法可以为本领域技术人员熟知的方法,例如采用常温法合成,原料可以为 MnS04、和(NH4)2S204,将两种原料混合后在搅拌状态下加入浓硫酸,然后加入AgN03作为催化 剂进行反应,然后将得到的反应物放于暗处静置,沉淀、过滤、洗涤得到a-Mn02,
可以从市场上购得,对此本发明并无特别的限制。本发明还提供一种锂电池正极,包括上述技术方案所述的锂锰复合氧化物、导电 剂和粘合剂,导电剂可以为本领域技术人员熟知的炭黑,但不限于此。粘合剂具体例子可以 为偏二氟乙烯/六氟丙烯共聚物、聚偏二氟乙烯、聚丙烯腈、聚甲基丙烯酸甲酯、聚四氟乙 烯或者他们的混合物,但不限于此。制作正极时,可以将上述锂锰复合氧化物、导电剂、粘合 剂在溶剂中搅勻,然后干燥制得,溶剂可以为氮甲基吡咯烷酮、丙酮等本领域技术人员熟知 的溶剂,但不限于此。本发明还提供一种锂电池,包括上述锂电池正极、负极和有机电解质溶液,负极 的具体例子可以为金属锂、锂合金、碳质材料和石墨,但不限于此。有机电解质溶液可以 为溶解有锂盐的电解液溶剂,锂盐具体例子可以为LiC104、LiCF3S03、LiPF6、LiN(CF3S02)、 LiBF4、LiC(CF3S02)3或LiN(C2F5S02)2,电解液溶剂可以为本领域技术人员熟知的碳酸亚乙 酯、碳酸二乙酯、碳酸二甲酯中的一种或他们的混合物,有机电解质溶液中锂盐的浓度可以 为0. 5M 2M。按照本发明,还可以在正极和负极之间设置隔膜,隔膜的具体例子可以为玻 璃纤维、聚酯、聚乙烯、聚丙烯、聚四氟乙烯或者它们的混合物,对此本发明并无特别限制。实施例1制备Mn02颗粒
在200ml水中,分别加入8mmol的MnS04和(NH4) 2S04,在搅拌状态下依次加入8ml 浓硫酸和适量AgN03作为催化剂,反应lOmin后停止搅拌,将反应物放于暗处静置2天,沉 淀,将沉淀物过滤,依次用水和无水乙醇洗涤,然后在70°C将沉淀物干燥得到a _1^02颗粒。取0. 2g所述a ^02和2. Og LiN03在玛瑙研钵中混勻后装入刚玉坩埚中,再取适 量LiN03覆盖在所述坩埚内的Mn02和2. Og LiN03混合物表面;加热坩埚至400°C进行反应, 反应时间为为12h,得到的产物分别用水和无水乙醇洗涤、过滤,然后于70°C干燥得产物进 行X射线衍射实验,结果如图1所示。图1中的曲线a是a-Mn02&衍射图,曲线b为本实 施例制备的锂锰复合氧化物曲线图。如图1中曲线b所示,清楚的标出了 a -Mn02和Li4Mn5012的衍射峰,即以倒三角! 表示的a -Mn02衍射峰,其它峰则与标准JCPDS卡46-0810即尖晶石相Li4Mn5012相对应,说 明表面生成了尖晶石相Li4Mn5012。实施例2取0. 2g实施例1制备的a -Mn02和2gLiN03在玛瑙研钵中混勻后装入刚玉坩埚 中,再取适量LiN03覆盖在所述坩埚内的Mn02和2gLiN03混合物表面;加热坩埚至400°C进 行反应,反应时间为为24h,得到的产物分别用水和无水乙醇洗涤、过滤,然后于70°C干燥 得到单相尖晶石Li4Mn5012,取制得的产物进行X射线衍射实验、结果如图2所示,其中的曲 线a表示a -Mn02的衍射图,曲线b为本实施例制备的尖晶石的曲线图。实施例3取0. 2g实施例1制备的a ^02和2. Og LiN03在玛瑙研钵中混勻后装入刚玉坩埚 中,再取适量LiN03覆盖在所述坩埚内的Mn02和2. 0gLiN03混合物表面;加热坩埚至400°C 进行反应,反应时间为为48h,得到的产物分别用水和无水乙醇洗涤、过滤,然后于70°C干 燥得到锂锰复合氧化物Li4Mn5012@Li2Mn03,取制得的产物进行X射线衍射实验、结果如图2 所示,曲线c为本实施例制备的锂锰复合氧化物曲线图。如图2所示,在曲线b和曲线c中,没有Mn02衍射峰,但都清楚地显示出了尖晶石 相Li4Mn5013和岩盐相Li2Mni03的衍射峰,即以符号 表示的是岩盐相Li2Mn03,其它峰则与 标准JCPDS卡46-0810即尖晶石相Li4Mn5012相对应。曲线b和曲线c的区别是,反应时间 延长后,有尖晶石相Li4Mn5012发生相变反应生成岩盐相Li2Mn03。取实施例3制得的锂锰复合氧化物进行SEM观察,结果如图3、图4、图5、图3为 200倍的SEM图,图4为10,000倍的SEM图,图5为50,000的SEM图,从图中可以清楚的 看到得到的锂锰氧化物Li4Mn5012-Li2Mn03是粒径为4_6 u m的微米球,球的外壳直径约为 20-30nm,具有核-壳结构。取实施例3制备的70重量份锂锰复合氧化物作为正极活性材料与20重量份作 为导电剂的导电剂的乙炔黑(KS-6)均勻混合,然后加入聚偏二氟乙烯粘合剂溶液混合均 勻涂抹在厚度为15 ym的铝箔上干燥得到正极膜。采用锂片作为负极片,采用日本宇部公 司生产的UBE膜作为隔膜,使用包括浓度为1.0M LiPF6的碳酸亚乙酯(EC)碳酸二乙酯 (DEC)碳酸二甲酯(DMCA)按照1 1 1的混合溶剂作为电解质溶液,电压操作范围为 2. 0-4. 0V,电流密度为10mA/g。电性能测试结果如图6和图7所示。其中,图6为前50次 的充放电曲线,图7为循环性能。如图6所示,在3. 0V左右和2. 8v左右分别有一个充电和 放电平台,显示了 Li4Mn5012的充放电特点;从图7可以看出,该锂锰复合氧化物具有很好的循环性能,经过50次循环后,放电容量为109. 7mAh/g,为初始容量的96. 9%。
以上对本发明所提供的核壳结构的Li4Mn5012@Li2Mn03及其制备方法进行了详细介 绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只 是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员 来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修 饰也落入本发明权利要求的保护范围内。
权利要求
一种用于锂电池正极活性材料的锂锰复合氧化物,其特征在于,所述锂锰复合氧化物由通式Li4Mn5O12@Li2MnO3(I)表示,通式(I)所示的锂锰复合氧化物中,Li4Mn5O12作为所述锂锰复合氧化物的核,Li2MnO3包覆在所述Li4Mn5O12的外面形成外壳。
2.根据权利要求1所述的锂锰复合氧化物,其特征在于,所述锂锰复合氧化物中 Li4Mn5012 与 Li2Mn03 的摩尔比为 10 1 1 10。
3.根据权利要求1所述的锂锰复合氧化物,其特征在于,所述锂锰复合氧化物中 Li4Mn5012 与 Li2Mn03 的摩尔比为 5 1 1 5。
4.一种锂锰复合氧化物的制备方法,其特征在于,包括取Mn02颗粒与锂盐混合得到混合物;加热所述混合物到350°C 430°C使所述Mn02颗粒表面Mn02与所述锂盐中的Li+发生 Li+插入反应生成锂锰复合氧化物,所述锂锰复合氧化物由通式Li4Mn5012@Li2Mn03(I)表示, 通式(I)所示的锂锰复合氧化物中,Li4Mn5012作为所述锂锰复合氧化物的核,1^^1103包覆 在所述Li4Mn5012的外面形成外壳。
5.根据权利要求4所述的制备方法,其特征在于,所述Li+插入反应的反应温度为 350 450 °C。
6.根据权利要求5所述的制备方法,其特征在于,所述Li+插入反应的反应温度为 390°C 410°C。
7.根据权利要求5所述的制备方法,其特征在于,所述Li+插入反应的反应时间为20 小时 60小时。
8.根据权利要求4至7所述的制备方法,其特征在于,所述锂盐为硝酸锂、氯化锂、乙酸 锂、硫酸锂或碳酸锂中的一种或多种。
9.一种锂电池正极,包括权利要求1所述的锂锰复合氧化物、导电剂和粘合剂。
10.一种锂电池,包括权利要求9所述的锂电池正极、负极和有机电解质溶液。
全文摘要
本发明提供一种用于二次锂电池正极活性材料的锂锰复合氧化物,其特征在于,所述锂锰复合氧化物由通式Li4Mn5O12@Li2MnO3(I)表示,通式(I)所示的锂锰复合氧化物中,Li4Mn5O12作为所述锂锰复合氧化物的核,Li2MnO3包覆在所述Li4Mn5O12的外面形成外壳。实验结果表明,该锂锰复合氧化物作为锂电池正极材料时具有良好的充放电性能。
文档编号H01M10/0525GK101859888SQ201010188249
公开日2010年10月13日 申请日期2010年5月21日 优先权日2010年5月21日
发明者李玉梅, 杨晓晶, 林双妹 申请人:北京师范大学;北京师大科技园科技发展有限责任公司