一种超材料的制作方法
【专利摘要】本发明提出一种超材料,包括介质基板和设置于该介质基板上和/或嵌入该介质基板内部的多个导电几何结构,每一导电几何结构包括封闭的导电环和与该导电环电性隔绝的导电片,其中该多个导电几何结构的至少部分导电环电性连接,该多个导电几何结构的导电片电性隔绝。本发明通过在封闭导电环中设置彼此电性隔绝的导电片,可以对电磁波产生所期望的电磁响应,达到透波效果。
【专利说明】一种超材料
【技术领域】
[0001 ] 本发明涉及超材料,尤其是涉及用以实现频选透波的超材料。
【背景技术】
[0002]超材料(Metamaterial)是指一些具有天然材料所不具备的超常物理性质的人工复合结构或复合材料。超材料的奇特性质源于其精密的几何结构以及尺寸大小。超材料中的微结构,大小尺度小于它作用的波长,因此得以对波施加影响。迄今发展出的超材料包括左手材料、光子晶体、超磁性材料等。左手(LH)材料是一类在一定的频段下同时具有负的磁导率和负的介电常数的材料系统(对电磁波的传播形成负的折射率)。与之相对的是,大多数自然的材料是RH材料。超材料的奇异性质使它具有广泛的应用前景,从高接收率天线,雷达反射罩甚至是地震预警。
[0003]从结构上看,超材料是由非金属材料制成的基板和附着在基板表面上或嵌入在基板内部的多个导电几何结构构成的。基板可以虚拟地划分为阵列排布的多个基板单元。每个基板单元上附着有导电几何结构,从而形成一个超材料单元。整个超材料是由很多这样的超材料单元组成的,就像晶体是由无数的晶格按照一定的排布构成的。每个超材料单元上的导电几何结构可以相同或者不完全相同。导电几何结构是由导电材料组成的具有一定几何图形的平面或立体结构。
[0004]由于导电几何结构的存在,每个超材料单元具有不同于基板本身的电磁特性,因此所有的超材料单元构成的超材料对电场和磁场呈现出特殊的响应特性。通过对导电几何结构设计不同的具体结构和形状,可以改变整个超材料的响应特性。因此目前的研究集中于如何设计导电几何结构,以获得所期望的响应特性。
【发明内容】
[0005]本发明所要解决的技术问题是提供一种超材料,它通过特别设计的导电几何结构来实现频选透波。
[0006]本发明提出一种超材料,包括介质基板和设置于该介质基板上和/或嵌入该介质基板内部的多个导电几何结构,每一导电几何结构包括封闭的导电环和与该导电环电性隔绝的导电片,其中该多个导电几何结构的至少部分导电环电性连接,该多个导电几何结构的导电片电性隔绝。
[0007]在本发明的一实施例中,该多个导电几何结构呈周期性排布和/或非周期性排布。
[0008]在本发明的一实施例中,该多个导电几何结构的一个或多个导电片分别对应一导电环。
[0009]在本发明的一实施例中,每一导电环内嵌套有至少一另一导电环,该二导电环电性隔绝。
[0010]在本发明的一实施例中,该导电环为三角形、四边形、五边形、六边形、圆形和椭圆形中的一种或多种。
[0011]在本发明的一实施例中,该导电片为三角形、四边形、五边形、六边形、圆形和椭圆形中的一种或多种。
[0012]在本发明的一实施例中,该多个导电几何结构为平面结构。
[0013]在本发明的一实施例中,该多个导电几何结构的导电片位于各导电环内。在本发明的一实施例中,每一导电环内设有一个导电片或多个导电片。
[0014]在本发明的一实施例中,每一导电环内内的多个导电片之间电性隔绝。
[0015]在本发明的一实施例中,每一导电环内内的多个导电片的形状相同。
[0016]在本发明的一实施例中,每一导电环内内的多个导电片的形状不相同。
[0017]在本发明的一实施例中,该介质基板为复合材料基板或陶瓷基板。
[0018]在本发明的一实施例中,该复合材料包含热固或者热塑性材料。
[0019]在本发明的一实施例中,该复合材料为包含纤维、泡沫和/或蜂窝的一层或者多层结构。
[0020]在本发明的一实施例中,该复合材料含有增强材料,所述增强材料为纤维、织物、或者粒子中的至少一种。
[0021 ] 在本发明的一实施例中,该超材料是设置在通信设备的外壳上。
[0022]在本发明的一实施例中,该通信设备是设置在飞行器、机动车或船上。
[0023]本发明通过在基板上附着特定形状的导电几何结构,得到需要的电磁响应,使得超材料的透波性能增强,抗干扰能力增加。可以通过调节导电几何结构的形状、尺寸,来改变材料的相对介电常数、折射率和阻抗,从而实现与空气的阻抗匹配,以最大限度的增加入射电磁波的透射,减少了传统材料对厚度和介电常数的限制。本发明的导电几何结构由于以导电环构成电感,以导电片构成电容。通过设置导电环和导电片的几何形态以及大小即可形成不同的电容和电感从而对电磁波产生不同的电磁响应,从而构造出符合期望的频率特性的超材料。
【专利附图】
【附图说明】
[0024]为让本发明的上述目的、特征和优点能更明显易懂,以下结合附图对本发明的【具体实施方式】作详细说明,其中:
[0025]图1示出本发明第一实施例的超材料的导电几何结构。
[0026]图2示出本发明第二实施例的超材料的导电几何结构。
[0027]图3示出本发明第三实施例的超材料的导电几何结构。
[0028]图4示出本发明第一实施例的超材料的透波效果仿真图。
[0029]图5示出本发明第二实施例的超材料的透波效果仿真图。
[0030]图6示出本发明第三实施例的超材料的透波效果仿真图。
【具体实施方式】
[0031]第一实施例
[0032]图1示出本发明第一实施例的超材料的导电几何结构。参照图1所示,本实施例的超材料10包括介质基板(图未示)和多个导电几何结构12。介质基板可被虚拟地分成多个基板单元。每一基板单元对应一个导电几何结构12。导电几何结构12既可以设置在介质基板上,也可以嵌入介质基板中。包含导电几何结构12的基板单元可视为一个超材料单元。在本实施例中,这些导电几何结构为平面结构。导电几何结构12可以是周期性排布的,例如图1所示出的那样。然而,导电几何结构12也可以是非周期性排布的。
[0033]每一导电几何结构12可包括封闭的导电环12a和与该导电环电性隔绝的导电片12b。导电环12a的线宽可在几百微米的级别。每一导电环12a的宽度可以保持一致,也可以允许有一定的变化。并且,各导电环12a之间的宽度可以相同,也可以不同。导电片12b的尺寸可以在几毫米的级别。各导电片12b之间的尺寸可以相同,也可以不同。作为举例而非限制,导电环12a和导电片12b为图1所示的三角形。
[0034]相邻导电几何结构12的导电环12a之间可以相互电性连接。这样,许多导电环12a可形成一个网格状结构,例如图1所示的四边形网格。
[0035]导电几何结构12的导电片12b与导电环12a (包括导电片12b所对应的导电环和其它导电环)电性隔绝。而且,各导电几何结构12的导电片12b之间也是电性隔绝的。导电片12b可位于各导电环12a中,如图1所不的那样。每一导电环12a内可以包含多个导电片12b。这些同一导电环12a内的多个导电片12b之间电性隔绝,各导电片12b的形状可以相同,也可以不相同。
[0036]在本实施例中,介质基板可为复合材料基板或陶瓷基板。复合材料基板采用热固或者热塑性材料制备,如复合材料为聚酰亚胺、聚酯、聚四氟乙烯、聚氨酯、聚芳酯、环氧树脂、PET、PE、或者PVC,这些复合材料还可以包含增强材料,该增强材料为纤维、织物、或者粒子中的至少一种。假设增强材料为纤维,如玻璃纤维、石英纤维、芳纶纤维、聚乙烯纤维、碳纤维或聚酯纤维。此外,这些复合材料还可以为包含纤维、泡沫和/或蜂窝的一层或者多层结构。若使用环氧树脂基板,较佳地使用FR-4等级的基板,其介电常数为4.2-4.6。若使用陶瓷基板,较佳地使用TP-1陶瓷材料,其介电常数为8-16。
[0037]在本实施例中,导电几何结构12的导电环12a和导电片12b通常由金属或金属合金材料制成。金属材料例如是铜、银、或金。合金材料例如是铜合金。导电环12a和导电片12b还可以是非金属的导电材料,例如导电塑料、ITO(铟锡氧化物)、碳纳米管、石墨等。
[0038]本实施例中,在电磁场的影响下,通过在封闭导电环12a中设置彼此电性隔绝的导电片12b,可以对电磁波产生所期望的电磁响应,达到透波效果。
[0039]图4示出本发明第一实施例的超材料的透波效果仿真图。参照图4所示,曲线a代表正向传输系数S21值,在4.94GHz至6.7GHz之间S21值大于0.9。
[0040]第二实施例
[0041]图2示出本发明第二实施例的超材料的导电几何结构。参照图2所示,本实施例的超材料20包括介质基板(图未示)和多个导电几何结构22。介质基板可被虚拟地分成多个基板单元。每一基板单元对应一个导电几何结构22。导电几何结构22既可以设置在介质基板上,也可以嵌入介质基板中。包含导电几何结构22的基板单元可视为一个超材料单元。在本实施例中,这些导电几何结构为平面结构。导电几何结构22可以是周期性排布的,例如图2所示出的那样。然而,导电几何结构22也可以是非周期性排布的。
[0042]每一导电几何结构22可包括封闭的导电环22a和与该导电环电性隔绝的导电片22b。导电环22a的线宽可在几百微米的级别。每一导电环22a的宽度可以保持一致,也可以允许有一定的变化。并且,各导电环22a之间的宽度可以相同,也可以不同。导电片22b的尺寸可以在几毫米的级别。各导电片22b之间的尺寸可以相同,也可以不同。作为举例而非限制,导电环22a和导电片22b为图2所示的四边形。
[0043]相邻导电几何结构22的一部分导电环22a之间可以相互电性连接。这样,许多导电环22a可形成一个网格状结构,例如图2所示的四边形网格。另外,与第一实施例不同的是,本实施例中另有一部分的导电环22a并未参与上述的电性连接,而是隔绝地分布于形成网格的各导电环内,形成嵌套结构。这些导电线材22a所形成的形状为三角形。
[0044]导电几何结构22的导电片22b与导电环22a (包括导电片22b所对应的导电环和其它导电环)电性隔绝。而且,各导电几何结构22的导电片22b之间也是电性隔绝的。导电片22b可位于各导电环22a中,如图2所不的那样。每一网格内可以包含一个导电片22b。
[0045]在本实施例中,介质基板可为复合材料基板或陶瓷基板。复合材料基板采用热固或者热塑性材料制备,如复合材料为聚酰亚胺、聚酯、聚四氟乙烯、聚氨酯、聚芳酯、环氧树脂、PET、PE、或者PVC,这些复合材料还可以包含增强材料,该增强材料为纤维、织物、或者粒子中的至少一种。假设增强材料为纤维,如玻璃纤维、石英纤维、芳纶纤维、聚乙烯纤维、碳纤维或聚酯纤维。此外,这些复合材料还可以为包含纤维、泡沫和/或蜂窝的一层或者多层结构。若使用环氧树脂基板,较佳地使用FR-4等级的基板,其介电常数为4.2-4.6。若使用陶瓷基板,较佳地使用TP-1陶瓷材料,其介电常数为8-16。
[0046]在本实施例中,导电几何结构22的导电环22a和导电片22b通常由金属或金属合金材料制成。金属材料例如是铜、银、或金。合金材料例如是铜合金。导电环22a和导电片22b还可以是非金属的导电材料,例如导电塑料、ITO(铟锡氧化物)、碳纳米管、石墨等。
[0047]本实施例中,在电磁场的影响下,通过在封闭导电环22a中设置彼此电性隔绝的导电片22b,可以对电磁波产生所期望的电磁响应,达到透波效果。
[0048]图5示出本发明第二实施例的超材料的透波效果仿真图,图5中曲线b代表S21值。如图5所示,此实施例的超材料形成2个透波频段,在5.73GHz至9.03GHz之间及15.72GHz至21.48GHz之间的正向传输系数S21值大于0.9。
[0049]第三实施例
[0050]图3示出本发明第三实施例的超材料的导电几何结构。参照图3所示,本实施例的超材料30包括介质基板(图未示)和多个导电几何结构32。介质基板可被虚拟地分成多个基板单元。每一基板单元对应一个导电几何结构32。导电几何结构32既可以设置在介质基板上,也可以嵌入介质基板中。包含导电几何结构32的基板单元可视为一个超材料单元。在本实施例中,这些导电几何结构为平面结构。导电几何结构32可以是周期性排布的,例如图3所示出的那样。然而,导电几何结构32也可以是非周期性排布的。
[0051]每一导电几何结构32可包括封闭的导电环32a和与该导电环电性隔绝的导电片32b。导电环32a的线宽可在几百微米的级别。每一导电环32a的宽度可以保持一致,也可以允许有一定的变化。并且,各导电环32a之间的宽度可以相同,也可以不同。导电片32b的尺寸可以在几毫米的级别。各导电片32b之间的尺寸可以相同,也可以不同。作为举例而非限制,导电环32a和导电片32b为图3所示的六边形。
[0052]相邻导电几何结构32的一部分导电环32a之间可以相互电性连接。这样,许多导电环32a可形成一个网格状结构,例如图3所示的蜂窝状网格。
[0053]导电几何结构32的导电片32b与导电环32a (包括导电片32b所对应的导电环和其它导电环)电性隔绝。而且,各导电几何结构32的导电片32b之间也是电性隔绝的。导电片32b可位于各导电环32a中,如图3所不的那样。每一导电环32a内可以包含一个导电片32b。
[0054]在本实施例中,介质基板可为复合材料基板或陶瓷基板。复合材料基板采用热固或者热塑性材料制备,如复合材料为聚酰亚胺、聚酯、聚四氟乙烯、聚氨酯、聚芳酯、环氧树脂、PET、PE、或者PVC,这些复合材料还可以包含增强材料,该增强材料为纤维、织物、或者粒子中的至少一种。假设增强材料为纤维,如玻璃纤维、石英纤维、芳纶纤维、聚乙烯纤维、碳纤维或聚酯纤维。此外,这些复合材料还可以为包含纤维、泡沫和/或蜂窝的一层或者多层结构。若使用环氧树脂基板,较佳地使用FR-4等级的基板,其介电常数为4.2-4.6。若使用陶瓷基板,较佳地使用TP-1陶瓷材料,其介电常数为8-16。
[0055]在本实施例中,导电几何结构32的导电环32a和导电片32b通常由金属或金属合金材料制成。金属材料例如是铜、银、或金。合金材料例如是铜合金。导电环32a和导电片32b还可以是非金属的导电材料,例如导电塑料、ITO(铟锡氧化物)、碳纳米管、石墨等。
[0056]本实施例中,在电磁场的影响下,通过在封闭导电环32a中设置彼此电性隔绝的导电片32b,可以对电磁波产生所期望的电磁响应,达到透波效果。
[0057]图6示出本发明第三实施例的超材料的透波效果仿真图。参照图6所示,在大约27-35GHZ,超材料折射率接近1,这显示了超材料的透波特性。
[0058]本发明的各实施例中的超材料可以设置在通信设备的外壳上。通信设备可以放置在飞行器、机动车或船上。
[0059]在本发明的其它实施例中,导电几何结构为立体结构。各导电环与各导电片位于不同的平面。尽管如此,导电片可以与位于不同平面的导电环上下相对。但是在另一实施例中,导电片与导电环也可以不上下相对,而是相互错开排布。
[0060]以上的导电环所构成的网格形状以及导电片的形状仅作为示例之用,并非用以限制本发明。在其它实施例中,网格形状还可以是三角形、五边形、或圆形、椭圆形等,另外导电片还可以是五边形、圆形、椭圆形等形状,并且网格形状和导电片形状可以任意组合。
[0061 ] 本实施例中,在电磁场的影响下,通过在封闭导电环中设置彼此电性隔绝的导电片,可以对电磁波产生所期望的电磁响应,达到透波效果。
[0062]虽然本发明已参照当前的具体实施例来描述,但是本【技术领域】中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,在没有脱离本发明精神的情况下还可作出各种等效的变化或替换,因此,只要在本发明的实质精神范围内对上述实施例的变化、变型都将落在本申请的权利要求书的范围内。
【权利要求】
1.一种超材料,包括介质基板和设置于该介质基板上和/或嵌入该介质基板内部的多个导电几何结构,其特征在于,每一导电几何结构包括封闭的导电环和与该导电环电性隔绝的导电片,其中该多个导电几何结构的至少部分导电环电性连接,该多个导电几何结构的导电片电性隔绝。
2.如权利要求1所述的超材料,其特征在于,该多个导电几何结构的至少部分呈周期性排布和/或非周期性排布。
3.如权利要求1所述的超材料,其特征在于,该多个导电几何结构的一个或多个导电片分别对应一导电环。
4.如权利要求3所述的超材料,其特征在于,每一导电环内嵌套有至少一另一导电环,该二导电环电性隔绝。
5.如权利要求1所述的超材料,其特征在于,该导电环为三角形、四边形、五边形、六边形、圆形以及椭圆形中的一种或多种。
6.如权利要求1所述的超材料,其特征在于,该导电片为三角形、四边形、五边形、六边形、圆形以及椭圆形中的一种或多种。
7.如权利要求1所述的超材料,其特征在于,该多个导电几何结构为平面结构。
8.如权利要求7所述的超材料,其特征在于,该多个导电几何结构的导电片位于各导电环内。
9.如权利要求8所述的超材料,其特征在于,每一导电环内设有一个或者多个导电片。
10.如权利要求8所述的超材料,其特征在于,每一导电环内内的多个导电片之间电性隔绝。
11.如权利要求10所述的超材料,其特征在于,每一导电环内内的多个导电片的形状相同。
12.如权利要求10所述的超材料,其特征在于,每一导电环内内的多个导电片的形状不相同。
13.如权利要求1所述的超材料,其特征在于,该介质基板为复合材料基板或陶瓷基板。
14.如权利要求13所述的超材料,其特征在于,该复合材料包含热固或者热塑性材料。
15.如权利要求13所述的超材料,其特征在于,该复合材料为包含纤维、泡沫和/或蜂窝的一层或者多层结构。
16.如权利要求13至15任一项所述的超材料,其特征在于,该复合材料含有增强材料,所述增强材料为纤维、织物、或者粒子中的至少一种。
17.如权利要求1所述的超材料,其特征在于,该超材料是设置在通信设备的外壳上。
18.如权利要求17所述的超材料,其特征在于,该通信设备是设置在飞行器、机动车或船上。
【文档编号】H01P1/20GK104347916SQ201310415764
【公开日】2015年2月11日 申请日期:2013年9月12日 优先权日:2013年8月1日
【发明者】不公告发明人 申请人:深圳光启创新技术有限公司