紫外发光器件的制作方法

文档序号:7147836阅读:142来源:国知局
专利名称:紫外发光器件的制作方法
技术领域
实施方案涉及发光器件。
背景技术
发光二极管(LED)是将电流转变成光的半导体发光器件。因为半导体发光器件可以获得具有高亮度的光,所以半导体发光器件已被广泛地用作用于显示器、车辆或者照明装置的光源。最近,已经提出能够输出紫外光的紫外发光器件。尽管从紫外发光器件中输出紫外光,但是更大量的紫外光没有输出到外部,而是在紫外发光器件中被吸收或消失。因而,可能降低光提取效率。

发明内容
`
实施方案提供一种具有提闻的光提取效率的紫外发光器件。根据本实施方案,提供一种紫外发光器件,其包括:衬底;发光结构,该发光结构在衬底下方并且包括多个化合物半导体,每个化合物半导体至少包括第一导电半导体层、有源层和第二导电半导体层;在第一导电半导体层下方的第一电极层;以及在第二导电半导体层下方的第二电极层,其中第一电极层与有源层的侧表面间隔开并且沿着有源层的外周部设置,并且其中第一电极层和第二电极层中的至少之一是反射层。


图1是示出根据第一实施方案的紫外发光器件的底视图;图2是示出图1的紫外发光器件的截面图;图3是示出图1的紫外发光器件输出紫外光的视图;图4是示出根据第二实施方案的紫外发光器件的底视图;图5是示出图4的紫外发光器件的截面图;图6是示出根据第三实施方案的紫外发光器件的底视图;图7是示出图6的紫外发光器件的截面图;图8是示出根据第四实施方案的紫外发光器件的底视图;图9是示出根据第五实施方案的紫外发光器件的底视图;以及图10是示出根据实施方案的发光器件封装件的截面图。
具体实施方式
在以下实施方案的描述中,将理解:当层(或膜)、区域、图案或结构被称为在另一衬底、另一层(或膜)、另一区域、另一垫或另一图案“上”或“下”时,其可以“直接”或“间接”在另一衬底、层(或膜)、区域、垫或图案上,或者也可以存在一个或更多个中间层。已经参照附图描述了层的这种位置。下文中,将参考附图来描述实施方案。出于方便或清楚的目的,附图中所示出的每个层的厚度和尺寸可能被放大、省略或示意性地绘制。此外,元件的尺寸不完全反映实际尺寸。尽管所做出的以下描述在于:紫外发光器件限于包括设置在其上部的衬底以及设置在其下部的第一电极27和第二电极29的倒装型紫外发光器件,但实施方案不限于此。尽管在以下描述中紫外发光器件产生波长为240nm至360nm的深紫外光,但实施方案不限于此。图1是示出根据第一实施方案的紫外发光器件的底视图,图2是示出图1的紫外发光器件的截面图。参照图1和图2,根据第一实施方案的紫外发光器件10可以包括衬底11、第一导电半导体层15、有源层17、第二导电半导体层19、第一电极层21和第二电极层23以及第一电极27和第二电极29。根据第一实施方案的紫外发光器件10可以包括倒装型紫外发光器件,但实施方案不限于此。发光结构20可以由第一导电半导体层15、有源层17以及第二导电半导体层19形成。发光结构20可以包括多个化合物半导体层。在该化合物半导体层中,一个层用作有源层17以产生光,另一层用作第一导电半导体层15以产生待提供至有源层17的第一载流子即电子,并且还有一层用作第二导电半导体层19以产生待提供至有源层17的第二载流子即空穴,但实施方案不限于此。可以在有源层17中通过电子与空穴的复合来产生光。例如,第一导电半导体层15可以设置在有源层17上,第二导电半导体层19可以设置在有源层17下方,但实施方案不限于此。紫外发光器件10还包括在衬底11与第一导电半导体层15之间的缓冲层13,以减小衬底11与第一导电半导体层15之间的晶格失配,但实施方案不限于此。缓冲层13防止在形成在衬底11上的第一导电半导体层15、有源层17以及第二导电半导体层19中发生缺陷,例如裂纹、空隙、纹理(grains)以及弯曲。尽管在图中未示出,但是可以在缓冲层13与第一导电半导体层15之间另外插入未掺杂有掺杂剂的未掺杂半导体层,但实施方案不限于此。缓冲层13、第一导电半导体层15、有源层17以及第二导电半导体层19包括第I1-VI族化合物半导体材料,但实施方案不限于此。化合物半导体材料可以是诸如铝(Al)、铟(In)、镓(Ga)和氮(N)的材料,但实施方案不限于此。衬底11可以包括呈现出优异的热导率和/或优异的透光率的材料,但实施方案不限于此。例如,衬底11可以包括选自蓝宝石(Al2O3)、SiC、S1、GaAs、GaN、ZnO、GaP、InP和Ge中的至少一种,但实施方案不限于此。
第一导电半导体层15可以形成在衬底11或缓冲层13下方。例如,第一导电半导体层15可以包括包含N型掺杂剂的N型半导体层,但实施方案不限于此。第一导电半导体层15可以包括组成式为InxAlyGa1TyN(O ^ x ^ 1,0 ^ y ^ I,O 彡 x+y 彡 I)的半导体材料,例如,选自 InAlGaN, GaN, AlGaN, InGaN, AIN, InN 和 AlInN 中的至少一种,但实施方案不限于此。N型掺杂剂可以包括S1、Ge或Sn,但实施方案不限于此。第一导电半导体层15可以用作导电层以向有源层17提供电子。第一导电半导体层15可以用作阻挡层以防止从第二半导体层19提供至有源层17的空穴被传输至缓冲层13。第一导电半导体层15掺杂有高浓度的掺杂剂以用作允许电子自由移动的导电层。第一导电半导体层15包括其带隙等于或大于有源层17的带隙化合物半导体材料,以用作阻挡层 来防止有源层17的空穴被传输至缓冲层13。有源层17可以形成在第一导电半导体层15下方。例如,有源层17将从第一导电半导体层15提供的电子与从第二导电半导体层19提供的空穴复合以发射紫外光。为了产生紫外光,有源层17至少必须具有宽带隙。例如,尽管有源层17可以产生波长为240nm至360nm的深紫外光,但实施方案不限于此。有源层17可以包括单量子阱结构(SQW)、多量子阱结构(MQW)、量子点结构和量子线结构中的一种。有源层17可以具有包括半导体的势垒层和阱层的堆叠结构,其中该半导体包括具有用于产生紫外光的能量带隙的第II1-VI族化合物,但实施方案不限于此。例如,有源层17可以周期性地形成为InGaN阱层/GaN势垒层或InGaN阱层/AlGaN势鱼层与InGaN讲层/InGaN势鱼层的堆叠结构。势鱼层的带隙可以大于讲层的带隙。可以在有源层17下方形成第二导电半导体层19。第二导电半导体层19可以包括包含P型掺杂剂的P型半导体层,但实施方案不限于此。第二导电半导体层19可以包括组成式为InxAlyGanyN(O彡X彡1,0彡y彡1,O 彡 x+y 彡 I)的半导体材料,例如,选自 InAlGaN, GaN, AlGaN, InGaN, AIN, InN 和 AlInN 中的至少一种。然而,实施方案不限于此。P型掺杂剂可以包括Mg、Zn、Ga、Sr或Ba,但实施方案不限于此。第二半导电导体层19可以用作导电层以向有源层17提供空穴。第二导电半导体层19掺杂有高浓度的掺杂剂以用作允许空穴自由移动的导电层。为了防止有源层17的电子被传输至第二导电半导体层19,可以在有源层17与第二导电半导体层19之间插入第三导电半导体层,但实施方案不限于此。更详细地,除第三导电半导体层外,可以在有源层17与第二导电半导体层19之间或者在有源层17与第三导电半导体层之间插入电子阻挡层,以防止有源层17的电子被传输至第二导电半导体层19,但实施方案不限于此。例如,第三导电半导体层和电子阻挡层可以包括AlGaN,但实施方案不限于此。例如,电子阻挡层可以具有至少比第二导电半导体层或第三导电半导体层的带隙更大的带隙,但实施方案不限于此。例如,当第三导电半导体层和电子阻挡层包括AlGaN时,电子阻挡层可以具有比第三导电半导体层的Al含量更高的Al含量,使得电子阻挡层可以具有比第三导电半导体层的带隙更大的带隙,但实施方案不限于此。有源层17和第二导电半导体层19的侧表面中的至少一个或至少两个可以向外突出,但实施方案不限于此。然而第一导电半导体层15的侧表面与有源层17和第二导电半导体层19的侧表面之间的距离可以不一致。换言之,第一导电半导体层15的侧表面与有源层17和第二导电半导体层19的侧表面之间的距离可以根据它们的位置变化。优选地,在倒装型紫外发光结构中,紫外光优选地沿着横向或沿着前方朝衬底11行进。在倒装芯片紫外发光结构中,从有源层17产生的紫外光可以沿着所有方向行进。紫外光的一部分不沿着上方或前方朝衬底11行进,而是沿着下方朝第二导电半导体层19行进。如果沿着下方行进的光的方向没有改变为前方,则沿着下方行进的光可能在紫外发光器件10中被吸收或消失,使得光提取效率可能显著地降低。具体地,如图3所示,即使紫外光沿着上方朝衬底11行进,由于衬底11与空气之间的折射率的差异以及紫外光的波长,紫外光也可以通过衬底11的顶表面输出到外部。另夕卜,紫外光的一部分可以从衬底11的顶表面被反射,使得该紫外光部分可以沿着横向方向或下方行进,并因此在紫外发光器件10中被吸收或消失。根据第一实施方案,为了解决所述问题,设置第一电极层21和第二电极层23以将沿着下方发射的紫外光反射为沿着上方,并且可以将从有源层17沿着上方发射、然后从衬底11的顶表面反射的紫外光反射为沿着上方。可以在第一导电半导体层15的底表面上形成第一电极层21,并且可以在第二导电半导体层19的底表面上形成第二电极层23。为了在第一导电半导体层15的底表面上形成第一电极层21,必须露出覆盖有有源层17和第二导电半导体层19的第一导电半导体层15。也就是说,为了露出第一导电半导体层15,可以针对第二导电半导体层19和有源层17以此地执行台面蚀刻工艺。可以通过台面蚀刻工艺部分地蚀刻第一导电半导体层15,但实施方案不限于此。第一导电半导体层15的中心区域可以沿着下方突出超过第一导电半导体层15的外周区域。外周区域可以围绕中心区域,但实施方案不限于此。第一导电半导体层15的通过台面蚀刻工艺露出的外周区域被命名为第一区域41。未被台面蚀刻的、被保留的有源层17和第二导电半导体层19,或者通过台面蚀刻工艺未露出的第一导电半导体层15,以及与第一导电半导体层15的未露出的中心区域相对应的有源层17和第二导电半导体层19,被命名为第二区域43。因为从有源层17产生光,所以第二区域43可以被命名为发光区域。另外,因为第一区域41不产生光,所以第一区域41可以被命名为非发光区域,但实施方案不限于此。第一区域41可以包括通过移除第二导电半导体层19、有源层17以及第一导电半导体层15的一部分所形成的槽。换言之,槽可以具有与有源层17和第二导电半导体层19两者的厚度一样高的深度。因此,槽可以沿着第二区域43(即发光区域)的外周部形成,但实施方案不限于此。换言之,槽可以沿着有源层17和第二导电半导体层19的外周部形成。槽可以形成在有源层17和第二导电半导体层19的侧表面上。第一导电半导体层15的尺寸可以比有源层17和第二导电半导体层19的尺寸大,但实施方案不限于此。第一导电半导体层15可以从有源层17和第二导电半导体层19的侧表面向外延伸。槽可以形成在延伸的第一导电半导体层15中。同时,可以在衬底11上限定第一区域41和第二区域43。相应地,第一区域41可以在其中形成有第一导电半导体层15,并且第二区域43可以在其中形成有第一导电半导体层15、有源层17以及第二导电半导体层19。在这种情况下,形成在第二区域43中的第一导电半导体层15的底表面可以沿着下方突出超过形成在第一区域41中的第一导电半导体层15的底表面,但实施方案不限于此。如图1所示,第二区域43可以具有交叉形状,但实施方案不限于此。例如,第二区域43可以具有圆形状(参见图8)或星形状(参见图9)。通常,第二区域43具有矩形形状。当与矩形形状相比较时,交叉形状、圆形状以及星形状进一步增大了有源层17的向外露出的侧表面的面积,使得可以进一步提高光提取效率。可以在第一导电半导体层15的底表面(即第一区域41)上形成第一电极层21。例如,可以在第一导电半导体层15的向外露出的整个区域上形成第一电极层21。另外,为了防止由第一电极层21引起第一导电半导体层15与第二导电半导体层19之间的电短路,第一电极层21的端部可以与第二区域43的端部(即被蚀刻的有源层17或第一导电半导体层15的侧表面)间隔开。第一电极层21的底表面可以被定位成比有源层17的顶表面高。为此目的,第一导电半导体层15的接触有源层17的中心区域可以沿着下方突出超过第一导电半导体层15的未接触有源层17的外周区域,但实施方案不限于此。为了完全防止由第一电极层21引起第一导电半导体层15与第二导电半导体层19之间的电短路,可以在第一导电半导体层15、有源层17以及第二导电半导体层19的设置在第二区域43中的侧表面上形成保护层31,如图7所示,但实施方案不限于此。另外,可以在第一导电半导体层15的底表面和第一电极层21的设置在第一区域41中的底表面的部分处,以及第二电极层的设置在第二区域43中的底表面的一部分处形成保护层31,但实施方案不限于此。换言之,保护层31可以沿着被蚀刻的发光结构的外周部(即第一导电半导体层
15、有源层17以及第二导电半导体层19的侧表面的外周部)形成,但实施方案不限于此。第一电极层21可以对从有源层17发射到衬底11、从衬底11的顶表面被反射、然后沿着下方行进的紫外光进行反射,但实施方案不限于此。从有源层17产生的紫外光沿着所有方向行进,并且紫外光的一部分可以沿着上方或前方朝衬底11行进。尽管朝衬底11行进的紫外光通过衬底11的顶表面输出到外部,但是紫外光的一部分可以被衬底11的顶表面反射并因此沿着下方行进。沿着下方行进的紫外光被第一电极层21反射,并因此沿着上方行进,使得紫外光可以通过衬底11的顶表面或衬底11的侧表面输出到外部。
大量具有窄的主波长的紫外光被从衬底11的顶表面向内反射。另外,露出第一导电半导体层15的第一区域41可以占据比未露出第一导电半导体层15的第二区域43的面积更大的面积。换言之,第一区域41的面积可以比第二区域43的面积大。在这种情况下,由于从衬底11的顶表面被反射的紫外光消失,所以光提取效率可能降低,这导致严重的问题。根据第一实施方案,第一电极层21形成在第一导电半导体层15的底表面上或形成在第一区域41中,使得从衬底11的顶表面被反射为沿着下方的紫外光被反射为沿着上方或横向方向,从而显著地提高了光提取效率。同时,可以在第二导电半导体层19的底表面上形成第二电极23。换言之,可以在第二导电半导体层19的与在台面蚀刻工艺中未露出的第一导电半导体层15相对应的底表面上形成第二电极层23。如图3所示,第二电极层23可以将从有源层17沿着下方发射的紫外光反射为沿
着上方。第二电极层23可以将从衬底11的顶表面被反射并且沿着下方行进以穿过有源层17和第二导电半导体层19的紫外光反射为沿着上方。另外,第二电极层23与有源层17之间的距离可以比第一电极层21与有源层17之间的距离长,但实施方案不限于此。尽管在图中未示出,但是可以在第二导电半导体层19与第二电极层23之间插入透明导电层,但实施方案不限于此。透明电极层可以具有电流扩散功能以从第二电极29沿着横向方向扩散电流,并且具有欧姆接触功能以容易将电流注入第二导电半导体层19中,但实施方案不限于此。透明导电层可以包括选自ITO、IZO(In-ZnO)、GZO (Ga-ZnO)、AZO (Al-ZnO)、AGZO (Al-Ga ZnO)、IGZO (In-Ga ZnO)、Ir0x、Ru0x、Ru0x/T0、Ni/Ir0x/Au 和 Ni/Ir0x/Au/IT0 中的至少一种,但实施方案不限于此。根据第一实施方案,第二电极层23形成在第二导电半导体层19的底表面上,以将从衬底11的顶表面被反射为沿着下方的紫外光或者从有源层17沿着下方发射的紫外光反射为沿着上方,从而显著地提高了光提取效率。第一电极层21和第二电极层23可以包括具有优异的反射率的材料,但实施方案不限于此。第一电极层21和第二电极层23可以包括相同材料或不同材料。第一电极层21和第二电极层23可以形成为单层结构或多层结构。第一电极层21和第二电极层23可以包括具有优异的反射率和优异的电导率的不透明金属材料。第一电极层21和第二电极层23可以包括选自Ag、N1、Al、Rh、Pd、Ir、Ru、Mg、Zn、Pt、Au和Hf或者它们的合金中的一种,但实施方案不限于此。例如,第一电极层21和第二电极层23可以包括对紫外光呈现出优异的反射率的铝(Al),但实施方案不限于此。例如,第一电极层21包括铝(Al),第二电极层23可以包括Al/Ni的合金,但实施方案不限于此。根据实验结果,当第一电极层21包括铝(Al)时,根据第一实施方案的紫外发光器件10的光提取效率为16.4%。同时,当第一电极层21包括银(Ag)时,根据第一实施方案的紫外发光器件10的光提取效率为13.8%。因此,对于波长为240nm至360nm的紫外光,包括铝(Al)的第一电极层21呈现出优于包括银(Ag)的第一电极层21的反射率的反射率。尽管在图中未示出,但是第一导电半导体层15的在有源层17的外周部处露出的底表面,以及第二导电半导体层19的底表面可以具有粗糙结构。所述粗糙结构可以具有规则的凹凸图案或任意的凹凸图案,但实施方案不限于此。由于第一电极层21形成在第一导电半导体层15的粗糙结构上,所以第一电极层21可以接合至第一导电半导体层15同时呈现出强的粘附强度,从而防止第一电极层21从第一导电半导体层15脱离。另外,归因于粗糙结构,从有源层沿着下方发射的紫外光可以被反射或散射,使得可以更提高光提取效率。形成在第二导电半导体层19的底表面上的粗糙结构可以产生与上述效果相同的效果。第一电极层21和第二电极层23可以设置在以有源层17和第二导电半导体层19的厚度彼此间隔开的不同位置处,但实施方案不限于此。同时,可以在第一电极层21的一部分上形成第一电极27,并且可以在第二电极层23的一部分上形成第二电极29。第一电极27可以具有比第一电极层21的电导率更高的电导率,并且第二电极29可以具有比第二电极层23的电导率更高的电导率,但实施方案不限于此。第一电极27和第二电极29可以包括相同的材料或者可以包括彼此不同的材料。第一电极27和第二电极29可以形成为单层结构或者可以形成为多层结构。第一电极27和第二电极29可以包括呈现出优异的电导率的金属材料。例如,第一电极27和第二电极29可以包括选自铝(Al)、钛(Ti)、铬(Cr)、镍(Ni)、钼(Pt)、金(Au)、钨(W)、铜(Cu)和钥(Mo)或者它们的合金中的一种,但实施方案不限于此。第一电极27可以形成在第一区域41的第一电极层21中的至少一个第一电极层21上,但实施方案不限于此。尽管在图中未示出,但是第一电极27可以形成在第一电极层21的设置在第一区域41中的整个顶表面上,但实施方案不限于此。第一电极层21不仅可以用作反射层以反射紫外光,而且可以用作电极以提供功率。在这种情况下,可以不形成第一电极27,但实施方案不限于此。第二电极层23不仅可以用作反射层以反射紫外光,而且可以用作电极以提供功率。在这种情况下,可以不形成第二电极29,但实施方案不限于此。第一电极27和第二电极29可以具有圆柱形状,但实施方案不限于此。图4是示出根据第二实施方案的紫外发光器件的底视图,图5是示出图4的紫外发光器件的截面图。除欧姆层25之外,第二实施方案与第一实施方案基本上相同。根据第二实施方案,用相同的附图标记表示与第一实施方案中的部件相同的部件,并且将省略其详细描述。参照图4和图5,根据第二实施方案的紫外发光器件IOA可以包括:衬底11 ;第一导电半导体层15 ;有源层17 ;第二导电半导体层19 ;欧姆层25 ;第一电极层21和第二电极层23 ;以及第一电极27和第二电极29。欧姆层25可以插入在第一导电半导体层15与第一电极层21之间。第一电极层21可以完全地或部分地覆盖欧姆层25,但实施方案不限于此。换言之,尽管第一电极层21设置在欧姆层25的外表面和底表面上,但是第一电极层21可以不设置在欧姆层25的内表面上,但实施方案不限于此。可以沿着有源层17的外周设置欧姆层25,但实施方案不限于此。欧姆层25可以具有闭环形状或开环形状,但实施方案不限于此。欧姆层25可以形成在由通过台面蚀刻工艺暴露于外部的第一导电半导体层15所限定的第一区域41中。欧姆层25可以包括透明导电材料。例如,欧姆层25可以包括选自氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟锌锡(IZTO)、氧化铟铝锌(IAZO)、氧化铟镓锌(IGZO)、氧化铟镓锡(IGTO)、氧化铝锌(AZO)、氧化锑锡(ΑΤ0)、氧化镓锌(GZO)、Ir0x、Ru0x、Ru0x/IT0、N1、Ag、Ni/IrOx/Au 和 Ni/Ir0x/Au/IT0 中的至少一种。欧姆层25形成为沿着第二区域43的外周部的闭环结构,其中第二区域43由与在台面蚀刻工艺中未暴露于外部的第一导电半导体层相对应的第二导电半导体层19限定,但实施方案不限于此。换言之,欧姆层25可以沿着发光结构20的外周形成在第一导电半导体层15上。例如,欧姆层25可以形成为靠近设置在第二区域43中的有源层17的侧表面。欧姆层25可以与设置在第二区域43中的有源层17的侧表面间隔开。欧姆层25与第二区域43之间的距离d可以在I μ m至约10 μ m的范围内,但实施方案不限于此。换言之,第二区域43的第一导电半导体层15可以沿着下方突出超过第一区域41的第一导电半导体层15。有源层17和第二导电半导体层19可以设置在第一区域41的第一导电半导体层15下方。第一导电半导体层15的侧表面由第一区域41的第一导电半导体层15的底表面与第二区域43的第一导电半导体层15的底表面之间的厚度来提供。在这种情况下,欧姆层25与第二区域43之间的距离d可以在I μ m至约10 μ m的范围内,但实施方案不限于此。为了将电流快速地施加至有源层,欧姆层25优选地尽可能地接近有源层17。尽管在图中未示出,但是如果没有与有源层17发生电短路,则欧姆层25可以与第一导电半导体层15的侧表面接触。在这种情况下,可以对第一导电半导体层15进行更深的蚀刻,使得第一导电半导体层15的底表面与有源层17的侧表面间隔开。欧姆层25可以形成为沿着第二区域43的外周部的条形状。欧姆层25的宽度w可以在约5μπι至约30 μ m的范围内,但实施方案不限于此。欧姆层25的面积可以等于或窄于第一电极层21的面积,但实施方案不限于此。另外,欧姆层25可以形成在第一导电半导体层15的设置在第一区域41中的整个区域上,但实施方案不限于此。根据第二实施方案,欧姆层25形成在第一导电半导体层15的底表面上,以向第一导电半导体层15平稳地提供功率,并且执行使电流能够沿着横向方向在第一导电半导体层15内更广地扩散的电流扩散功能,使得可以提高发光效率,并且可以确保均匀的紫外光。第一电极层21可以覆盖欧姆层25的所有侧表面和底表面。换言之,第一电极层21可以围绕欧姆层25。欧姆层25与第一电极层21的表面尽可能多地接触,使得功率通过第一电极层21从第一电极27提供至欧姆层25的侧表面和底表面。因而,可以将功率更平稳地提供至第一导电半导体层15。尽管在图中未示出,但是第一电极层21可以与欧姆层25的底表面和外表面的一部分交叠,但实施方案不限于此。换言之,第一电极层21可以不形成在第一导电半导体层15的设置在第二区域43中的侧表面上。图6是示出根据第三实施方案的紫外发光器件的底视图,图7是示出图6的紫外发光器件的截面图。除保护层31外,第三实施方案与第二实施方案基本上相同。根据第三实施方案,用相同的附图标记表不与第一实施方案和第二实施方案中的部件相同的部件,并且将省略其详细描述。参照图6和图7,根据第三实施方案的紫外发光器件IOB可以包括:衬底11 ;第一导电半导体层15 ;有源层17 ;第二导电半导体层19 ;欧姆层25 ;第一电极层21和第二电极层23 ;保护层31 ;以及第一电极27和第二电极29。如上所述,根据第一实施方案,为了完全防止由第一电极层21引起第一导电半导体层15与第二导电半导体层19之间的电短路,可以在第二区域43中的暴露于外部的第一导电半导体层15、有源层17以及第二导电半导体层19的侧表面上形成保护层31,如图7所示,但实施方案不限于此。第二区域43包括通过台面蚀刻工艺未被蚀刻的第一导电半导体层15,以及与所述第一导电半导体层15相对应的有源层17和第二导电半导体层19。第一区域41可以包括通过台面蚀刻工艺被蚀刻并且因此暴露于外部的第一导电半导体层15。第一区域41可以是非发光区域,第二区域43可以是发光区域。可以在发光结构20的侧表面上设置保护层31。至少可以在有源层17的侧表面上设置保护层31,但实施方案不限于此。可以在设置在第二区域43中的第一导电半导体层15、有源层17以及第二导电半导体层19的侧表面上设置保护层31。另外,可以在欧姆层25以及设置在第二区域43中的第一导电半导体层15的侧表面上设置保护层31。保护层31可以形成在设置在第一区域41中的第一导电半导体层15的底表面上,并且被插入在第一电极层21与设置在第二区域43中的第一导电半导体层15的侧表面之间。保护层31可以形成在:设置在第一区域41中的第一导电半导体层15的底表面的一部分上;第一电极层21的一部分上;以及发光结构20的侧表面(即设置在第二区域43中的第一导电半导体层15、有源层17、第二导电半导体层19以及第二电极层23的侧表面)上,并且可以形成在第二电极层23的底表面的一部分上。保护层31可以包括呈现出优异的透明度和低电导率的材料或绝缘材料。例如,保护层31可以包括选自Si02、SixOy, Si3N4, Si具、Al2O3和TiO2中的至少一种,但实施方案不限于此。
根据实施方案,第一电极层21形成在第一导电半导体层15的底表面上或者形成在第一区域41中,从而将从衬底11的顶表面被反射为沿着下方的紫外光反射为沿着上方,使得可以显著地提高光提取效率。根据实施方案,第二电极层23形成在第二导电半导体层19的底表面上,从而将从衬底11的顶表面被反射为沿着下方的紫外光或者从有源层17发射为沿着下方的紫外光反射为沿着上方,使得可以显著地提高光提取效率。根据实施方案,欧姆层25形成在第一区域41的第一导电半导体层15的底表面上,以将功率更加平稳地提供至第一导电半导体层,并且允许电流能够沿着横向方向在第一导电半导体层15内更广地流动,使得可以提高发光效率,并且可以确保均匀的紫外光。图10是示出根据实施方案的发光器件封装件200的截面图。参照图10,根据实施方案的发光器件封装件200可以包括:本体330 ;安装在本体330中的第一引线框310和第二引线框320 ;安装在本体330中以接收来自第一引线框310和第二引线框320的功率的根据第一至第三实施方案的发光器件10 ;以及围绕发光器件10的模制构件340。本体330可以包括硅材料、合成树脂材料或金属材料,并且可以具有形成在发光器件10的外周部处的倾斜表面。第一引线框310和第二引线框320彼此电绝缘并且将功率提供至发光器件10。另外,第一引线框310和第二引线框320反射从发光器件10所发射的光以增加光学效率,并且将从发光器件10所发出的热排放到外部。发光器件10可以安装在第一引线框310、第二引线框320以及本体330中的之一上,并且可以通过导线方案或芯片接合方案电连接至第一引线框310和第二引线框320,但实施方案不限于此。根据实施方案,尽管根据第一实施方案的发光器件10通过两根导线350 (出于示意的目的)电连接至第一引线框310和第二引线框320,但是根据第二实施方案的发光器件10可以在不使用导线350的情况下电连接至第一引线框310和第二引线框320,以及根据第三实施方案的发光器件10可以通过一根导线350电连接至第一引线框310和第二引线框 320。模制构件340可以围绕发光器件10以保护发光器件10。另外,模制构件340可以包括磷光体以改变从发光器件10所发射的光的波长。另外,发光器件封装件200包括板上芯片(COB)型发光器件封装件。本体330可以具有平坦的顶表面,并且可以在本体330中设置有多个发光器件10。在本说明书中所提及的任何“ 一个实施方案”、“实施方案”、“示例性实施方案”等意指所描述的与实施方案相关联的具体的特征、结构或特性包括在本发明的至少一个实施方案中。在本说明书的多处出现这样的措辞不一定全都指同一实施方案。此外,当描述与任意实施方案相关联的具体的特征、结构或特性时,认为结合其他实施方案来实现这样的特征、结构或特性也在本领域的技术人员的范围内。尽管已经参照多个示例性实施方案描述了实施方案,但是应当理解,本领域的普通技术人员可以设想大量其他修改和实施方案,其将落在本公开内容原理的精神和范围内。更具体地,在本公开内容、附图和所附权利要求的范围内的主题组合布置的部件部分和/或布置的各种变化和修改是可能的。除部件部分和/或布置的变化和修改之外,其他用途对于本领域的普通技术人员也将是明显的。
权利要求
1.一种紫外发光器件,包括: 衬底; 发光结构,所述发光结构在所述衬底上并且包括多个化合物半导体,每个所述化合物半导体至少包括第一导电半导体层、有源层和第二导电半导体层; 在所述第一导电半导体层上的第一电极层;以及 在所述第二导电半导体层上的第二电极层, 其中所述第一电极层与所述有源层的侧表面间隔开并且沿着所述有源层的外周部设置,以及 其中所述第一电极层和所述第二电极层中的至少之一是反射层。
2.根据权利要求1所述的紫外发光器件,其中所述第一电极层包括一个或两个或更多个层。
3.根据权利要求1所述的紫外发光器件,其中所述第一电极层包括用于反射波长在240nm至360nm范围内的紫外光的材料。
4.根据权利要求3所述的紫外发光器件,其中所述材料是不透明金属材料。
5.根据权利要求4所述的紫外发光器件,其中所述金属材料包括铝(Al)。
6.根据权利要求1所述的紫外发光器件,其中所述第一电极层和所述第二电极层设置在与所述有源层和所述第二导电半导体层的厚度相对应的不同位置处。
7.根据权利要求1所述的紫外发光器件,其中所述第一导电半导体层相对于所述有源层的侧表面向外侧方向延伸。
8.根据权利要求1所述的紫外发光器件,其中还包括: 具有与至少所述有源层和所述第二导电半导体层的厚度相对应的深度的槽。
9.根据权利要求8所述的紫外发光器件,其中所述槽沿着所述有源层和所述第二导电半导体层的外周部设置,并且设置在所述第一导电半导体层的底表面上。
10.根据权利要求1所述的紫外发光器件,其中所述第一电极层的底表面设置在比所述有源层的顶表面的位置更高的位置处。
11.根据权利要求1所述的紫外发光器件,其中所述第一导电半导体层包括接触所述有源层的中心部以及不接触所述有源层的外周部。
12.根据权利要求11所述的紫外发光器件,其中所述中心部相对于所述外周部向下方突出。
13.根据权利要求1所述的紫外发光器件,其中所述有源层和所述第二导电半导体层的侧表面的一个或两个或更多个部分向外侧方向突出。
14.根据权利要求1所述的紫外发光器件,其中所述第一导电半导体层的侧表面与所述有源层的侧表面之间的距离根据位置而不同。
15.根据权利要求1所述的紫外发光器件,其中所述第一导电半导体层的侧表面与所述第二导电半导体层的侧表面之间的距离根据位置而不同。
16.根据权利要求1所述的紫外发光器件,还包括: 在所述第一电极层上的第一电极;以及 在所述第二电极层上的第二电极。
17.根据权利要求16所述的紫外发光器件,其中所述第一电极的电导率比所述第一电极层的电导率高。
18.根据权利要求1所述的紫外发光器件,还包括: 在所述第一导电半导体层与所述第一电极层之间的欧姆层。
19.根据权利要求18所述的紫外发光器件,其中所述欧姆层沿着所述有源层的外围设置在所述第一导电半导体层的底表面上。
20.根据权利要求18所述的紫外发光器件,其中所述欧姆层被所述第一电极层围绕。
21.根据权利要求18所述的紫外发光器件,其中所述欧姆层的侧表面与所述第一导电半导体层的侧表面之间的距离在Iym至10 μπι的范围内。
22.根据权利要求18所述的紫外发光器件,其中所述欧姆层接触所述第一导电半导体层的侧表面。
23.根据权利要求18所述的紫外发光器件,其中所述欧姆层的宽度与所述第一电极层的宽度不同。
24.根据权利要求18所述的紫外发光器件,其中所述第一电极层覆盖所述欧姆层。
25.根据权利要求24所述的紫外发光器件,其中所述第一电极层设置在所述欧姆层的底表面和外侧表面上。
26.根据权利要求18所述的紫外发光器件,其中所述欧姆层的宽度在5μ m至30 μ m的范围内。
27.根据权利要求18所述的 紫外发光器件,其中所述欧姆层的尺寸小于或等于所述第一电极层的尺寸。
28.根据权利要求18所述的紫外发光器件,还包括: 在所述发光结构的侧表面上的保护层。
29.根据权利要求28所述的紫外发光器件,其中所述保护层设置在从所述第二导电半导体层的侧表面经由所述有源层的侧表面到所述第一导电半导体层的侧表面。
30.根据权利要求1所述的紫外发光器件,其中所述第二电极层与所述有源层之间的第一距离比所述第一电极层与所述有源层之间的第二距离大。
31.根据权利要求1所述的紫外发光器件,其中所述发光器件是倒装型结构。
全文摘要
提供一种紫外发光器件,其包括衬底;发光结构,所述发光结构在衬底下方并且包括多个化合物半导体,每个化合物半导体包括至少第一导电半导体层、有源层和第二导电半导体层;在第一导电半导体层下方的第一电极层;以及在第二导电半导体层下方的第二电极层。第一电极层与有源层的侧表面间隔开,并且沿着有源层的外周部设置。第一电极层和第二电极层中的至少之一是反射层。
文档编号H01L33/40GK103165784SQ20121054073
公开日2013年6月19日 申请日期2012年12月13日 优先权日2011年12月13日
发明者洪二朗, 崔云庆 申请人:Lg伊诺特有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1