专利名称:永磁快淬带的电磁凝固及热压纳米晶磁体及其制备方法
技术领域:
本发明涉及稀土永磁材料制造技术领域,特别是提供了一种永磁快淬带的电磁凝固及热压纳米晶磁体及其制备方法。
背景技术:
在现有技术中(见图1),人们利用快淬带(也称为速冷帯)作为母合金,通过后续的磨粉、热压/热流变エ艺制备高性能热压永磁材料,主要目的是改善母合金带的质量。现有快淬エ艺,由于要求控制浇铸钢液的温度漂移在较窄范围,而实际操作中难以控制,致使快淬带边缘与中部厚薄不均,成分与结构不均匀,主相成分仍有可能偏离化学计量比。现有技术难以得到表面光滑、平整、成分均匀的快淬带,现有技术制备的快淬带,不能用于生产 高性能热压/热流变磁体。早在20世纪50年代,法国就开始对电磁场中的凝固现象进行了研究,并把电磁凝固技术应用在板材的连铸中,以图实现高速连铸,无缺陷连鋳。目前,各国都注重发展电磁技术的应用研究,主要集中在各种有色金属合金制造中,如铝合金、低熔点的Pb-Sn合金、Fe-C合金及一些复合材料等方面。电磁铸造分电磁模铸、电磁无模铸造和电磁连铸等.基本是通过电磁力对熔融金属液起抑制或搅拌作用。能细化晶粒.抑制枝状晶的生长。通过控制晶粒的大小和元素的分布达到改善材料性能的目的。但在以往的研究中,还没有将电磁凝固技术用于非晶、纳米晶或微晶永磁快淬带制备方面的报道,特别是像本发明这样,在快淬辊的两侧施加电磁场(见图2、3),通过调整电磁场的属性(直流或交流)和频率,对快淬带进行电磁力处理。本发明给出的发明给出的纳米晶或微晶Nd-Fe-B永磁快淬带的电磁凝固技术,保证了高熔点、活泼金属的无污染熔炼,明显的減少了缩孔、夹杂等材料晶格缺陷,容易得到宏观上表面光滑、平整,微观上晶粒细小、组织致密、成分与结构均匀的速凝帯。不同的电磁场产生的电磁力大小、形状、方向都不同,对凝固组织的影响也不同。直流磁场产生的直流磁束既可抑制液态金属中的自然对流,也可抑制固液界面处晶核的生长,从而有利于形成柱状晶组织,为发展单晶体提供了有利条件。交流磁场作用于熔融金属吋,则产生定时改变方向和大小的体积力。该カ可对正在凝固中的熔融金属实施搅拌,使凝固界面产生结晶的熔解、枝晶的折断与脱开,同时使结晶核移动呈活泼状态,并促使结晶组织等轴晶化。等轴晶组织的形成机理是合金快淬凝固过程为一快速对流传热传质的动态过程,在温度和成分高度均匀的生长环境下,枝晶机械断裂或熔断转变为新的晶核,在过冷度较大的情况下,晶核不易长大,具有优先生成细小的等轴晶倾向。电磁凝固技术制备的材料组织与常规金属模铸造的组织结构不同,其根本原因是各自的成型过程不同。常规铸造过程可看作是相对静止的,而电磁凝固快淬过程由于辊的旋转和磁场的作用,一直处于強烈的对流传热传质过程,温度场、溶质场、流速场无时不在变化。电磁凝固快淬过程是ー个动态过程,在这种情况下,没有哪ー个方向更占优势,因此也就决定了晶粒不会在某一方向上优先生长,整体趋于各向同性,最終形成等轴晶。
这里所述的合金快淬凝固、晶粒长大方式,是电磁凝固快淬过程中的一种趋势。但在感应圈中通入高频电流、并使液固界面始终处在反应圈中强磁场的位置,都会使液固界面沿垂直于辊面方向的温度梯度増大,从而增大了获得柱状晶的可能性。另ー方面,快淬带实际上是在自由表面上结晶,不与任何容器接触,难以形成晶核,如提高合金纯度或增大垂直于辊面方向的温度梯度都会增大获得纵向柱状晶的生长倾向。利用本发明给出的纳米晶或微晶Nd-Fe-B永磁快淬带的电磁凝固技术,可以制备高质量快淬带。喷嘴射出的合金液与水冷铜辊表面直接接触产生的强冷效果对凝固过程及凝固组织产生很大影响,从而明显提高了材料的力学性能,其压延性能大大提高,用于生产 热压/热流变磁体,尤其是高性能热压/热流变磁体,减缓了磁体的开裂现象。
发明内容
本发明的目的在于提供一种永磁快淬带的电磁凝固及热压纳米晶磁体及其制备方法,得到可以直接使用的高性能永磁原料。本发明的永磁快淬带的电磁凝固及热压纳米晶磁体的合金化学方程式为(Nd,R轻,尺重)2び6,1')148,其中,1 轻为〇6、1^、?1'的组合,至少包括〇6 0-35%或La 0_10%、Pr 0-15% ;Rg的含量占总稀土含量的10%-40% ;重稀土 Ri为Dy、Tb的组合,至少包括Dy 0-9%或Tb0-6% ;Nd 13-27% ;Rg 10-40% ;R重 2-9% ;Fe 57-69% ;B 1-1. 2% ;另外还包括其他元素 T Co 3-10% ;Ga 0-1%; Cu O. 5-2%; Al O. 3-1. 5% ;Nb O. 1_0. 6% ;均为重量百分数。本发明的制备方法包括一下步骤(I)按合金的化学方程式(Nd,Re, Rm)2(Fe, T) 14B配制原料,将配制的原料装进坩埚,抽真空至(1-5) X 10_4Pa,送中频电流使其完全熔化,且合金液温度上升至1350-1500°C时,待合金液成分混合均匀;化学方程式中,R轻为Ce、La、Pr的组合,至少包括Ce 0-35%或La 0-10%, Pr0-15% ;Rg的含量占总稀土含量的10%-40%(重量%,以下同);重稀土 Ri为Dy、Tb的组合,至少包括Dy 0-9%或Tb 0-6% ;具体而言,Nd13-27% ;RK 10-40% ;Rm 2-9% ;Fe 57-69% ;B 1-1. 2% ;另外还包括其他元素 T:Co 3-10% ;Ga 0-1%; Cu O. 5-2%; Al O. 3-1. 5% ;Nb O. 1_0· 6% ;其余是由于原料
纯度所帯来的微量杂质。(2)开启快淬辊表面上方的线圈磁场控制系统,产生磁场的线圈平面平行与快淬带的运动方向平行,使磁场尽可能垂直于快淬带的自由面。采用频率范围在200-1300ΗΖ之间的交变磁场,磁场強度可调范围在O. 03-0. 6Τ之间。也可用耐高温钐钴磁体做成磁辊,以提供垂直于辊面的磁场。线圈与辊之间有耐火材料相隔,避免导线与速凝鱗片接触或由于过热导致导线熔化(见图2、3)。(3)控制辊的表面初始温度保持在100_500°C范围恒定;控制辊速在15m-40m/s。(4)将合金液在压カ差的作用下,喷射到辊面上,压差范围为O. 3-1. 2MPa,快淬过程是在磁场中进行,形成的纳米晶或微晶Nd-Fe-B永磁快淬带在强冷及电磁力的作用下在辊面上约束成型,辊旋转拉伸快淬带并将其送入的水冷储料罐中,获得厚度在O. 03-0. 45mm的快淬带;
(5)将电磁凝固永磁快淬带破碎成粉,称取一定量,放入圆柱状热压模具的腔体内,通过上下压头将合金粉固定在模具内;(6)利用感应加热或电流加热,将热压模具和磁粉加热至600 800°C ;上压头启动并对磁粉施加100 200MPa的压强,制成各向同性压坯样品,并使压坯样品达到全密度,然后停止加热和加压,当压坯样品冷却至室温后将其从热压模具中取出;样品在600 800°C阶段的时间控制在6min以内,升温时间为3_5min,保温时间为l_2min,;整个热压过程是在高真空之下完成的,真空度高于IXlO-2Pa ;(7)更换热压模具为热流变模具,内径要大于热压模具20-60mm,利用感应线圈将热流变模具和全密度压坯样品迅速加热至600 950°C,上压头启动并对样品施加IOOMPa的压强,将直径为20-60mm的各向同性压坯样品热变形至30mm-80mm,控制变形率为65-75%,最终获得热压/热流变纳米晶磁体。本发明的优点积极效果 采用本发明技术还可制备双相纳米复合永磁快淬带和磁体。采用本发明技术还可用于制备非晶快淬帯。采用本发明技术与现有技术相比较,其产品抗氧化能力强、且制备エ艺简单,用这种材料生产的磁粉可以制作各向异性和各向同性粘结永磁体;采用本发明技术永磁快淬带制备热压/热流变磁体,生产效率高,产品的均匀性、一致性明显好于常规快淬带制备的磁体,且热压/热流变温度低比常规エ艺低,生产能耗減少,制作成本降低约1/5-1/6。采用常规エ艺,纳米晶或微晶Nd-Fe-B永磁快淬带有明显的三区分布,即贴辊面的非晶纳米晶区、中心部位的细等轴晶区及自由面的柱状晶区,不同区域呈层状分布,自由面积不光滑(见图4、5)。采用本发明永磁快淬带的电磁凝固技术,在选定的频率下,快淬带的整个断面都分布着均匀细等轴晶(见图6)。
图I为常规快淬エ艺原理示意图。图2为永磁快淬带的电磁凝固技术原理示意3为永磁快淬带的电磁凝固技术装备正面结构示意图。图4为常规エ艺制备的Nd-Fe-B永磁快淬带有明显的三区分布。图5为常规エ艺制备的Nd-Fe-B永磁快淬带,自由面积不光滑。图6为本发明エ艺制备的快淬带,整个断面都分布着均匀细等轴晶。
具体实施例方式本发明实施例,选择了 8种合金成分(见表1)、5种エ艺条件(见表2),通过成分与エ艺条件的组合,制备出9种不同性能的热压/热流变纳米晶磁体样品(见表3),具体过程如下I)将按表I选定原料装进坩祸,抽真空至3X 10_4Pa,送中频电流使其完全熔化,且合金液温度上升至1400°C时,待合金液成分混合均匀。2)开启电磁场控制系统,控制交流磁场大小,磁场为O. 4T,频率为600Hz。将合金液在压カ差的作用下,喷射到辊面上,压差范围为IMPa,控制辊速见表2,由此可得到表面光滑、平整、成分和厚薄均匀的快淬带。3)将获得的电磁凝固永磁快淬带破碎成粉,称取一定量,放入圆柱状热压模具的腔体内,利用感应加热方式,将热压模具和磁粉迅速加热至表2对应的热压温度。上压头启动并对样品施加200MPa的压强,使样品达到全密度(约7. 6g/cm3),然后停止加热和加压,当样品冷却至室温后将其从热压模具中取出。整个热压过程是在高真空之下完成的,真空度闻于 I X 10 2Pa ;4)换热压模具为热流变模具,利用感应线圈将热流变模具和全密度压坯样品迅速加热至表2对应的热变形温度,上压头启动并对样品施加IOOMPa的压强,控制相应变形率为表2给出值,最終获得9种热压/热流变纳米晶磁体样品(见表3)。表I为本发明的电磁凝固永磁快淬带初始化学成分;表2为本发明电磁凝固永磁快淬带制备热压纳米晶磁体的エ艺;表3为利用BH仪测量的热压/热流变各向异性磁体的 磁性能。表I :本发明实施例的磁凝固永磁快淬带初始化学成分(wt%)
fdPr I LaCe DyFe CoGa Al Ib B
序号\^II—I
1「29· 5II68 3.5I ]
2Γ 26.5II 366 30.2 0.2I. I I
a I 25.2 Il 3.5 I 66 3 0,2 0,1 I I
T |" 26 2 I「I 65 4 0.3I. I |
8 I 27.5 2 ΓI" 65 4 0,40.1 I I表2 :本发明实施例的电磁凝固永磁快淬带制备纳米晶热压磁体的エ艺
-1-1-
快淳纏 fmim 戀纖率戀薄湿瘦
XCm/s)CC)(s")i'm
I28730 I 0.02 Γ 870232700 |" 0.01 1 850
332700 I 0.008 I 850
_____ニ__
433700 I 0.15 I 850
538b80 j 0.005 I 酶0表3 :本发明实施例热压/热流变各向异性磁体的磁性能
权利要求
1.一种永磁快淬带的电磁凝固及热压纳米晶磁体,其特征在于,合金的化学方程式为(Nd,R轻,R^2(FeJ) 14B,其中,R轻为 Ce ,La, Pr 的组合,至少包括 Ce 0-35% 或 La 0-10%, Pr0-15% ;Rg的含量占总稀土含量的10%-40% ;重稀土 Ri为Dy、Tb的组合,至少包括Dy 0-9%或 Tb 0-6% ; Nd 13-27% ;RK 10-40% ;R重 2-9% ;Fe 57-69% ;B 1-1. 2% ;另外还包括其他元素 T Co3-10% ;Ga く 1%; Cu く 2%; Al く I. 5% ; Nb 彡 O. 6% ;均为重量百分数。
2.—种权利要求I所述永磁快淬带的电磁凝固及热压纳米晶磁体的制备方法,其特征在于,包括以下エ艺步骤 (1)按合金的化学方程式(Nd,Re,Rm)2(Fe,T) 14B配制原料,将配制的原料装进坩埚,抽真空至(1-5) X 10_4Pa,送中频电流使其完全熔化,且合金液温度上升至1350-1500°C吋,待合金液成分混合均匀; 化学方程式中,Rg为Ce、La、Pr的组合,至少包括Ce 0-35%或La 0-10%, Pr 0-15% ;Rg的含量占总稀土含量的10%-40% ;重稀土 Ri为Dy、Tb的组合,至少包括Dy 0-9%或Tb0-6% ; Nd 13-27% ;RK 10-40% ;R重 2-9% ;Fe 57-69% ;B 1-1. 2% ;另外还包括其他元素 T Co3-10% ;Ga く 1%; Cu く 2%; Al く I. 5% ; Nb 彡 O. 6% ;均为重量百分数; (2)开启快淬辊表面上方的线圈磁场控制系统,产生磁场的线圈平面平行与快淬带的运动方向平行,使磁场垂直于快淬带的自由面;采用频率范围在200-1300HZ之间的交变磁场,磁场强度范围在O. 03-0. 6T之间; 或者用耐高温钐钴磁体做成磁辊,以提供垂直于辊面的磁场; 线圈与辊之间有耐火材料相隔,避免导线与速凝鱗片接触或由于过热导致导线熔化; (3)控制辊的表面初始温度保持在100-500°C范围;辊速在15m-40m/s; (4)将合金液在压カ差的作用下,喷射到辊面上,压差范围为O.3-1. 2MPa,快淬过程是在磁场中进行,形成的纳米晶或微晶Nd-Fe-B永磁快淬带在强冷及电磁力的作用下在辊面上约束成型,辊旋转拉伸快淬带并将其送入的水冷储料罐中,获得厚度在O. 03-0. 45mm的快淬带; (5)将电磁凝固永磁快淬带破碎成粉,称取一定量,放入圆柱状热压模具的腔体内,通过上下压头将合金粉固定在模具内; (6)利用感应加热或电流加热,将热压模具和磁粉加热至600 800°C;上压头启动并对磁粉施加100 200MPa的压强,制成各向同性压坯样品,并使压坯样品达到全密度,然后停止加热和加压,当压坯样品冷却至室温后将其从热压模具中取出;样品在600 800°C阶段的时间控制在6min以内,升温时间为3-5min,保温时间为l_2min,;整个热压过程是在高真空之下完成的,真空度高于I X 10_2Pa ; (7)更换热压模具为热流变模具,内径要大于热压模具20-60mm,利用感应线圈将热流变模具和全密度压坯样品迅速加热至600 950°C,上压头启动并对样品施加IOOMPa的压强,将直径为20-60mm的各向同性压还样品热变形至30mm-80mm,控制变形率为65-75%,最终获得热压/热流变纳米晶磁体。
全文摘要
一种永磁快淬带的电磁凝固及热压纳米晶磁体及其制备方法,涉及稀土永磁材料制造技术领域。永磁快淬带的电磁凝固及热压纳米晶磁体的合金化学方程式为 (Nd,R轻,R重)2(Fe,T)14B,其中,R轻为Ce、La、Pr的组合,至少包括Ce 0-35%或La 0-10%、Pr 0-15%;R轻的含量占总稀土含量的10%-40%;重稀土R重为Dy、Tb的组合,至少包括Dy 0-9% 或Tb 0-6%;Nd 13-27%;R轻10-40%;R重 2-9%;Fe 57-69%;B 1-1.2%;另外还包括其他元素TCo 3-10%;Ga≤1%; Cu≤2%; Al≤1.5%; Nb≤0.6%。优点在于,快淬带的整个断面都分布着均匀细等轴晶。产品抗氧化能力强、性能高,且制备工艺简单。
文档编号H01F41/02GK102693799SQ20121019348
公开日2012年9月26日 申请日期2012年6月12日 优先权日2012年6月12日
发明者孙威, 张珂, 朱明刚, 李卫, 汪旭超, 赖彬 申请人:钢铁研究总院