行波电极渐变耦合脊波导InP双异质结光敏晶体管的制作方法
【专利摘要】本发明公开一种行波电极渐变耦合脊波导InP双异质结光敏晶体管(DHPT)。采用双异质结结构,包括一InP发射区-InGaAsP基区构成的(e-b)异质结和一InGaAsP基区-InGaAsP集电区构成的(b-c)异质结,代替传统异质结光敏晶体管(HPT)e-b结单异质结结构;一掺杂浓度很高的InGaAsP基区作为DHPT的光吸收层;一InGaAsP基区,InGaAsP集电区和InGaAsP次集电区形成的渐变耦合脊波导结构实现被探测光被侧边探测吸收,代替传统HPT光从顶端垂直入射的方式。光传输方向与载流子传输方向垂直,能分别优化光吸收效率和工作速度。一发射极电极和集电极电极构成的行波电极,可以有效的减少传统电极在传输高频信号时的分布效应,减少寄生电容对高速传输的影响,进一步提高器件的工作速度。
【专利说明】行波电极渐变耦合脊波导InP双异质结光敏晶体管
【技术领域】
[0001]本发明公开一种行波电极渐变耦合脊波导InP双异质结光敏晶体管(DHPT),特别涉及一种行波电极渐变耦合脊波导光敏晶体管,是一种高速高响应度光电半导体器件,可以解决传统异质结光敏晶体管(HPT)的光吸收效率和工作速度之间的矛盾。
【背景技术】
[0002]微波光通信系统中光的高速探测吸收,高速混频,信号锁定和上下变频等新型应用对光接受机(Receiver)的要求越来越高,其核心器件光探测器需要在完成吸收的同时能满足信号混频等工作。近年来快速发展起来的HPT探测器集成了光探测和电放大两种功能,成为新型光接收机研究的一个重点。在较低的直流功耗下,HPT光增益大、频率响应高,克服了 PIN光探测器和APD光探测器固有的缺点。而且,HPT的非线性特性有助于完成高速信号混频和高速信号锁定的功能。同时,HPT作为高性能光电探测器,制作工艺与HBT完全兼容,为多功能光接收机Receiver的光电集成电路(OEIC)芯片制备提供方便。
[0003]传统的HPT采用发射极-基极(e_b)单异质结结构,入射光从HPT顶端入射,用基区和集电区作为吸收层。这种结构的HPT,光生载流子(包括电子和空穴)集中产生于耗尽区和集电区,空穴的迁移率较低,其在集电区中的缓慢输运严重地限制了器件的光电响应速度,在吸收效率和工作速度之间存在矛盾。
【发明内容】
[0004]本发明的目的是针对现有单异质结HPT在光吸收效率和工作速度的优化之间的矛盾,提出一种InP基高速高响应度DHPT。这种DHPT采用InP发射区-1nGaAsP基区(e_b)异质结和InGaAsP基区-1nGaAsP集电区(b_c)异质结构成的双异质结结构代替传统异质结光敏晶体管(HPT)发射区-基区(e-b)结单异质结结构,用掺杂浓度很高的InGaAsP基区作为DHPT的光吸收层;InGaAsP基区6,InGaAsP集电区4和InGaAsP次集电区3构成的渐变率禹合脊波导结构,被探测光由侧边入射,光传输方向与载流子传输方向垂直,能分别优化光吸收效率和工作速度。发射极电极和集电极电极构成的行波电极,进一步提高器件的工作速度。
[0005]InP渐变耦合脊波导DHPT的外延生长和制备工艺与传统InP HBT制备工艺兼容,为Receiver中光探测器与其它部件的OEIC集成提供方便。
[0006]本发明公开的这种行波电极渐变耦合脊波导InP双异质结光敏晶体管包括:一InP衬底1,InP缓冲层2,InGaAsP次集电区3,InGaAsP集电区4,InGaAsP过渡层5,InGaAsP基区6,InP发射区7,InP盖层8,各层按序号由小到大的顺序依次生长在InP衬底I之上;InGaAs欧姆接触层9生长InP盖层8上,聚酰亚胺层10包器件的发射极和集电极台面,开出电极窗口,一发射极11,第一集电极12、第二集电极13、第三集电极14、第四集电极15采用溅射的方法制作在InP衬底I和聚酰亚胺层10上,然后刻蚀出行波电极;
[0007]上述技术方案中,所述InP缓冲层2掺杂浓度为lX1019cnT3,厚度为0.5 μ m ;[0008]上述技术方案中,所述InGaAsP次集电区3掺杂浓度为lX1019cm_3,厚度为
0.5 μ m,带隙宽度为1.12eV ;
[0009]上述技术方案中,所述InGaAsP集电区4掺杂浓度为I X1016cm_3,厚度为0.4μπι,带隙宽度为1.12eV ;
[0010]上述技术方案中,所述InGaAsP过渡层5掺杂浓度为I X 1015cm_3,厚度为0.01 μ m,带隙宽度为0.88eV ;
[0011]上述技术方案中,所述InGaAsP基区6掺杂浓度为I X1018cm_3,厚度为0.1 μ m,带隙宽度为0.80eV ;
[0012]上述技术方案中,所述InP发射区7掺杂浓度为I X 1017cm_3,厚度为0.05 μ m,带隙宽度为1.35eV ;
[0013]上述技术方案中,所述InP盖层8掺杂浓度为lX1019cm_3,厚度为1.8μπι;
[0014]上述技术方案中,所述InGaAs欧姆接触层9、10、11掺杂浓度为lX1019cm_3,厚度为 0.1 μ m ;
[0015]上述技术方案中,所述InGaAsP基区6、InGaAsP集电区4和InGaAsP次集电区3构成渐变耦合脊波导结构,脊波导的宽度为3 μ m, InGaAsP次集电区3和InP缓冲层2宽度为10 μ m,脊波导长度为150 μ m ;
[0016]上述技术方案中,所述发射极11为钛金合金材料;
[0017]上述技术方案中,所述第一集电极12、第二集电极13、第三集电极14、第四集电极15为钛金合金材料;
[0018]上述技术方案中,所述第一集电极12、发射极11和第二集电极13构成地-信号-地(GSG)行波电极结构;所述第三集电极14、发射极11和第四集电极15也构成地-信号-地(GSG)行波电极结构,电极采用了渐变线的传输线结构。
【专利附图】
【附图说明】
[0019]为进一步说明本发明的内容,以下结合附图和具体实例对本发明作进一步的描述,其中:
[0020]图1是InPDHPT渐变耦合脊波导结构示意图;
[0021]图2是InPDHPT发射区、集电区欧姆接触示意图;
[0022]图3是InPDHPT聚酰亚胺台面示意图;
[0023]图4是InPDHPT行波电极示意图。
【具体实施方式】
[0024]下面结合图1,图2,图3,图4对本发明作进一步的描述。
[0025]所述这种行波电极渐变耦合脊波导InP双异质结光敏晶体管包括:一 InP衬底1,InP缓冲层2,InGaAsP次集电区3,InGaAsP集电区4,InGaAsP过渡层5,InGaAsP基区6,InP发射区7,InP盖层8,各层按序号由小到大的顺序依次生长在InP衬底I之上;InGaAs欧姆接触层9生长InP盖层8上,聚酰亚胺层10包器件的发射极和集电极台面,开出电极窗口,一发射极11,第一集电极12、第二集电极13、第三集电极14、第四集电极15采用溅射的方法制作在InP衬底I和聚酰亚胺层10上,然后刻蚀出行波电极;[0026]所述InGaAsP集电区4和InGaAsP基区6形成c_b异质结,所述InGaAsP基区6和InP发射区7形成b-e异质结,构成双异质结代替现有HPT的单异质结结构。
[0027]所述InGaAsP集电区4和InGaAsP基区6形成c_b异质结,c_b异质结的能带形状应尽量降低尖峰势垒对电子输运的消极影响,使电子快速被集电区收集。所述InGaAsP过渡层5可以减小或者消除尖峰势垒对电子的阻碍作用,从而使器件获得高的响应度和响应速度。
[0028]所述InGaAsP基区6、InGaAsP集电区4和InGaAsP次集电区3构成渐变耦合波导结构。这种结构允许入射光由器件侧面入射,将光的垂直吸收转化为水平吸收,从增加吸收区长度上提高吸收效率。所述InGaAsP基区6、InGaAsP集电区4和InGaAsP次集电区3构成的渐变耦合波导,在合适的长度范围内将入射光由集电区耦合进入基区。脊波导结构波导宽度为3um,通过干法刻蚀工艺实现,刻蚀操作停止在InGaAsP次集电区3的中间位置。InGaAsP次集电区3和InP缓冲层2构成的集电区台面,宽度为10um,同样通过干法刻蚀工艺实现,刻蚀操作停止在InP缓冲层2。
[0029]所述InGaAsP基区6既是光探测器吸收的关键区域,又是电流放大的关键区域。InGaAsP基区6为重掺杂基区吸收层,使光生空穴作为基区多子快速弛豫到e_b界面,器件中仅仅存在光生电子由基区传输到集电区,实现HPT器件的单载流子传输。
[0030]所述聚酰亚胺层10,其厚度为400nm,具有高绝缘性能,覆盖在InGaAs接触层9和InGaAsP次集电区3之上,并且包裹InGaAsP基区6、InGaAsP集电区4、InGaAsP次集电区3构成渐变耦合脊波导的侧面和InGaAsP次集电区3、InP缓冲层2构成的台面侧面。聚酰亚胺10包裹发射区和集电区台面,其目的是作为器件的电绝缘层,减少器件寄生电容对高速信号传输的影响。聚酰亚胺绝缘层10相应部分区域开出发射极和集电极的电极窗口。
[0031]所述第一集电极12、发射极11和第二集电极13构成地-信号-地(GSG)行波电极结构;所述第三集电极14、发射极11和第四集电极也构成地-信号-地(GSG)行波电极结构。其实现方式是:在器件腐蚀出半绝缘InP衬底I台面后,溅射钛金合金材料,然后同时在半绝缘衬底InP衬底,发射区台面和集电区台面上刻蚀电极图形,构成地-信号-地(GSG)行波电极结构。为进一步减少传输过程中的分布效应,减少寄生电容对高速信号传输的影响,电极的形状选用了渐变线的传输线结构。
[0032]本专利提出的行波电极渐变耦合脊波导光敏晶体管探测器,采用了单载流子传输,突破了空穴迁移速率低的缺点,充分利用了电子迁移率高的特点。同时渐变耦合脊波导缓和了器件的吸收效率和工作速度之间的矛盾,可以分别优化器件的吸收效率和工作速度。最后,行波电极应用于单载流子传输的渐变耦合脊波导器件,可以有效的减少传统电极在传输高频信号时的分布效应,减少寄生电容对高速传输的影响,最终提高器件的工作速度,保证器件能满足微波光通信系统中光的高速探测吸收和高频信号的混频锁定等非线性应用。行波电极单载流子传输的渐变耦合脊波导光敏晶体管的探测器的特征频率可以达到200GHz左右,比普通光敏晶体管的特征频率(≤70-80GHz)提高很多。
【权利要求】
1.一种行波电极渐变耦合脊波导InP双异质结光敏晶体管,其特征在于包括: 一 InP 衬底(I ),InP 缓冲层(2),InGaAsP 次集电区(3),InGaAsP 集电区(4),InGaAsP过渡层(5),InGaAsP基区(6),InP发射区(7),InP盖层(8),各层按序号由小到大的顺序依次生长在InP衬底(I)之上;InGaAs欧姆接触层(9 )生长InP盖层(8 )上, 所述InGaAsP基区(6)、InGaAsP集电区(4)和InGaAsP次集电区(3)构成渐变耦合脊波导结构, 聚酰亚胺层(10 )覆盖在InGaAs接触层(9 )和InGaAsP次集电层(3 )之上,开出电极窗口,一发射极(11),第一集电极(12)、第二集电极(13)、第三集电极(14)、第四集电极(15)采用溅射的方法制作在InP衬底(I)和聚酰亚胺层(10)上,然后刻蚀出行波电极。
2.根据权利要求1所述行波电极渐变耦合脊波导InP双异质结光敏晶体管,其所述InGaAsP次集电区(3)掺杂浓度为lX1019cm_3,厚度为0.5 μ m,带隙宽度为1.12eV。
3.根据权利要求1所述行波电极渐变耦合脊波导InP双异质结光敏晶体管,其所述InGaAsP集电区(4)掺杂浓度为I X 1016cm_3,厚度为0.4 μ m,带隙宽度为1.12eV。
4.根据权利要求1所述行波电极渐变耦合脊波导InP双异质结光敏晶体管,其所述InGaAsP过渡层(5)掺杂浓度为I XlO15CnT3,厚度为0.01 μ m,带隙宽度为0.88eV。
5.根据权利要求1所述行波电极渐变耦合脊波导InP双异质结光敏晶体管,其所述InGaAsP基区(6)掺杂浓度为I X 1018cm_3,厚度为0.1 μ m,带隙宽度为0.80eV。
6.根据权利要求1所述行波电极渐变耦合脊波导InP双异质结光敏晶体管,其所述InP发射区(7)掺杂浓度为lX1017cm-3,厚度为0.05 μ m,带隙宽度为1.35eV。
7.根据权利要求1所述行波电极渐变耦合脊波导InP双异质结光敏晶体管,其所述脊波导的宽度为3 μ m,InP缓冲层(2)和InGaAsP次集电区(3)构成的集电区台面宽度为10 μ m0
8.根据权利要求1所述行波电极渐变耦合脊波导InP双异质结光敏晶体管,其所述聚酰亚胺层(10)包裹InGaAsP基区(6)、InGaAsP集电区(4)、InGaAsP次集电区(3)构成渐变耦合脊波导的侧面和InGaAsP次集电区(3)、InP缓冲层(2)构成的台面侧面,作为器件的电绝缘层。
9.根据权利要求1所述行波电极渐变耦合脊波导InP双异质结光敏晶体管,其所述第一集电极(12)、发射极(11)和第二集电极(13)构成地-信号-地行波电极结构;所述第三集电极(14)、发射极(11)和第四集电极(15)也构成地-信号-地行波电极结构,电极的形状选用了渐变线的传输线结构。
【文档编号】H01L31/0304GK103545399SQ201310518342
【公开日】2014年1月29日 申请日期:2013年10月28日 优先权日:2013年10月28日
【发明者】江之韵, 谢红云, 张良浩, 霍文娟, 张万荣 申请人:北京工业大学