具快-慢扫描的遮罩的离子植入的制作方法

文档序号:6989911阅读:107来源:国知局
专利名称:具快-慢扫描的遮罩的离子植入的制作方法
技术领域
本发明的实施例涉及元件制造领域。更特定而言,本揭示案是关于利用蔽荫遮罩 (shadow mask)的离子植入扫描方法。
背景技术
离子植入是用于将更改导电性的杂质引入基板中的标准技术。基板中的精确的掺杂轮廓及相关联的薄膜结构对于合适的元件效能至关重要。一般而言,所需的杂质材料在离子源中经离子化,所述离子经加速以形成具有规定能量的离子束,且所述离子束被引导于基板的表面处。所述离子束中的高能离子渗入基板材料的整体中,且嵌入基板材料的晶格中以形成具有所需的导电性的区域。此离子植入器可用于形成太阳能电池。通常使用用于其它半导体元件的相同制程 (常将硅用作基板材料)而制造太阳能电池。半导体太阳能电池具有内建电场,所述电场分离经由将光子吸收入半导体材料中而产生的电荷载流子。此电场通常经由形成p-n接面 (二极管)而形成,所述p-n接面是藉由半导体材料的不同掺杂而形成。使用相反极性的杂质来掺杂半导体基板的一部分(例如,表面区),形成可用作将光转换为电的光伏打元件的p-n接面。这些太阳能电池使用循环自然资源提供无污染、可平等获得的能量。归因于环境问题及能量成本上涨,太阳能电池在全球变得愈加重要。降低制造成本或提高这些高效能太阳能电池的生产能力或对高效能太阳能电池的其他效率改良将对在世界范围内实施太阳能电池具有积极影响。此将实现此项清洁能源技术的更广泛的可用性。太阳能电池可能需要掺杂以改良效率。此可自图1中看出,图1为选择性发射极 (selective emitter)太阳能电池的横截面图。掺杂发射极200可提高太阳能电池的效率, 且向触点202下方的区域201提供额外掺杂剂。较重度掺杂的区域201改良导电性,且触点202之间的较少掺杂改良电荷收集。触点202可仅间隔开约2至3mm。区域201的宽度可仅为约50至300 μ m。图2为指叉背接触(interdigitated back contact, IBC)太阳能电池的横截面图。在IBC太阳能电池中,接面位于太阳能电池的背面上。在此特定实施例中,掺杂图案为交替的P型掺杂剂区及η型掺杂剂区。ρ+发射极203及η+背面场204可经掺杂。此掺杂可使得IBC太阳能电池中的接面能够起作用或效率得到提高。过去使用经加热以使掺杂剂扩散进入太阳能电池中的含掺杂剂的玻璃或浆料来掺杂太阳能电池。此做法使太阳能电池的各个区域无法得以精确掺杂,且若存在空隙、气泡或污染物,则可能会发生非均一的掺杂。太阳能电池可受益于离子植入,因为离子植入使太阳能电池能得以精确掺杂。然而,对太阳能电池的离子植入可能要求特定掺杂剂图案,或仅在太阳能电池基板的特定区域中植入离子。先前,已使用光阻及离子植入而实现对基板的仅特定区域的植入。然而,因为涉及额外制程步骤,故使用光阻会为太阳能电池生产添加额外成本。太阳能电池表面上的其它硬遮罩较昂贵,且同样要求额外制程步骤。植入太阳能电池的小区域以及在所植入的区域之间具有较低薄层电阻(sheet resistance)以改良串联电阻的做法存在优势。以上两种做法皆可经由使用离子植入而实现。因此,此项技术中需要一种经由蔽荫遮罩进行植入的改良方法,且更特定而言,需要一种在太阳能电池制造中使用蔽荫遮罩的离子植入扫描方法。

发明内容
本发明的例示性实施例针对于一种在离子植入器中将离子植入基板中的设备及方法。在例示性方法中,朝向经组态以支撑目标基板的基板支撑件将离子束引导穿过蔽荫遮罩的小孔。所述基板的与所述遮罩的小孔对准的第一部分暴露于离子束。当所述基板的第一部分暴露于所述离子束时,所述基板支撑件相对于所述离子束以第一扫描速率移动。 所述基板的与所述遮罩的小孔对准的第二部分暴露于离子束。当所述基板的第二部分暴露于所述离子束时,所述基板支撑件相对于所述离子束以第二扫描速率移动,其中所述第一扫描速率及所述第二扫描速率是不同的。在例示性实施例中,离子植入器包含离子源、束线总成(beam line assembly)、蔽荫遮罩及扫描总成(scanning assembly) 0所述束线总成经组态以自离子源提取离子以形成离子束,且朝向安置于基板支撑件上的基板引导所述离子束。所述遮罩安置在所述基板的前方,且具有多个小孔以允许离子束的相应部分朝向基板穿过遮罩。所述扫描总成经组态以在所述基板的第一部分与所述多个小孔对准时,相对于离子束以第一扫描速率移动所述基板,且在所述基板的第二部分与所述多个小孔对准时,以第二扫描速率移动所述基板。


图1为选择性发射极太阳能电池的横截面图。图2为指叉背接触太阳能电池的横截面图。图3A为根据本揭示案的一实施例的代表性离子植入器的方块图。图3B为经由蔽荫遮罩的离子植入的横截面图。图4为蔽荫遮罩的前方透视图。图5为根据本揭示案的一实施例的基板的速率曲线的实例。图6A至图6E代表根据本揭示案的一实施例的对应于图5的速率曲线的植入方法。图7为根据本揭示案的一实施例的由图6A至图6E中所说明的植入方法而产生的基板的前方透视图。
具体实施例方式现在将在下文参看随附图更全面地描述本发明,随附图中绘示本发明的较佳实施例。然而,本发明可以许多不同形式体现且不应被解释为限于本文中所陈述的实施例。实际上,提供这些实施例是为了本揭示案彻底且完整,且将全面地将本发明的范围传达给熟习此项技术者。在图中,相同标号始终指代相同元件。图3A为包含离子源腔室120的离子植入器115的方块图。电源121将所要能量供应至源腔室120,源腔室120经组态以产生特定物质的离子。经由一系列电极114自所述源提取所产生的离子,且所产生的离子形成为束101,束101穿过质量分析器磁体116。质
5量分析器经组态而具有特定磁场,使得仅具有所要质荷比的离子能够行进穿过分析器,从而在最大程度上传输穿过质量解析狭缝117。所要物质的离子自质量狭缝117穿过减速平台118到达校正器磁体119。校正器磁体119经供给能量以根据所施加的磁场的强度及方向而使子束(beamlet)偏转,以提供目标朝向位于支撑件(例如,压板)102上的工件或基板(图3B中的100)的带状束。在某些实施例中,第二减速平台122可安置于校正器磁体 119与支撑件102之间。所述离子在与基板中的电子及原子核碰撞时失去能量,且基于加速能量而保持于基板内的所要深度处。遮罩104(图3B中所示)在遮盖着压板102的处理腔室中接近基板(图3B中100处所示)而安置。遮罩104可在本文中称为蔽荫或近接遮罩(proximity mask)。遮罩具有多个小孔(图3B中的105),所述多个小孔允许离子束的与小孔对准的部分朝向基板行进,且阻挡离子束的未与小孔105对准的部分。离子束101在朝向基板行进(在Z方向上)时其高度(Y方向)小于宽度(X方向)。由于所述离子束的高度小于宽度,故所述基板仅有一部分暴露于离子束。因此,为了扫描整个基板,离子束101 (随之为遮罩104)必须相对于基板移动,或基板必须相对于离子束101移动。然而,若离子束及遮罩移动以便扫描基板的表面,则复杂的冷却及接地连接必须在空间已非常珍贵的处理腔室中提供给此扫描移动。因此,使基板相对于离子束101移动较简单。扫描总成102a耦合至压板102,且经组态以相对于离子束而移动基板。具体而言,当所述基板的第一部分与所述多个小孔对准时,所述扫描总成以第一扫描速率移动所述基板,且当所述基板的第二部分与所述多个小孔对准时,以第二扫描速率移动所述基板。扫描总成用于在离子束将所要的离子剂量植入基板上时在Y方向上以可变速度移动基板。或者,扫描总成可在离子束将所要的离子剂量植入基板上时在X方向上以可变速度移动基板。以此方式,扫描速度可减慢以在基板的特定部分处驻留较长时间,从而重度掺杂太阳能电池的触点区,以及更快移动以驻留较短时间,从而轻度掺杂电池的所暴露发射极区。图3B为经由遮罩的植入的横截面图。当在基板100中需要特定离子植入图案时, 可在离子束101的路径中将遮罩104放置在基板100前方。此遮罩104可为蔽荫或近接遮罩。基板100可例如为放置于压板102上的太阳能电池。用于太阳能电池的典型基板非常薄,常为约300微米厚或更薄。使用静电或物理力将基板100保持于压板102上的适当位置。虽然未要求,但基板在X方向上的宽度较佳小于离子束101的宽度。然而,关于基板的正交方向,此类限制并非较佳。遮罩104具有对应于所要离子植入图案的一或多个小孔105。使用蔽荫遮罩104 可无需其它离子植入技术所需要的诸如网版印刷或微影等处理步骤。如先前所陈述,在太阳能电池的接触部分下(诸如,参看图1中的区域201)具有较高掺杂剂程度是一优势。虽然论述了选择性发射极太阳能电池,但此方法的实施例可应用于其它太阳能电池设计。点接触将使金属与硅的接触面积最小。对于这些点接触,掺杂剂应位于触点202下方,以提供电场来保护触点免受少数载流子影响。掺杂剂必须定位于此,因为高度掺杂区在可能存在于触点202之间的钝化表面下方是有害的。可藉由经由在其上具有点的遮罩而掺杂点接触。然而,具有此掺杂结构的太阳能电池的串联电阻仍可能受到触点202之间的掺杂剂的量限制。在经由遮罩104的植入中, 当扫描基板100时,遮罩104必须与基板100 —起行进。如上文所提及,此移动增加对遮罩104进行冷却及接地的难度。另外,具有小孔105的遮罩104将阻挡大量离子束103,结果会降低生产率及元件产量。具有多个小孔105的固定遮罩104经组态以覆盖离子束101的高度(Y方向)。此例如可为带状离子束101的高度或所扫描的离子束101的最大及最小垂直范围。此设计在一个维度上提供位置界定,所述维度诸如为扫描离子束101的维度(例如,Y方向)或带状离子束101的长度维度(例如,X方向)。藉由改变基板100的扫描速度而提供第二维度 (诸如,扫描基板100的方向)上的位置界定。图4为蔽荫遮罩404的前方透视图,所述蔽荫遮罩404具有七个小孔405,且相对于离子束101是固定的(亦即,不平移或扫描)。虽然图示了七个小孔405,但遮罩404不仅限于七个小孔405,其它数目亦为可能的。离子束(诸如离子束101)在整个植入过程期间入射于遮罩404上,且遮罩404相对于此离子束是静止或固定的。基板100在遮罩404后方受到扫描。遮罩的在小孔404之间界定的部分405a及在遮罩的末端处界定的部分405b 及405c阻挡离子束植入基板100上。图5为例示性基板的对应扫描速率曲线的实例。此速率曲线使基板100以第一速度在速率曲线的较大百分比期间移动,但当离子束101位于基板100上的五个均勻间隔的位置中的每一位置上时,基板100减慢至第二速度。具体而言,基板100在tN与tN_i之间界定的由元件符号501表示的例示性时间间隔期间,以第一速度S1移动。基板100的移动速度在tN_i与tN_2之间界定的由元件符号500表示的例示性时间间隔期间,改变为速度S2。 由于S1的扫描速度慢于扫描速度S2,故在速度S2下,基板100的表面上的来自离子束101 的离子的剂量率将较低,因为基板较快速移动穿过离子束。因此,归因于较高扫描速度S1, 植入于基板100上的这五个位置(由501表示)之间的剂量将低于基板上的五个位置(由 500表示)处的剂量。此可用于将基板的较高剂量率位置与例示性太阳能电池上的点金属接触对准。图6A至图6E说明对应于图5的速率曲线的植入方法的结果。在图6A中,离子束 101在第一位置中经由遮罩404中的小孔405植入基板100。较低剂量区601对应于图5 的速率曲线中扫描速度较快(S1)的部分。在图6B中,离子束101在第二位置中经由遮罩 404中的小孔405进行植入,其中较高剂量植入区600对应于速率曲线中具有较慢扫描速度 (S2)的部分。因此,图6B说明来自第一位置的较高剂量植入区600、较低剂量植入区601及对应于遮罩的在小孔405之间的区域405a的未掺杂区602。基板100可在遮罩404后方连续受到扫描。然而,如图5中所见,与基板100的较低剂量区601相比,当离子束101正植入较高剂量植入区600,基板100以第二速度较慢地扫描。因此,与在图6A至图6B中所图示的第一位置与第二位置中进行植入时相比,基板 100在第一位置与第二位置(未图示)之间以第一速度较快地移动。由于遮罩相对于离子束101是固定的,故不需要在扫描基板期间使遮罩与基板一起移动,此做法尤其在较低剂量程度提供了增加的制造产量。图6C至图6E代表在基板100在例示性Y方向上移动时在分别对应于基板100的若干部分的第三位置、第四位置及第五位置中经由遮罩404中的小孔405植入离子束101 的结果。图7为由图6A至图6E中所图示的植入方法产生的基板的前方透视图。如图7 中所图示,已在基板100中形成一系列较高剂量植入区600,且在所述较高剂量植入区之间具有较低剂量植入区601。未掺杂区602对应于在小孔405之间的遮罩部分405a、405b及 405c后方及遮罩404的外围处对准的基板部分。较高剂量区600可对应于太阳能电池中将要在金属化步骤期间添加的点接触。由于遮罩404在图6A至图6E中是静止或固定的,故此做法使冷却及接地连接较简单,因为遮罩404未如基板100 —般移动。此做法亦可改良遮罩404的冷却及接地连接的效率及可靠性。可藉由蔽荫遮罩(诸如遮罩104)生产图7的基板100,所述蔽荫遮罩与基板100 一起扫描。然而,整个基板100将必须随着图6A至图6E中所示的每一植入步骤而在相同量的时间中保持于离子束101中。此意谓执行植入所需的离子束101剂量将增加Sh/((Bh) (η))倍,其中Sh为基板100的高度、Bh为离子束101的高度,且η为较高剂量植入区600的列数(number of rows)。对于4mm高度的离子束101,156mm高度的基板100及四列较高剂量植入区600,使用图6A至图6E中所图示的方法的总剂量将比使用扫描遮罩104的植入方法低十倍。此降低的剂量使得产量提高且生产成本降低。此降低的剂量亦可使遮罩404上的热负荷减少。较高剂量植入区600之间的较低剂量植入区601可降低任何所得太阳能电池的串联电阻。多数载流子必须自产生地带输送至触点,且这些载流子在输送期间所遭遇的电阻使太阳能电池的输出减少。对于源自接触点之间的多数载流子而言,触点之间的略微较高剂量将使电阻降低。此做法可使太阳能电池中的内部串联电阻较佳。本揭示案在范围上不受本文中所描述的特定实施例限制。实际上,除了本文中所描述的实施例及修改之外,熟习此项技术者藉由上文描述及随附图将明白本揭示案的其他各种实施例及对其的修改。因此,所述其它实施例及修改意欲属于本揭示案的范围内。此夕卜,虽然已在本文中出于特定目的在特定环境中进行特定实施的情境下描述了本揭示案, 但熟习此项技术者将认识到,其有用性不限于此且可出于任何数目的目的在任何数目的环境中有益地实施本揭示案。因此,可鉴于本文中所描述的本揭示案的全部广度及精神而解释权利要求的范围。
权利要求
1.一种将离子植入至太阳能电池基板中的方法,包括朝向经组态以支撑目标基板的基板支撑件将离子束引导穿过蔽荫遮罩的小孔; 将所述基板的第一部分暴露于所述离子束,所述第一部与所述蔽荫遮罩的所述小孔对准;当所述基板的所述第一部分暴露于所述离子束时,使所述基板支撑件相对于所述离子束以第一扫描速率移动;将所述基板的第二部分暴露于所述离子束,所述第二部分与所述遮罩的所述小孔对准;以及当所述基板的所述第二部分暴露于所述离子束时,使所述基板支撑件相对于所述离子束以第二扫描速率移动,其中所述第一扫描速率慢于所述第二扫描速率。
2.根据权利要求1所述的将离子植入至太阳能电池基板中的方法,其中所述基板是用于形成太阳能电池的材料,所述第一扫描速率对应于所述太阳能电池的点接触。
3.根据权利要求1所述的将离子植入至太阳能电池基板中的方法,还包括相对于所述离子束而固定地定位所述蔽荫遮罩。
4.根据权利要求3所述的将离子植入至太阳能电池基板中的方法,其中相对于所述离子束的第一维度而固定所述蔽荫遮罩。
5.根据权利要求4所述的将离子植入至太阳能电池基板中的方法,还包括对应于所述第一维度在所述基板上扫描所述离子束。
6.根据权利要求5所述的将离子植入至太阳能电池基板中的方法,其中所述第一维度对应于所述离子束的高度。
7.根据权利要求5所述的将离子植入至太阳能电池基板中的方法,其中所述第一维度对应于所述离子束的宽度。
8.根据权利要求1所述的将离子植入至太阳能电池基板中的方法,还包括相对于所述离子束的路径正交地对准所述蔽荫遮罩。
9.根据权利要求1所述的将离子植入至太阳能电池基板中的方法,其为所述遮罩提供小孔,所述小孔的高度尺寸大于所述离子束的高度尺寸。
10.一种将离子植入至基板中的方法,包括朝向经组态以支撑目标基板的基板支撑件将离子束引导穿过蔽荫遮罩的多个小孔; 对应于所述蔽荫遮罩的所述多个小孔,将所述基板的第一部分暴露于所述离子束; 当所述基板的所述第一部分暴露于所述离子束时,使所述基板支撑件相对于所述离子束以第一速率移动;对应于所述蔽荫遮罩的所述多个小孔,将所述基板的的第二部分暴露于所述离子束;以及当所述基板的所述第二部分暴露于所述离子束时,使所述基板支撑件相对于所述离子束以第二速率移动,其中所述第一扫描速率快于所述第二扫描速率。
11.根据权利要求10所述的将离子植入至基板中的方法,还包括当所述基板的所述第一部分及所述第二部分暴露于所述离子束时,阻挡所述离子束到达所述基板的第三部分, 所述第三部分与所述蔽荫遮罩的位于所述多个小孔之间的区域对准。
12.根据权利要求10所述的将离子植入至基板中的方法,还包括相对于所述离子束的路径正交地对准所述蔽荫遮罩。
13.根据权利要求10所述的将离子植入至基板中的方法,还包括相对于所述离子束而固定地定位所述蔽荫遮罩。
14.根据权利要求10所述的将离子植入至基板中的方法,其中所述第二扫描速率对应于太阳能电池的点接触。
15.一种用于植入基板的离子植入器,所述基板是用于形成太阳能电池的材料,所述离子植入器包括离子源;束线总成,经组态以自所述离子源提取离子以形成离子束,且朝向安置于基板支撑件上的基板引导所述离子束;遮罩,安置在所述基板的前方,所述遮罩具有多个小孔,以允许所述离子束的相应部分朝向所述基板穿过所述遮罩;以及扫描总成,经组态以当所述基板的第一部分与所述多个小孔对准时,相对于所述离子束以第一扫描速率移动所述基板支撑件,且当所述基板的第二部分与所述多个小孔对准时,以第二扫描速率移动所述基板支撑件,其中所述第一扫描速率快于所述第二扫描速率, 且所述第二扫描速率对应于所述太阳能电池的点接触。
16.根据权利要求14所述的离子植入器,其中所述蔽荫遮罩相对于所述离子束固定地安置在所述基板的前方。
17.根据权利要求14所述的离子植入器,其中所述离子束具有一高度尺寸,所述小孔的长度对应于所述小孔的所述高度。
18.根据权利要求14所述的离子植入器,还包括冷却子总成,所述冷却子总成连接至所述蔽荫遮罩以用于维持所述蔽荫遮罩的温度。
19.根据权利要求14所述的离子植入器,其中所述第一扫描速率慢于所述第二扫描速率,所述基板的所述第一部分与所述基板的所述第二部分相比具有来自所述离子束的较高剂量率的离子。
20.根据权利要求18所述的离子植入器,其中所述基板是用于形成太阳能电池的材料,且所述基板的所述第一部分对应于所述太阳能电池中的点接触。
全文摘要
一种产生太阳能电池的改良方法,其利用在离子植入器中相对于离子束而固定的遮罩。朝向基板将所述离子束引导穿过所述遮罩中的多个孔。所述基板以不同速度移动,使得当所述基板以第一扫描速率移动时,所述基板暴露于一离子剂量率,且当所述基板以第二扫描速率移动时,所述基板暴露于第二离子剂量率。藉由修改所述扫描速率,可在对应的基板位置处将各种剂量率植入于所述基板上。此做法使离子植入能用于提供对于太阳能电池制造而言有利的精确的掺杂轮廓。
文档编号H01L21/265GK102484167SQ201080037578
公开日2012年5月30日 申请日期2010年8月11日 优先权日2009年8月11日
发明者史蒂芬·M·恩尔拉, 尼可拉斯·P·T·贝特曼, 班杰明·B·里欧登, 阿塔尔·古普塔 申请人:瓦里安半导体设备公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1