专利名称:一种柔性基底表面透明导电薄膜的制备方法
技术领域:
本发明涉及一种柔性基底表面透明导电薄膜的制备方法。
背景技术:
随着电子信息行业及光伏行业的迅猛发展,特别是平板显示器朝轻薄化方向的快速发展及功能化光伏器件的发展,透明导电薄膜因其具有良好的透光性等优点而得到广泛的应用。目前应用最为广泛的透明导电膜是在玻璃、陶瓷等硬质基材上制备的,但这些基材存在质脆、不易变形,限制了透明导电薄膜的应用。与硬质基底透明导电膜相比,在有机柔性基底上制备的透明导电薄膜不仅具有相似的光电特性,而且还具有许多独特优点,如:可弯曲、重量轻、不易破碎、可以采用卷对卷工业化连续生产方式有利于提高效率、便于运输等。因此,柔性透明导电薄膜有望成为硬质基材透明导电薄膜的更新换代产品。但是柔性透明导电薄膜材料的制备过程仍存在较多的缺陷,例如柔性透明导电薄膜材料表面导电层为金属材料时,其透光性较差;当导电层为半导体材料时,其导电性较差;且由于柔性基底材料多为有机高分子材料,其材料特性对其表面导电层的制备条件要求苛刻,生产成本较高。因此,如何解决柔性透明导电薄膜材料透光性和导电性之间的矛盾及如何降低柔性透明导电薄膜材料的制备成本,成为亟待解决的问题。
发明内容
本发明的目的是提供一种柔性基底表面透明导电薄膜的制备方法,该方法制备的柔性基底表面透明导电薄膜,兼具良好的透光性和导电性,且其制备工艺简单,生产成本低。本发明实现其发明目的,所采用的技术方案是,一种柔性基底表面透明导电薄膜的制备方法,其具体步骤如下:一种柔性基底表面透明导电薄膜的制备方法,其具体步骤如下:Ajf 0.1 0.3份重的氧化石墨烯粉末溶于30 100份重的H2O中,搅拌得到氧化石墨烯悬浮液;B、将16 24份重的Na0H、0.17 12.4份重的金属盐加入A步的氧化石墨烯悬浮液中,搅拌形成混合液;C、将0.16 0.8份重的N2H2或4 10份重的NaBH4作为还原剂缓慢加入到B步的混合液中;D、将C步的混合液置于水浴锅中,80°C 90°C下反应I 2h,还原剂同时还原金属盐及氧化石墨烯;反应后再将混合液搅拌12-24h,形成稳定的石墨烯/纳米金属复合液;E、用真空抽滤法滤掉D步复合液中多余的还原剂和NaOH ;再将滤出物用H2O清洗后重新搅拌溶于H2O中得到石墨烯/纳米金属复合物的悬浮液,然后将悬浮液旋转涂敷于柔性基底上,干燥后即得。
与现有技术相比,本发明的有益效果是:一、本发明采用石墨烯及纳米金属复合方式制备导电薄膜,复合膜中主体成分为兼具导电性及透光性的石墨烯,复合的纳米金属又显著提高了薄膜的导电性,但对透光性的影响有限,从而制得的薄膜兼具良好的透光性和导电性。测试表明,其电阻率低于0.1K Ω.cm,而还原石墨烯的电阻率则高达2.7ΚΩ.cm。二、本发明的制备过程均在溶液中进行,其工艺条件要求简单,去除了传统工艺中的高温过程,其工艺条件要求简单、生产成本低;同时,也避免了高温过程对柔性高分子基底材料的损坏和影响,提高整个产品性能,延长材料使用寿命。三、选用的N2H2或NaBH4还原剂能同时还原氧化石墨烯及金属盐,从而本发明形成一步同时还原氧化石墨烯及金属盐的共还原方法,进一步简化了制备工艺,降低了生产成本。上述的柔性基底为聚乙烯对苯二甲酯(PET)基底、聚亚酰胺(PI)基底或聚二甲基硅氧烷(PDMS)基底。这些柔性绝缘材料具有优良的透光性,可塑性,且与石墨烯/纳米金属复合溶液具有亲和性,能在其表面形成稳定的石墨烯/纳米金属复合薄膜。上述的金属盐是铜盐、银盐或金盐。铜盐、银盐或金盐均能在水溶液中被还原剂还原得到导电性极好、且能与石墨烯形复合形成复合物的纳米铜、纳米银、纳米金。下面结合附图和具体实施方式
对本发明作进一步的详细描述。
图1为实施例1在柔性基底表面上制得的透明导电薄膜的扫描电镜图。图2为实施例1在柔性基底表面上制得的透明导电薄膜的能谱分析图。图3为实施例2在柔性基底表面上制得的透明导电薄膜的扫描电镜图。图4为实施例2在柔性基底表面上制得的透明导电薄膜的能谱分析图。
具体实施例方式实施例1一种柔性基底表面透明导电薄膜的制备方法,其具体步骤如下:Ajf 0.3份重的氧化石墨烯粉末溶于50份重的H2O中,搅拌得到氧化石墨烯悬浮液;B、将18份重的NaOH、12.4份重的金属盐=-CuSO4加入A步的氧化石墨烯悬浮液中,搅拌形成混合液;C、将4份重的NaBH4作为还原剂缓慢加入到B步的混合液中;D、将C步的混合液置于水浴锅中,80°C下反应lh,还原剂NaBH4同时还原CuSO4及氧化石墨烯;反应后再将混合液搅拌12h,形成稳定的石墨烯/纳米金属复合液;E、用真空抽滤法滤掉D步复合液中多余的还原剂NaBHjP NaOH ;再将滤出物用H2O清洗后重新搅拌溶于H2O中得到石墨烯/纳米铜复合物的悬浮液,然后将悬浮液旋转涂敷于聚乙烯对苯二甲酯(PET)基底上,干燥后即得。
测试表明,本例的柔性基底表面透明导电薄膜的电阻率为0.08ΚΩ.cm。图1为实施例1在柔性基底表面上制得的透明导电薄膜的扫描电镜图。图2为实施例I在柔性基底表面上制得的透明导电薄膜的能谱分析图。图1及图2表明,本例的透明导电薄膜确为石墨烯/纳米铜复合物。实施例2一种柔性基底表面透明导电薄膜的制备方法,其具体步骤如下:A、将0.15份重的氧化石墨烯粉末溶于80份重的H2O中,搅拌得到氧化石墨烯悬浮液;B、将20份重的Na0H、0.17份重的AgNO3 (金属盐)加入A步的氧化石墨烯悬浮液中,搅拌形成混合液;C、将10份重的NaBH4作为还原剂缓慢加入到B步的混合液中;D、将C步的混合液置于水浴锅中,80°C下反应lh,还原剂NaBH4同时还原AgNO3及氧化石墨烯;反应后再将混合液搅拌12h,形成稳定的石墨烯/纳米金属复合液;E、用真空抽滤法滤掉D步复合液中多余的还原剂NaBHjP NaOH ;再将滤出物用H2O清洗后重新搅拌溶于H2O中得到石墨烯/纳米银复合物的悬浮液,然后将悬浮液旋转涂敷于聚亚酰胺(PD基底上,干燥后即得。测试表明,本例的柔性基底表面透明导电薄膜的电阻率为0.05ΚΩ.cm。图3为本例在柔性基底表面上制得的透明导电薄膜的扫描电镜图。图4为本例在柔性基底表面上制得的透明导电薄膜的能谱分析图。图3及图4表明,本例的透明导电薄膜确为石墨烯/纳米银复合物。实施例3一种柔性基底表面透明导电薄膜的制备方法,其具体步骤如下:A、将0.1份重的氧化石墨烯粉末溶于100份重的H2O中,搅拌得到氧化石墨烯悬浮液;B、将24份重的Na0H、0.241份重的Cu (NO3)2 (金属盐)加入A步的氧化石墨烯悬浮液中,搅拌形成混合液;C、将0.32份重的N2H2作为还原剂缓慢加入到B步的混合液中;D、将C步的混合液置于水浴锅中,80°C下反应1.5h,还原剂N2H2同时还原Cu(NO3)2及氧化石墨烯;反应后再将混合液搅拌16h,形成石墨烯/纳米金属复合液;E、用真空抽滤法滤掉D步复合液中多余的还原剂N2H2和NaOH ;再将滤出物用H2O清洗后重新搅拌溶于H2O中得到石墨烯/纳米铜复合物的悬浮液,然后将悬浮液旋转涂敷于聚二甲基硅氧烷(PDMS)基底上,干燥后即得。实施例4一种柔性基底表面透明导电薄膜的制备方法,其具体步骤如下:Ajf 0.3份重的氧化石墨烯粉末溶于30份重的H2O中,搅拌得到氧化石墨烯悬浮液;B、将16份重的NaOH、12.4份重的Ag2SO4 (金属盐)加入A步的氧化石墨烯悬浮液中,搅拌形成混合液;C、将0.8份重的N2H2作为还原剂缓慢加入到B步的混合液中;
D、将C步的混合液置于水浴锅中,85°C下反应2h,还原剂N2H2同时还原Ag2SO4及氧化石墨烯;反应后再将混合液搅拌24h,形成稳定的石墨烯/纳米金属复合液;E、用真空抽滤法滤掉D步复合液中多余的还原剂N2H2和NaOH ;再将滤出物用H2O清洗后重新搅拌溶于H2O中得到石墨烯/纳米银复合物的悬浮液,然后将悬浮液旋转涂敷于聚二甲基硅氧烷(PDMS)基底上,干燥后即得。实施例5一种柔性基底表面透明导电薄膜的制备方法,其具体步骤如下:A、将0.15份重的氧化石墨烯粉末溶于80份重的H2O中,搅拌得到氧化石墨烯悬浮液;B、将20份重的Na0H、0.34份重的(金属盐)AuCl3 (金属盐)加入A步的氧化石墨烯悬浮液中,搅拌形成混合液;C、将0.16份重的N2H2作为还原剂缓慢加入到B步的混合液中;D、将C步的混合液置于水浴锅中,90°C下反应lh,还原剂N2H2同时还原AuCl3及氧化石墨烯;反应后再将混合液搅拌18h,形成稳定的石墨烯/纳米金属复合液;E、用真空抽滤法滤掉D步复合液中多余的还原剂N2H2和NaOH ;再将滤出物用H2O清洗后重新搅拌溶于H2O中得到石墨烯/纳米金复合物的悬浮液,然后将悬浮液旋转涂敷于聚乙烯对苯二甲酯(PET)基底上,干燥后即得。实施例6一种柔性基底表面透明导电薄膜的制备方法,其具体步骤如下:A、将0.1份重的氧化石墨烯粉末溶于100份重的H2O中,搅拌得到氧化石墨烯悬浮液;B、将24份重的Na0H、0.241份重的金属盐=-AuF3加入A步的氧化石墨烯悬浮液中,搅拌形成混合液;C、将7份重的NaBH4作为还原剂缓慢加入到B步的混合液中;D、将C步的混合液置于水浴锅中,90°C下反应Ih,还原剂NaBH4同时还原AuF3及氧化石墨烯;反应后再将混合液搅拌12h,形成稳定的石墨烯/纳米金属复合液;E、用真空抽滤法滤掉D步复合液中多余的还原剂NaBHjP NaOH ;再将滤出物用H2O清洗后重新搅拌溶于H2O中得到石墨烯/纳米金复合物的悬浮液,然后将悬浮液旋转涂敷于聚乙烯对苯二甲酯(PET)基底上,干燥后即得。
权利要求
1.一种柔性基底表面透明导电薄膜的制备方法,其具体步骤如下: A、将0.1 0.3份重的氧化石墨烯粉末溶于30 100份重的H2O中,搅拌得到氧化石墨烯悬浮液; B、将16 24份重的Na0H、0.17 12.4份重的金属盐加入A步的氧化石墨烯悬浮液中,搅拌形成混合液; C、将0.16 0.8份重的N2H2或4 10份重的NaBH4作为还原剂缓慢加入到B步的混合液中; D、将C步的混合液置于水浴锅中,80°C 90°C下反应I 2h,还原剂同时还原金属盐及氧化石墨烯;反应后再将混合液搅拌12-24h,形成稳定的石墨烯/纳米金属复合液; E、用真空抽滤法滤掉D步复合液中多余的还原剂和NaOH;再将滤出物用H2O清洗后重新搅拌溶于H2O中得到石墨烯/纳米金属复合物的悬浮液,然后将悬浮液旋转涂敷于柔性基底上,干燥后即得。
2.根据权利要求1所述的一种柔性基底表面透明导电薄膜的制备方法,其特征在于:所述的柔性基底为聚乙烯对苯二甲酯(PET)基底、聚亚酰胺(PI)基底或聚二甲基硅氧烷(PDMS)基底。
3.根据权利要求1所述的一种柔性基底表面透明导电薄膜的制备方法,其特征在于:所述的金属盐是铜盐、银盐或金盐。
全文摘要
本发明公开了一种柔性基底表面透明导电薄膜的制备方法。该方法在绝缘柔性高分子基底材料上,通过溶液法及共还原法一次制备石墨烯及纳米金属复合透明导电薄膜,通过石墨烯及纳米金属的导电性及透光性,改善绝缘柔性基底的电学性能及光学性能,制备出一种柔性导电透光的薄膜材料,该种柔性透明导电薄膜材料可替代传统硬质透光导电材料,实现功能化应用。该方法均可在水溶液中完成,无需高温反应步骤,适用于在有机柔性基底上制备复合涂层,生产成本较低。同时,该方法可通过共还原法一步制得石墨烯及纳米金属复合产物,无需复杂的反应步骤,简单易行。
文档编号H01B1/04GK103198886SQ201310119579
公开日2013年7月10日 申请日期2013年4月8日 优先权日2013年4月8日
发明者鲁雄, 姜丽丽, 翁杰, 冯波, 屈树新, 汪建新 申请人:西南交通大学