键合线及其制造方法

文档序号:7241714阅读:713来源:国知局
键合线及其制造方法
【专利摘要】本发明提供一种用于通过球焊法将集成电路元件的电极(a)与电路配线基板的导体配线(c)连接的线径L在50.8μm以下的键合线(W)。其中,芯材(1)含有10~50质量ppm的P,其余部分由铜和不可避免的杂质构成,在该芯材(1)外周的整个面上形成由Pd构成的厚度t2为0.010~0.090μm的被覆层(2),再在其表面上形成厚度t3为0.0001~0.0005μm的碳浓缩层(3)。此外,使通过室温下的拉伸试验测得的拉伸强度(TSR)与250℃下的拉伸试验测得的拉伸强度(TSH)之比(HR=TSH/TSR×100)为50~70%,该碳浓缩层(3)通过拉丝时的润滑剂的清洗程度而形成,从而形成满足集成电路间缩小化要求的、具有稳定键合强度的在纯铜上镀覆有Pd的键合线。
【专利说明】键合线及其制造方法
【技术领域】
[0001]本发明涉及用于通过球焊法将1C、LS1、晶体管等集成电路元件的电极与引线框、陶瓷基板、印刷基板等电路配线基板的导体配线连接的键合线及其制造方法。
【背景技术】
[0002]这种利用球焊法的连接方法通常为图4 Ca)?(h)所示的方式,从图4 Ca)中所示的键合线W插入毛细管劈刀(capillary) IOa中、劈刀IOa前端上形成有焊球(FAB:FreeAir Ball,自由空气球)b的状态起,线夹IOb打开,毛细管IOa向着集成电路元件上的电极a下降。此时,焊球(FAB) b被捕捉在毛细管劈刀IOa内,键合在电极a上。
[0003]当焊球b接触到用作对电极的电极a (毛细管劈刀IOa到达电极a)时,毛细管劈刀IOa会夹住焊球b,向焊球b提供热、负荷、超声,这样,焊球b被压接(变成压接焊球b’ ),与电极a固相键合,形成第I键合部,与电极a键合(图4 (b))。
[0004]形成第I键合部后,毛细管劈刀IOa会上升至一定高度(图4(c)),之后,移动到导体配线c的正上方(图4 (d)?(e))。此时,为了形成稳定的线弧(loop),有时会进行使毛细管劈刀IOa作特殊移动、在键合线W上形成“趋势”(reforming)的动作(可参见图4 Cd)中的点划线至实线)。
[0005]到达导体配线c正上方的毛细管劈刀IOa向着导体配线c下降,将键合线W按压在导体配线(第2目标)c上(图4 (e)?(f))。与此同时,向该按压部位提供热、负荷、超声,这样,使键合线W变形,形成用于将键合线W键合在导体配线c上的针脚部(stitch bond)和用于在下一步骤中固定尾丝(tail)的尾丝部(tail bond)(图4 (f))。
[0006]形成上述二个部(bond)后,毛细管劈刀IOa在留有键合线W的状态下上升,在毛细管劈刀IOa的前端固定一定长度的尾丝后,闭合线夹IOb (夹住线W),从尾丝部的部分扯断线W (图4 (g))。
[0007]毛细管劈刀IOa上升到所要求的高度后停止,对固定在该毛细管劈刀IOa前端的键合线W的前端部分通过放电棒g施加高电压,迸出火花(放电),用该热量熔化键合线W,该熔化的键合线材料通过表面张力形成接近球状的焊球b,固化(图4 (h))。
[0008]通过以上作用,一个循环结束,以后通过同样的作用完成电极a与配线导体c的利用球焊法的连接。
[0009]在利用该球焊法的连接中,键合线W主要使用金线,但由于金价格高,近年来,使用铜纯度在99.99质量%以上的廉价的铜线。此时,铜在裸露的状态下表面容易氧化,因此,如图5所示,使用在铜线构成的芯线I上被覆耐氧化金属2而成的键合线。
[0010]作为该被覆金属(被覆层)2,采用金(Au)、钼(Pt)、|fi(Pd)、银(Ag)、镍(Ni)等(专利文献I?5)。
[0011]专利文献:
[0012]专利文献1:日本特开2003-133361号公报
[0013]专利文献2:日本特开2004-64033号公报[0014]专利文献3:日本特开2007-12776号公报
[0015]专利文献4:日本专利第4542203号公报
[0016]专利文献5:日本专利第4349641号公报
[0017]对于由该金属被覆的铜线构成的键合线W,随着近年来电子部件的小型化等导致的集成电路元件间的极小化,需要使上述焊球b更小,由此,要求键合线W的直径也要小,因此,优选使键合线W的直径L在50 μ m以下(专利文献I的0009段)。
[0018]此外,在与集成电路元件的电极a的连接中,若焊球b为向下的矛状(倒圆锥状),则将上述焊球b压向电极a时,该焊球b的尖端有可能损坏电极a,因此,优选焊球b尽可能地为圆球状。为了提高该焊球b的圆球度,已知有以下方法:使上述被覆层2的厚度〖2在芯线(芯材I)直径的0.001以下(专利文献I的权利要求1)、或者同样地使被覆层2的厚度t2为0.001~0.2 μ m (专利文献3的权利要求1)、或者同样地使被覆层2的厚度t2为0.021~0.12 μ m(专利文献4的权利要求1)、或者用比芯材I的铜的熔点高的耐氧化金属形成被覆层2 (专利文献2的0014段)。此外,还有人提出,通过在被覆层2的Pd或者Pt的周围再设置Au表皮 层,提高圆球度(专利文献5的0011段)。
[0019]此外,使用以有机基板为基底的BGA (球栅阵列,Ball Grid Array)等时,若提高加热温度(加热台温度),则有机基板会翘曲,键合性显著恶化。因此,即使降低上述键合线W与电极a或者导体配线c键合时的加热温度(加热台温度),例如即使降低到150°C左右,也要进行用于保证充分键合强度的各种处理,例如在热处理后进行拉丝的加工等(专利文献3中的0020、0054段等)。

【发明内容】

[0020]如上述那样,用耐氧化金属被覆铜线而形成的键合线W迄今进行了各种处理,得到一定的好评。但是,近年来,为了降低成本,要求操作高速化,还需要进一步提高键合强度。
[0021]此外,随着电子部件的小型化,为了降低线弧高度(图6的h)或者在有限的空间内进行配线,需要键合在多级层积的电极a上。在该多级层积的情况下,进行第一层的键合时,需要尽可能地降低线弧,进行第二层及以后的键合时,就得越过该第一层及以后的键合线W进行键合,因此,要求线弧的高度大于以往(线弧高度h)。增加线弧高度时,通常进行图4 Cd)的点划线所示的“趋势形成”(reforming),为此,要求键合线W能够柔性地进行这种趋势形成。
[0022]此外,专利文献4、5公开了使由纯铜构成的芯材I含有P等、并在其外周的整个面上被覆了 Pd等的键合线(专利文献4、5的权利要求1 ),但实际情况是,上述进一步提高键合强度和电子部件小型化的要求尚未得到充分满足。
[0023]在这种情况下,本发明旨在满足上述要求。
[0024]为了达到上述目的,本发明提供一种用于通过球焊法将集成电路元件的电极a与电路配线基板的导体配线c连接的线径L在50.8 μ m以下的键合线(bonding wire) W,其中,芯材I由纯度为99.99质量%以上的铜和不可避免的杂质构成,该芯材I的外周的整个面上形成有由Pd构成的厚度t2为0.010~0.090 μ m的被覆层2,且在调质热处理中,使由室温下的拉伸试验测得的拉伸强度TSk和由250°C下的拉伸试验测得的拉伸强度TSh之比(HR = TSH/TSEX100)为 50 ~70%。
[0025]使键合线W的线径L在50.8μπι以下的原因在于,虽然在上述专利文献I中使该直径L在50 μ m以下,但是,只要在50.8 μ m以下,即使是与50 μ m以下相同的程度,也能使上述焊球b更小(可参见表1中的实施例4、表2中的实施例8)。
[0026]此外,对线径L的下限无特殊规定,但在小于12 μ m的情况下,键合前,操作者难以使线W穿过毛细管劈刀10a,操作性差。
[0027]使芯材I的铜纯度在99.99质量%以上(其余为不可避免的杂质)是为了保证高导电性。
[0028]被覆层2的厚度t2越薄,焊球b的硬度就越低,Si芯片(电极a)受损的可能性越低,但若过薄,则进行针脚部键合时,芯材I的铜露出的程度增大,仅能显现与不具有被覆层2的铜键合线同等程度的针脚部键合性。例如,由后述实施例和比较例的实验结果可以得知,可能发生2次以上机器停机。因此,根据这些实施例和比较例的实验结果,将被覆层2的厚度t2设在0.010 μ m以上。
[0029]另外,在加热台温度为150°C左右的低温下进行球焊时,根据连续键合性的实验结果,将被覆层2的厚度t2设在0.040 μ m以上。其理由是,若降低加热台温度,则进行针脚部键合所需的负载变大,当被覆层2的厚度t2在0.010 μ m以上、小于0.040 μ m的范围时,芯材I的铜露出的程度增大,连续键合性有可能受损。
[0030]另一方面,若被覆层2厚,则焊球b的硬度高,由Si芯片(电极a)的损伤引起不良的可能性增加。因此,根据后述的实施例和比较例的实验结果,将被覆层2的厚度t2设在
0.090 μ m 以下。
[0031]将被覆金属选为Pd是因为这些贵金属通常被作为电子材料的被覆材料,比较容易获得。此外,Pd的熔点为1554°C,比铜的熔点(1083°C)高,因此,在为了制作焊球b而用放电棒g放电时,Pd不会先熔化,而是铜融化,通过表面张力而顺着键合线向正上方上升,从而能得到良好的圆球状的焊球b。关于Pd的纯度,纯度越高,越能降低焊球b的硬度,因此,优选与芯材I的纯铜一样,纯度在99.99质量%以上(其余部分为不可避免的杂质)。
[0032]此外,在形成上述FAB时,如果被覆层2的表面发生氧化,FAB就不能形成圆球状,因此,在用放电棒g放电时,通常将氮气或者氮气中混合有微量氢而形成的气体吹到键合线W的前端附近。只要这些气体完全覆盖键合线W的前端、氧被完全排除在外,就不会存在问题,但是,由于需要在高速下操作,放电棒g的放电有时会在向下一键合位置的移动过程中进行,以及因键合装置的结构原因,气体的吹入方法存在制约,难以将氧完全排除在外,等等,因此,有时需要除去混入的氧的影响。
[0033]作为除去该混入的氧的一种手段,在键合线W的芯材I中添加10~50质量ppm的P。即,如果对芯材I添加P,则如图4 (h)所示,在用放电棒g放电而使键合线W的前端熔化时,如下述化学式所示,P和氧(O2)反应,生成P2O5而飞散,其结果,能除去氧,在被覆层2、芯材I未氧化的情况下,FAB稳定地形成圆球状。
[0034]4Cu3P + 502 — 12Cu + 2Ρ205 ?
[0035]此时,若该P的添加量小于10质量ppm,则上述那样的除去氧的效果不充分,而若P的添加量超过50质量ppm,则会生成大量的P2O5并飞散到空气中,因此会在FAB表面产生大量微细空孔,这种空孔可能成为第I键合部的可靠性变差的原因。此外,添加大量的P会使FAB的硬度提高,可能出现由Si芯片(电极a)的损伤引起的不良。
[0036]另外,即使P的添加量小于10质量ppm,在将上述氮气等吹到键合线W的前端附近时,如果能通过使该气体的调节最适化、抑制氧的混入,就能防止被覆层2、芯材I的氧化,得到圆球状的FAB。
[0037]在这种构成的键合线W的制造方法中,可以采用各种形式,例如可以采用以下形式:在由纯度为99.99质量%以上的铜构成的芯材I的外周的整个面上形成由Pd构成的被覆层2,在对该被覆线进行扩散热处理、提高芯材与被覆层的密着性之后,拉丝至线径在50.8 μ m以下,进一步进行调质热处理,使被覆层2的厚度t2为0.010?0.090 μ m。
[0038]上述被覆层2可通过电镀、无电镀、蒸镀法等公知的手段而形成,通常,键合线W通过使大线径的铜棒依次通过被称作丝模(dies)的模具而最终形成规定的线径,因此,以该工序途中的适宜的线径,通过上述手段而形成被覆层2。此时,进行被覆时的芯材I的线径取决于操作性和成本,但由于制造装置的限制,通常为0.2?0.8_。对外周的整个面上被覆有Pd的被覆线在200?500°C下实施扩散热处理、提高上述芯材I与被覆层2的密着性后,拉丝至线径50.8 μ m以下,由此可以使被覆层2的厚度t2为0.010?0.090 μ m。之后,对线W实施调质热处理。
[0039]该调质热处理通过对拉丝至规定线径并卷绕到卷盘(reel)上的键合线W进行倒卷,使其在管状热处理炉中行进,再用卷取用卷盘卷取,由此进行连续热处理。向管状的热处理炉中注入氮气或者氮中混合了微量的氢而形成的气体。
[0040]在该调质热处理中,根据后述的实施例与比较例的对比进行调整,使键合线W在室温(20?25°C)下的拉伸试验中的拉伸强度TSk和在250°C下的拉伸试验中的拉伸强度TSh 的比 HR (TSH/TSE X 100 )为 50 ?70 %。
[0041]通常,HR受调质热处理时间及处理温度影响,要使其小于50%,需要提高室温下的拉伸强度TSK,因此,在低温下或以短时间进行调质热处理。这种情况下,由于为低温、短时间,键合线W的铜结晶组织为残留有加工形变的微细组织。另一方面,在上述图4 (h)的通过放电棒g放电而在键合线W上形成焊球b时,从该焊球b向着毛细管劈刀10a,在某一长度的键合线W中会出现由熔化后重结晶的结晶组织粗大化而形成的热影响部(可参见图6的e)。因此,在与该焊球b相距一定的距离处会形成结晶组织的边界。若该结晶组织的边界位于线弧的中途,则会成为该部分出现龟裂、有时出现破裂等不良状况的原因,导致无法以高的线弧形状(线弧高度)将键合线键合。
[0042]此外,要使HR超过70%,需要降低室温下的拉伸强度TSK,因此,在高温下或以长时间进行调质热处理。这种情况下,由于为高温、长时间,键合线W的铜结晶组织会粗大化而变得脆弱,成为键合时在形成趋势(弯曲)的部分从晶界发生龟裂或破裂之类不良状况的原因。
[0043]由以上可知,如果使本发明的键合线W的HR在50?70%,则根据后述实施例与比较例的对比,由于未出现微细组织与粗大化的重结晶组织的边界,因此,不会在线弧的中途发生龟裂,而且,由于键合线W的结晶组织未粗大化,因此,可以认为,形成趋势时也不会从晶界发生龟裂。因此,可在不发生龟裂的情况下在键合线W上软性形成趋势。
[0044]HR为50?70%可通过实验等适当设定调质热处理时间和处理温度而得到。例如,炉长为50cm时,将该炉温度设为400°C以上、800°C以下,在键合线行进速度为30?90m/分的条件下进行热处理。此时,调质热处理时间为0.33?I秒。
[0045]将制成的键合线W进行细分,卷绕在规定的线轴上,再将该线轴安装到键合装置上,抽出(拉出)键合线W,就可用于进行键合,但由于被覆层2的表面状态,存在键合线W之间密着(紧密附着)、无法拉出的可能性。专利文献4中记载,通过在被覆层2的表面设置氧化层来提高键合线的抽出性(可拉出性),但是,要控制Pd表面的氧化层,实际上很难。
[0046]为了防止该键合线W的密着,优选在被覆层2的表面设置碳浓缩层。将该碳浓缩层的碳浓度设为I?80质量%。该碳浓度小于I质量%时,不能发挥防止密着的效果,而超过80质量%时,针脚部键合性下降,可能会损坏连续键合性。
[0047]要形成碳浓缩层,有将键合线浸溃到金属密着防止剂中、在键合线上吹涂金属密着防止剂等各种方法,但是,以下方法较为经济:调整拉丝润滑剂的浓度,以使拉丝后的键合线W表面残留一部分润滑剂的方式进行清洗,以除去多余的拉丝润滑剂和异物等,之后进行调质热处理,由此设置由上述残留的部分润滑剂构成的碳浓缩层。此时,若调质热处理在空气中进行,则残留在键合线W上的拉丝润滑剂会与氧反应而飞散,因此,调质热处理在氮气中或者氢-氮混合气体中等阻断了氧的状态下进行。
[0048]根据后述实施例和比较例的实验结果,将碳浓缩层的厚度设为0.0001?
0.0005 μ m。该碳浓缩层的厚度小于0.0001 μ m时,达不到提高上述可抽出性的效果,而超过0.0005 μ m时,针脚部键合性下降,可能会损害连续键合性。
[0049]由于本发明具有以上构成,因此,能得到具有稳定键合强度、纯铜上被覆有Pd的键合线。
【专利附图】

【附图说明】
[0050]图1是本发明的键合线的截面图。
[0051]图2a是实施方式I中的HR为50?70%的键合线的表面结晶组织的显微照片。
[0052]图2b是实施方式I中的HR小于50%的键合线的表面结晶组织的显微照片。
[0053]图2c是实施方式I中的HR超过70%的键合线的表面结晶组织的显微照片。
[0054]图3a是实施方式2中的HR为50?70%的键合线的表面结晶组织的显微照片。
[0055]图3b是实施方式2中的HR小于50%的键合线的表面结晶组织的显微照片。
[0056]图3c是实施方式2中的HR超过70%的键合线的表面结晶组织的显微照片。
[0057]图4是球键合连接法的说明图,Ca)?(h)为其中间过程图。
[0058]图5是其他键合线的截面图。
[0059]图6是电极a与导体配线c的键合连接状态的扩大图。
【具体实施方式】
[0060]实施方式I
[0061]准备纯度在99.99质量%以上、直径为0.2?0.8mm的铜线,用电镀法在该铜线上镀覆Pd,对该被覆线实施扩散热处理以提高铜线(芯材)1与被覆层2的密着性后,在水溶性拉丝润滑剂的存在下拉丝至线径为12?50.8 μ m,进一步在氮气中进行调质热处理,使拉伸强度比HR为45?78%,得到被覆层2的厚度丨2为0.002?0.12 μ m的键合线W。此时,调整拉丝时的润滑剂浓度,并在拉丝后进行的清洗中以使键合线W的表面残留一部分润滑剂的方式除去多余的润滑剂和异物等,之后,在炉长为50cm的隔氧状态下,在炉温为400°C以上、800°C以下、线行进速度为30~90m/分的条件下热处理,由此进行上述调质热处理,设置厚度t3在0.0009 μ m以下的碳浓缩层3。
[0062]用该方法制作了表1所示的实施例1~16和比较例I~9的各键合线W,并通过下述方法对这些键合线W的连续键合性、第I键合部的Si芯片(电极a)损伤程度、键合线的抽出性和线弧形状(有无龟裂)进行了评价。评价结果示于表1。
[0063]“被覆层(皮膜层)2的厚度t2”
[0064]使用荧光X射线膜厚计,照射X射线,将产生的荧光X射线的强度换算成皮膜厚度,以此作为皮膜厚度。
[0065]“碳浓缩层3的厚度t3”
[0066]用Ar离子在深度方向上进行单位时间的溅射,每次用俄歇电子分光分析法(AES)测定碳浓度,将达到最外层的碳浓度的1/2浓度之前所得到的厚度作为碳浓缩层3的厚度。厚度的换算采用通常的SiO2换算。[0067]“室温下的拉伸强度TSK、250°C下的拉伸强度TSH”
[0068]在室温(23°C)下,对IOOmm的键合线以IOmm/分的拉伸速度进行拉伸试验,将断裂时的负载除以拉伸试验前的键合线W的截面积而得到的值作为拉伸强度。
[0069]此外,在250°C下也进行相同的试验,但将样品放置在250°C的环境中后,在下降的温度回复到250°C后的20秒后进行拉伸试验。
[0070]“HR”
[0071]从上述TSe和TSh,求出HR = TSH/TSEX 100。例如,表1中,实施例1的线径2为2(^111的键合线1的了51;为 234]\0^,了511为 143MPa,HR 为 143/234X100 = 61%。
[0072]“线弧高度h”
[0073]在第I键合部和第2键合部的高度相同的平焊(flat bond)中,以第I键合部和第2键合部的接地点为基准,示出到最高地点的键合线之间的高度h (可参见图6)。线弧高度h为键合线直径L的3倍~5倍时称为低线弧,10倍以上时称为高线弧,在表1中分别用“低”、“高”表示。
[0074]“连续键合性”
[0075]用键合机进行10,000次连续键合,若不发生机器停机,则评价为“A”,若发生I次停机,则评价为“B”,若发生2次以上停机,则评价为“D”。此时,如果加热台温度降低,则该连续键合变得困难,因此,在200°C (±5°C)、150°C (±5°C)的2个水平下进行连续键合。
[0076]“第I键合部的Si芯片损伤”
[0077]键合后,为了评价第I键合部正下方的Si芯片损伤,用王水溶解第I键合部和电极膜,用光学显微镜和扫描电子显微镜(SEM)观察Si芯片的裂纹。此时,观察100个键合部,将可以看见I个或者根本看不见5μπι以下的微小纹孔(pit)的情况评价为“A”,将能确认5 μ m以上的纹孔的情况评价为“D”。
[0078]“线的抽出性”(键合线的可拉出性)
[0079]向用于安装在键合装置上的线轴上卷绕制成品500m,使该线轴向以与卷绕方向相反的方向旋转,使键合线W自然落下,由此评价键合线的抽出性。将使键合线自然落下时的从线轴到接地点之间的距离设为lm,在500m长度的键合线的自然落下中,将键合线的勾挂在2次以下的评价为“A”,3次以上的则判断为在使用上存在问题,评价为“D”。
[0080]“线弧形状(有无龟裂)”
[0081 ]用扫描电子显微镜(SEM)检查键合后的线弧,通过键合线表面有无龟裂进行判断。将键合线表面平滑地绘出弧线,任何地方均未发生龟裂的线弧评价为“A”,将出现键合线直径的3%以上的龟裂的线弧判断为在使用上存在问题,评价为“D”。
[0082]“综合评价”
[0083]将“连续键合性”的评价在200°C、150°C均为“A”,且“第I键合部的Si芯片损伤”、“线的抽出性”和“线弧形状”的评价均为“A”的键合线W评价为“A”,将“连续键合性”的评价在200°C下为“A”,在150°C下为“B”,且其他评价均为“A”的键合线W评价为“B”。此外,对于其他评价中只要有一个为“D”的键合线W,由于在实际使用上存在问题,因而评价为 “D,,。
[0084]表1
[0085]
【权利要求】
1.键合线,其是用于通过球焊法将集成电路元件的电极(a)与电路配线基板的导体配线(c)连接的线径L在50.8 μ m以下的键合线(W),其中,芯材(I)由纯度为99.99质量%以上的铜和不可避免的杂质构成,该芯材(I)外周的整个面上形成有由Pd构成的厚度t2为0.010?0.090 μ m的被覆层(2),且在炉温度为400°C以上、800°C以下,线行进速度为30?90m/分的条件下进行调质热处理,使由室温下的拉伸试验测得的拉伸强度TSk与由250°C下的拉伸试验测得的拉伸强度TSh之比即HR = TSH/TSEX 100为50?70%,由所述铜构成的芯材(I)的重结晶组织与粗大化的二次重结晶组织的边界难以发生。
2.根据权利要求1所述的键合线,其特征在于,所述芯材(I)含有10?50质量ppm的P。
3.根据权利要求1或2所述的键合线,其特征在于,所述被覆层(2)的外周部上具有碳浓度为I?80质量%的碳浓缩层(3),该碳浓缩层(3)的厚度&为0.0001?0.0005 μ m。
4.键合线的制造方法,其是权利要求3所述的键合线(W)的制造方法,在该方法中,在所述芯材(I)上被覆Pd、对该被覆线进行扩散热处理、提高芯材(I)与被覆层(2)的密着性后,涂布润滑剂,拉丝,之后,使该拉丝经过清洗工序,在隔氧状态下进行所述调质热处理,调整所述清洗工序的清洗程度,由此在所述被覆层(2)的表面形成由所述润滑剂构成的所述碳浓缩层(3)。
【文档编号】H01L21/60GK103597590SQ201180068538
【公开日】2014年2月19日 申请日期:2011年11月28日 优先权日:2011年2月28日
【发明者】长谷川刚 申请人:大自达电线株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1