多相电力转换器的带引线框岛的电力方形扁平无引线半导体封装的制作方法
【专利摘要】本发明涉及用于多相电力转换器的带引线框岛的电力方形扁平无引线半导体封装。根据示例性实现,电力方形扁平无引线(PQFN)封装包括位于引线框的第一引线框岛上的U-相输出节点、位于所述引线框的第二引线框岛上的V-相输出节点、和位于所述引线框的W-相管芯垫上的W-相输出节点。第一引线框岛可以在引线框的第一引线框条上,其中第一引线框条被连接到引线框的U-相管芯垫上。第二引线框岛可以在引线框的第二引线框条上,其中第二引线框条被连接到引线框的V-相管芯垫上。第一W-相电力开关位于W-相管芯垫上。而且,至少一条键合线被连接到W-相管芯垫和连接到第二W-相电力开关的源极。W-相管芯垫可以是PQFN封装的W-相输出端子。
【专利说明】多相电力转换器的带引线框岛的电力方形扁平无引线半导体封装
[0001]背景
[0002]本申请要求序列号为61/774,506,提交日期为2013年3月7日,并且名称为“Power Quad Flat No-Lead (PQFN) Semiconductor Package with Leadframe Islandsfor Mult1-Phase Power Inverter”的临时申请的利益和优先权。本申请也是序列号为13/662,244,提交日期为 2012 年 10 月 26 日,并且名称为 “Compact Wirebonded PowerQuad Flat No-Lead (PQFN) Package”的申请的继续申请部分,其依次要求序列号为13/034, 519,提交日期为 2011 年 2 月 24 日,并且名称为 “Mult1-Chip Module (MCM)Power Quad Flat No-Lead (PQFN) Semiconductor Package Utilizing a Leadframe forElectrical Interconnect1ns”的申请的优先权,其依次要求序列号为61/459,527,提交日期为 2010 年 12 月 13 日,并且名称为“Low Cost Leadframe Based High Power DensityFull Bridge Power Device”的临时申请的优先权。本申请要求上面指出的所有申请的利益和优先权。而且,上面指出的所有申请的公开和内容据此通过引用完全并入本申请。
[0003]1.定义
[0004]正如这里所使用的,术语“II1-V族”指代的是包括至少一种III族元素和至少一种V族元素的化合物半导体。例如,II1-V族半导体可采用II1-氮化物半导体的形式。“II1-氮化物”或“II1-N”,指的是包括氮和至少一种III族元素,诸如铝(Al)、镓(Ga)、铟(In)和硼(B)的化合物半导体,并且包括但不限于其掺杂物的任何一种,例如,诸如氮化铝镓(AlxGa(1_x)N),氮化铟镓(InyGa(1_y)N)、氮化铝铟镓(AlxInyGa(1_x_y)N、氮磷砷化镓(GaAsaPbN(1_a_b))、氮磷砷化铝铟镓(AlxInyGa(1_x_y)AsaPbN(1_a_b) )。II1-氮化物一般也指的是任何极性,包括但不限于Ga-极性、N-极性、半极性或非极性的晶体取向。II1-氮化物材料也可包括或者纤锌矿、闪锌矿或者混合多型体,并且可包括单晶体、单晶、多晶或无定形结构。本文使用的氮化镓或GaN,指的是II1-氮化物化合物半导体,其中一个或多个III族元素包括少许或大量的镓,但是也可包括除镓以外的其它III族元素。II1-V族或GaN晶体管也可指的是复合高电压增强模式晶体管,其通过将II1-V族或GaN晶体管串联连接低电压IV族晶体管形成。
[0005]而且,本文使用的术语“IV族”指的是包括至少一种IV族元素诸如硅(Si)、锗(Ge)和碳(C)的半导体,并且也可包括复合半导体,例如,诸如硅锗(SiGe)和硅碳(SiC)复合半导体。IV族也指的是包括超过一层的IV族元素或IV族元素的掺杂物以产生应变的IV族材料的半导体材料,并且也可包括基于IV族的复合衬底,例如,诸如绝缘体上的硅(SOI)衬底,注氧隔离(SMOX)工艺衬底,及蓝宝石上的硅(SOS)衬底。
I 1.【背景技术】
[0006]组合几种半导体器件的封装可简化电路设计,减少成本并且通过使相关的和依赖的电路部件保持紧密靠近,提供更高的效率和改善的性能。而且,与使用部件的独立封装相t匕,这些封装可促进应用集成和更好的电性能和热性能。[0007]方形扁平无引线(QFN)封装是用于电气部件(诸如功率半导体器件)的无引线封装。QFN封装可使用引线框和键合线以连接容纳在其中的电气部件。QFN封装通常具有有限的复杂性且电气布线可具有挑战性,特别是对于更复杂的配置。这样,QFN封装通常具有简单的配置且容纳数量少的电气部件。
【发明内容】
[0008]用于多相电力转换器的带有引线框岛的电力方形扁平无引线(PQFN)半导体封装,基本上与至少一幅附图中显示的和/或结合至少一幅附图描述的,以及如权利要求中更完整地描述的封装形式一样。
【专利附图】
【附图说明】
[0009]图1A示出了电力方形扁平无引线(PQFN)封装的示例性电路的原理图。
[0010]图1B示出了示例性多相电力转换器电路中的PQFN封装的原理图。
[0011]图2A示出了示例性PQFN封装的引线框的俯视图。
[0012]图2B示出了带有键合线的示例性PQFN封装的俯视图。
[0013]图2C示出了示例性PQFN封装的仰视图。
[0014]图2D示出了示例性PQFN封装的一部分的横截面视图。
【具体实施方式】
[0015]以下描述包括与本公开中的实现有关的具体信息。本申请的附图和随同它们的详细描述仅针对示例性实现。除非另外指出,否则附图中相同或相应的元素可由相同或相应的参考数字指示。而且,本申请中的附图和图示一般并不按比例,也不打算对应于实际的相关尺寸。
[0016]图1A示出了电力方形扁平无引线(PQFN)封装100的示例性电路的原理图。图1B示出了多相电力转换器电路150中的PQFN封装100的原理图。
[0017]参考图1A和1B,PQFN封装100包括驱动器集成电路(IC)102、U_相电力开关104a和104b、V-相电力开关106a和106b以及W-相电力开关108a和108b。在图1B中的多相电力转换器电路150中,PQFN封装100被连接到母线电压源114、供电电压源116、微控制器124、马达126、电阻器R1、电容器Cl、自举电容器CB1、CB2、CB3和分流电阻器RS。PQFN封装100、微控制器124、马达126、电阻器R1、电容器Cl、自举电容器CBl、CB2、CB3和分流电阻器RS中的任何一个都可以被安装在印刷电路板(PCB)上。
[0018]此外,PQFN封装100通过PCB上的导电引线可以被连接到母线电压源114、供电电压源116、微控制器124、马达126、电阻器R1、电容器Cl、自举电容器CBl、CB2、CB3和分流电阻器RS中的任何一个。
[0019]PQFN 封装 100 也包括 VBUS 端子 112a、VCC 端子 112b、HINl 端子 112c、HIN2 端子112d、HIN3 端子 112e、LINl 端子 112f、LIN2 端子 112g、LIN3 端子 112h、EN 端子 1121、故障(FAULT)端子 112 j、RCIN 端子 112k、頂端子 1121、VSS 端子 112m、VCOM 端子 112n、SWl 端子 112o、SW2 端子 112p、SW3 端子 112q、VBl 端子 112r、VB2 端子 112s 和 VB3 端子 112t,其统称为I/O端子112。[0020]在PQFN封装100中,VBUS端子112a从母线电压源114接收VBUS作为输入。VCC端子112b从供电电压源116接收VCC作为到驱动器IC102的输入。HINl端子112c、HIN2端子112d和HIN3端子112e分别从微控制器124接收HINl、HIN2和HIN3作为到驱动器IC102的输入。LINl端子112f、LIN2端子112g和LIN3端子112h分别从微控制器124接收LINl、LIN2和LIN3作为到驱动器IC102的输入。EN端子112i从微控制器124接收EN作为到驱动器IC102的输入。故障端子112 j接收从驱动器IC102输出的故障信号作为微控制器124的输入。RCIN端子112k从电阻器Rl和电容器Cl接收RCIN作为到驱动器IC102的输入。頂端子1121从U-相电力开关104b、V-相电力开关106b和W-相电力开关108b接收ITRIP作为到驱动器IC102和微控制器124的输入。VSS端子112m从逻辑地GVSS接收VSS作为到驱动器IC102的输入。VCOM端子112η从电力地GCOM接收VCOM作为到驱动器IC102、U-相电力开关104b、V-相电力开关106b和W-相电力开关108b的输入。SWl端子112ο从U-相输出节点I1a接收SWl作为到马达126的输出。驱动器IC102也从U-相输出节点IlOa接收SWl作为输入。SW2端子112p从V-相输出节点IlOb接收SW2作为到马达126的输出。驱动器IC102也从V-相输出节点IlOb接收SW2作为输入。SW3端子112q从W-相输出节点IlOc接收SW3作为到马达126的输出。驱动器IC102也从W-相输出节点IlOc接收SW3作为输入。VBl端子112r从自举电容器CBl接收VBl作为到驱动器IC102的输入。VB2端子112s从自举电容器CB2接收VB2作为到驱动器IC102的输入。VB3端子112t从自举电容器CB3接收VB3作为到驱动器IC102的输入。
[0021]应当理解在多个实现中,I/O端子112的编号、数量和位置与所示出的不同。例如,在多个实现中,不同于驱动器IC102的驱动器IC可被使用,其可具有与驱动器IC102不同的能力和/或I/O要求。这可反映在I/O端子112以及PQFN封装100的其它连接上。作为一个特定的实施例,在一个实现中,驱动器IC102改为合并驱动器IC102和微控制器124的功能的功能集成1C。这样,附加I/O端子112可被微控制器124的功能所需要,而某些I/O端子112,诸如故障端子112j可能不需要。
[0022]PQFN封装100用于多相电力转换器并且驱动器IC102可以是用于驱动U-相电力开关104a和104b、V-相电力开关106a和106b及W-相电力开关108a和108b的高电压IC (HVIC),其是全桥结构。驱动器IC102的实施例包括可从国际整流器公司?(“Internat1nal Rectifier Corporat1n?”)购买的“第 5 代TiVIC。在本实现中,U-相电力开关104a和104b、V-相电力开关106a和106b以及W-相电力开关108a和108b是垂直导通功率器件,例如,IV族半导体功率金属氧化物半导体场效应晶体管(功率M0SFET),诸如快速反向外延二极管场效应晶体管(FREDFET)或IV族半导体绝缘栅双极型晶体管(IGBT)。在其它实现中,IH-V族半导体FET、HEMT (高电子迁移率晶体管),并且尤其是GaNFET和/或HEMT可在U-相电力开关104a和104b、V-相电力开关106a和106b以及W-相电力开关108a和108b中用作功率器件。如上所定义的,本文所使用的氮化镓或GaN,指的是II1-氮化物化合物半导体,其中III族元素包括少许或大量的镓,但是也可包括除镓之外的其它III族元素。如之前所阐明的,II1-V族或GaN晶体管也可指复合高电压增强模式晶体管,其通过将II1-V族或GaN晶体管串联连接低电压IV族晶体管形成。虽然PQFN封装100提供全桥功率器件,可选的实现可提供由具体的应用所要求的其它封装结构。
[0023]在PQFN封装100中,HINl、HIN2和HIN3是用于U-相电力开关104a、V-相电力开关106a和W-相电力开关108a的控制信号,其是高压侧晶体管。驱动器IC102分别从HIN1、HIN2、HIN3产生高压侧选通信号H1、H2和H3,其随后被提供给U-相电力开关104a、V-相电力开关106a和W-相电力开关108a,如图1A所示。相似的,LIN1、LIN2和LIN3是用于U-相电力开关104b、V-相电力开关106b和W-相电力开关108b的控制信号,其是低压侧晶体管。驱动器IC102分别从LIN1、LIN2、LIN3产生低压侧选通信号L1、L2和L3,其随后被提供给U-相电力开关104b、V-相电力开关106b和W-相电力开关108b,如图1A所示。例如,EN可由微控制器124用来启用驱动器IC102的切换。更具体地,驱动器IC102被配置为响应于EN而启用H1、H2、H3、L1、L2和L3的切换。
[0024]VBUS是来自母线电压源114的母线电压,其耦合到U-相电力开关104a、V-相电力开关106a和W-相电力开关108a的各自的漏极。作为一个实施例,母线电压源114可以是AC到DC整流器。作为一个实施例,AC可以是诸如230伏输出电压。例如,用于VBUS的DC电压可以是近似300伏到近似400伏。
[0025]VCC是来自供电电压源116的用于驱动器IC102的供电电压,例如,其可以是近似15伏。在一些实现中,供电电压源116从VBUS产生VCC。VB1、VB2和VB3是用于驱动器IC102的自举电压并且分别由自举电容器CB1、CB2和CB3提供。自举电容器CBl、CB2和CB3可例如通过驱动器IC102被VCC充电。自举电容器CBl被耦合在VBl端子112r和SW3端子112q之间。自举电容器082被耦合在¥82端子1128和5胃2端子112?之间。自举电容器CB3被耦合在VB3端子112t和SWl端子112ο之间。
[0026]VSS是来自逻辑地Gvss的驱动器IC102的逻辑地。VCOM是来自电力地Gcqm的驱动器IC102的电力地。这样,在本实现中,PQFN封装100具有用于分离的逻辑地和电力地。使用用于逻辑的和电力的分离接地,PQFN封装100被保护以防止闩锁效应和噪声故障,这也可能是另外由从U-相电力开关104a和104b、V-相电力开关106a和106b以及W-相电力开关108a和108b的过 度的切换电压引起的。应该注意的是,在一些实现中,PQFN封装100具有用于逻辑的和电力的共享接地。在这些实现中,PQFN封装100可以具有用于接地的单I/o端子。
[0027]分离的逻辑和电力接地被提供用于使用分流电阻器RS的多相电力转换器电路150。分流电阻器RS跨接VSS端子112m和VCOM端子112η耦合。分流电阻器RS也可通过VCOM端子112η耦合到U-相电力开关104b、V-相电力开关106b和W-相电力开关108b中的每个的源极。这样,来自马达126的马达电流IM,如图1A所示,与来自U-相电力开关104b、V-相电力开关106b和W-相电力开关108b的相电流组合。马达电流Im通过頂端子1121被提供到微控制器124。微控制器124使用马达电流Im重构单个相电流(U、V和W)以通过控制HIN1、HIN2、HIN3、LIN1、LIN2和LIN3来控制脉宽调制(PWM)。
[0028]如图1A所示,马达电流Im还被作为ITRIP提供给驱动器IC102。驱动器IC102使用ITRIP用于过电流保护。例如,ITRIP被与参考值进行比较。如果ITRIP超过参考值,则驱动器IC102探测到过流情况。此外,通过提供故障信号到故障端子112j,驱动器IC102将过电流情况指示给微控制器124。驱动器IC102使用RCIN以从过电流保护自动重置。如图1B所示,电阻器Rl耦合在VCC端子112b和RCIN端子112k之间以对电容器Cl充电。电容器Cl耦合在RCIN端子112k和VSS端子112m之间。电阻器Rl和电容器Cl可被改变以更改过电流保护的自动重置的定时。[0029]典型的QFN封装具有有限的复杂性,其具有简单的配置和小数目的电气部件。对于更复杂的配置,布置连接的导线同时避免导线交叉和导线短路是困难的。而且,较长长度的布线将不利地影响电气性能和热性能。然而,根据本公开的各种实现的PQFN封装,可以比典型的QFN封装实质上更复杂,同时避免导线交叉和导线短路并且达到高的电气性能和热性能。
[0030]转向图2A、2B和2C,图2A示出了图2B和2C的PQFN封装200的引线框的俯视图。图2B示出了 PQFN封装200的俯视图。图2C示出了 PQFN封装200的仰视图。在本实现中,PQFN封装200是多芯片模块(MCM) PQFN封装,其可具有近似12mm乘以近似12mm的覆盖区。在其它实现中,PQFN封装200可具有大于12mm乘以12mm的覆盖区。在另外的实现中,PQFN封装200可具有小于12mm乘以12mm的覆盖区。
[0031 ] PQFN封装200对应于图1A和IB中的PQFN封装100。例如,PQFN封装200包括驱动器IC202、U-相电力开关204a和204b、V-相电力开关206a和206b以及W-相电力开关208a和208b,其分别对应于图1A中的驱动器IC102、U-相电力开关104a和104b、V-相电力开关106a和106b以及W-相电力开关108a和108b。而且,PQFN封装200包括VBUS端子 212a、VCC 端子 212b、HINl 端子 212c、HIN2 端子 212d、HIN3 端子 212e、LINl 端子 212f、LIN2端子212g、LIN3端子212h、EN端子2121、故障端子212j、RCIN端子212k、頂端子2121、VSS端子212m、VCOM端子212n、Sffl端子212ο (也被称为“U-相输出端子212ο”)、SW2端子212ρ (也被称为“V-相输出端子212p”)、SW3端子212q (也被称为“W-相输出端子212q”)、VBl端子212r、VB2端子212s和VB3端子212t (也被称为“I/O端子212”),其分别对应于PQFN封装100中的VBUS端子112a、VCC端子112b、HINl端子112c、HIN2端子112d、HIN3 端子 112e、LINl 端子 112f、LIN2 端子 112g、LIN3 端子 112h、EN 端子 1121、故障端子 112j、RCIN 端子 112k、頂端子 1121、VSS 端子 112m、VCOM 端子 112n、Sffl 端子 112ο、SW2 端子 112p、SW3 端子 112q、VBl 端子 112r、VB2 端子 112s 和 VB3 端子 112t。
[0032]图2A显示了包括驱动器IC管芯垫220、W_相管芯垫222a、V-相管芯垫222b、U_相管芯垫222c、和公共管芯垫228的引线框260。引线框260还包括引线框条230和232和I/O端子212。引线框岛234在引线框260的引线框条230上并且引线框条230电连接和机械连接(也就是一体地连接)到引线框260的V-相管芯垫222b。引线框岛236在引线框260的引线框条232上并且引线框条232电连接和机械连接到(也就是一体地连接)引线框260的U-相管芯垫222c。如图2B所示,引线框条230和232能够可选地延伸到PQFN封装200的边242c。这样做,引线框条230和232中的任何一个可提供,例如,用于PQFN封装200的附加I/O端子。例如,引线框条232被显示为在PQFN封装200的边242c提供附加的Sffl 端子 2120。
[0033]引线框260可包括具有高的热导率和电导率的材料,诸如可向Olin Brass?购买的铜(Cu)合金C194。引线框260的顶面240a可被选择性地电镀用于增强与器件管芯和导线的粘接性的材料。镀层可包括被选择性地应用到引线框260的银(Ag)镀层,其可以从诸如QPL有限公司购买。
[0034]图2A和2B显示引线框260是蚀刻的引线框,诸如半蚀刻的引线框。引线框260的未被蚀刻(例如,未被半刻蚀)的部分在图2A和2B中用虚线指示。引线框岛234和236是这样的未蚀刻部分的实例。例如,图2C显示引线框260的底面240b (其也对应于PQFN封装200的底面)。图2C还显示PQFN封装200的模压化合物265,其覆盖引线框260的蚀刻部分。模压化合物265可以是具有低的弯曲模量的塑料,诸如可从Hitachi? Chemical购买的CEL9220ZHF10 (v79)。为了提供抗封装碎裂的弹性,由模压化合物265所限定的PQFN封装200的高度(或厚度)可保持非常薄,诸如0.9mm或更少。I/O端子212、引线框岛234和引线框岛236未被蚀刻并且通过模压化合物265被暴露在引线框260的底面240b(其也对应于PQFN封装200的底面)上。因此,I/O端子212、引线框岛234和引线框岛236被暴露在引线框260的底面240b上用于高的电导率和/或热耗散。通过为(PCB)提供匹配岛,这个特征可被利用。引线框260的暴露区域可被电镀,例如用锡(Sn)。
[0035]驱动器IC202、U-相电力开关204a和204b、V-相电力开关206a和206b和W-相电力开关208a和208b使用键合线和引线框260互连。
[0036]图2B显示U-相电力开关204a和204b、V_相电力开关206a和206b、W_相电力开关208a和208b以及驱动器IC202被电连接和机械连接到引线框260。这可使用焊剂或导电粘合剂完成,诸如可从Henkel公司购买的银填充的QMI529HT。
[0037]如图2B所示,U-相电力开关204b、V-相电力开关206b和W-相电力开关208b沿着PQFN封装200的边242a被放置。W-相电力开关208b位于W-相管芯垫222a上。更具体地,W-相电力开关208b的漏极236a位于W-相管芯垫222a上。类似地,V-相电力开关206b位于V-相管芯垫222b上。更具体地,V-相电力开关206b的漏极236b位于V-相管芯垫222b上。而且,U-相电力开关204b位于U-相管芯垫222c上。更具体地,U-相电力开关204b的漏极236c位于U-相管芯垫222c上。因此,U-相电力开关204b、V-相电力开关206b和W-相电力开关208b被单独耦合到引线框260的相应的管芯垫。这样,W-相管芯垫222a可对应于PQFN封装200的W-相输出端子212q,V-相管芯垫222b可对应于PQFN封装200的V-相输出端子212p,并且U-相管芯垫222c可对应于PQFN封装200的U-相输出端子212ο,如图2B所示。
[0038]又如图2B所不,U-相电力开关204a、V-相电力开关206a和W-相电力开关208a沿着PQFN封装200的边242b放置,其与边242a相交。U-相电力开关204a、V-相电力开关206a和W-相电力开关208a位于公共管芯垫228上。更具体地,U-相电力开关204a的漏极236d、V-相电力开关206a的漏极236e和W-相电力开关208a的漏极236f位于引线框260的公共管芯垫228上。这样,公共管芯垫228可对应于PQFN封装200的VBUS端子212a (例如,母线电压输入端子),如图2B所示。这个配置的实施例更详细地显示在图2D中。图2D示出了 PQFN封装200的一部分的横截面视图。图2D中的横截面视图对应于图2B和2C的横截面2D-2D。图2D显示了 V-相电力开关206a的漏极236e通过导电粘合剂254和引线框260的镀层248a连接到公共管芯垫228。导电粘合剂254可包括银填充的粘合剂诸如QMI529HT。PQFN封装200的其它管芯可相似地连接到引线框260。
[0039]如图2B所示,驱动器IC202位于驱动器IC管芯垫220上。更具体地,驱动器IC202的接地256位于引线框260的驱动器IC管芯垫220上。驱动器IC管芯垫220大于驱动器IC202并且可因此容纳不同的、更大的驱动器1C,其可具有与驱动器IC202不同的特征。
[0040]图2B也显示了键合线,诸如将驱动器IC202电连接和机械连接到VCC端子212b、HINl 端子 212c、HIN2 端子 212d、HIN3 端子 212e、LINl 端子 212f、LIN2 端子 212g、LIN3 端子212h、EN端子2121、故障端子212j、RCIN端子212k、頂端子2121、VSS端子212m、VBl端子212r、VB2端子212s、VB3端子212t并且连接到U-相电力开关204a和204b、V-相电力开关206a和206b及W-相电力开关208a和208b的相应的栅极的键合线244a。
[0041]图2B中的键合线244和相似描述的键合线可包括,例如,1.3mil直径的Gl类型金(Au)线。较粗的线可被用于电力连接,诸如键合线246a、246b、246c、246d、246e和246f (也被称为“键合线246,,)。例如,键合线246可以是2.0miI直径的铜(Cu)线,诸如可从Kulicke& Soffa?购买的Maxsoft? LD线。键合线246可使用在球上键合引线(bond stitch onball) (BSOB)焊接的方式被焊接。如图2B所示,多条键合线,诸如两条键合线,可以平行于键合线246以用于附加的电流处理。
[0042]在图2B中,键合线246f电连接和机械连接U-相电力开关204b的源极238c和V-相电力开关206b的源极238b。键合线246e电连接和机械连接V-相电力开关206b的源极238b和W-相电力开关208b的源极238a。键合线246d电连接和机械连接W-相电力开关208b的源极238a和VCOM端子212η。应该注意的是,诸如PQFN封装200的开源(opensource)实现,源极238a、238b和238c使用各自的键合线稱合到各自的端子。换句话说,源极238a、238b和238c在PQFN封装200中彼此并不短路。
[0043]又在图2B中,键合线246a将U-相电力开关204a的源极238d电连接和机械连接到引线框260。更具体地,源极238d经由键合线246a连接到引线框条232的引线框岛236。这样,图1A中的U-相输出节点IlOa位于引线框260的引线框条232上,在此,引线框条232被连接到引线框260的U-相管芯垫222c。这样,PQFN封装200在布置键合线246a和其它键合线诸如键合线244b时具有显著的灵活性,同时避免由于导线交叉导致的导线短路并且达到高的电性能和热性能。键合线244b电连接和机械连接到驱动器IC202和在引线框岛236的引线框260的引线框条232以将SWl提供到图1A所示的驱动器IC202。图1A的U-相输出节点IlOa也位于引线框260的引线框岛236上。因为引线框岛236暴露在PQFN封装200的底面240b上(如图2C所示),U-相输出节点IlOa产生的热可有效地从PQFN封装200消散。
[0044]相似的,键合线246b将V-相电力开关206a的源极238e电连接和机械连接到引线框260。图2D示出了该连接的一个实施例。源极238e经由键合线246b通过引线框260的镀层248b连接到引线框条230的引线框岛234。引线框条230之后通过V-相管芯垫222b连接到V-相电力开关206b的漏极236b。相似的连接可被用于连接源极238d与U-相电力开关204b的漏极236c。在引线框岛234处,键合线246b将V-相电力开关206a的源极238e电连接和机械连接到引线框条230。这样,图1A的V-相输出节点IlOb位于引线框260的引线框条230,在此,引线框条230连接到引线框260的V-相管芯垫222b。这样,PQFN封装200在布置键合线246b和其它诸如键合线244c的键合线时具有显著的灵活性,同时避免由于导线交叉导致的导线短路并达到高的电性能和热性能。在引线框岛234处,键合线244c电连接和机械连接驱动器IC202和引线框260的引线框条230以将SW2提供到如图1A所示的驱动器IC202。图1A的V-相输出节点IlOb也位于引线框260的引线框岛234上。由于引线框岛234暴露在PQFN封装200的底面240b上(如图2C所示),在V-相输出节点IlOb产生的热可从PQFN封装200有效地消散。
[0045]键合线246c将W-相电力开关208a的源极238电连接和机械连接到引线框260。更具体地,键合线246b将W-相电力开关208a的源极238f电连接和机械连接到引线框260上的W-相管芯垫222a。这样,图1A的W-相输出节点IlOc位于带有W-相电力开关208b的引线框260的W-相管芯垫222a。由于W-相电力开关208b临近W-相电力开关208a,W-相电力开关208a的源极238f可被耦合到W-相电力开关208b的漏极236a,同时容易避免由于导线交叉导致的导线短路并达到高的电性能和机械性能。这可无需使用引线框条和/或引线框岛而完成。这样,PQFN封装200可被制做得非常小,同时避免U-相输出节点110a、V-相输出节点IlOb和W-相输出节点IlOc之间的电弧放电。例如,附加的引线框条和/或引线框岛将要求较大的PQFN封装200以维持引线框条230和232之间的足够的间距252从而防止电弧放电(例如,至少1_)。进一步,这个结构并不显著影响在PQFN封装200中布置键合线的灵活性。而且,由于W-相管芯垫222a暴露在PQFN封装200的底面240b (如图2C所示),在W-相输出节点IlOc产生的热可有效地从PQFN封装200消散。键合线244d电连接和机械连接驱动器IC202和源极238f以将SW3提供到如图1A所示的驱动器IC202。
[0046]这样,在多个实现中,PQFN封装包括引线框岛和引线框条两个中的至少一个。注意,PQFN封装可以包括引线框岛而没有引线框条。例如,引线框岛234通过PCB上的迹线可以被连接到V-相管芯垫222b。还要注意的是,PQFN封装可以包括引线框条而没有引线框岛。然而,具有引线框岛以及引线框条可以在PQFN封装中布置键合线时提供显著的灵活性,同时达到很好的电气性能和热性能。这样,PQFN封装可以容易地支持可能包括大数目的电气部件的复杂的配置。
[0047]根据以上的描述,证明了多种技术可被用于实现本申请中描述的概念而不背离这些概念的范围。而且,虽然这些概念具体参考特定的实施例已被描述,本领域的普通技术人员将认识到可在形式和细节上做出改变而不背离这些概念的范围。这样,所描述的实现将在各个方面被视为示例性的而不是限制性的。还应当理解本申请并不限于如上描述的具体实现,而是可能存在许多重新布置、修改和替换而没有背离本公开的范围。
【权利要求】
1.一种电力方形扁平无引线PQFN封装,包括: U-相输出节点,其位于引线框的第一引线框岛上; V-相输出节点,其位于所述引线框的第二引线框岛上; W-相输出节点,其位于所述引线框的W-相管芯垫上。
2.根据权利要求1所述的PQFN封装,包括位于所述W-相管芯垫上的第一W-相电力开关。
3.根据权利要求1所述的PQFN封装,包括被连接到所述W-相管芯垫的至少一条键合线。
4.根据权利要求1所述的PQFN封装,包括将第二W-相电力开关的源极连接到所述W-相管芯垫的至少一条键合线。
5.根据权利要求1所述的PQFN封装,包括被连接到所述引线框的所述第一引线框岛的至少一条键合线。
6.根据权利要求1所述的PQFN封装,包括被连接到所述引线框的所述第二引线框岛的至少一条键合线。
7.根据权利要求1所述的PQFN封装,其中,所述第一引线框岛被暴露在所述PQFN封装的底面上。
8.根据权利要求1所述的PQFN封装,其中,所述第二引线框岛被暴露在所述PQFN封装的底面上。
9.根据权利要求1所述的PQFN封装,其中,所述W-相管芯垫是所述PQFN封装的W-相输出端子。
10.根据权利要求1所述的PQFN封装,其中,所述第一引线框岛在所述引线框的第一引线框条上,所述第一引线框条被连接到所述引线框的U-相管芯垫。
11.根据权利要求1所述的PQFN封装,其中,所述第二引线框岛在所述引线框的第二引线框条上,所述第二引线框条被连接到所述引线框的V-相管芯垫。
12.根据权利要求1所述的PQFN封装,包括位于所述引线框的U-相管芯垫上的第一U-相电力开关和位于所述引线框的V-相管芯垫上的第一 V-相电力开关。
13.根据权利要求1所述的PQFN封装,包括位于所述引线框的公共管芯垫上的第二U-相电力开关、第二 V-相电力开关、和第二 W-相电力开关。
14.根据权利要求1所述的PQFN封装,其中所述U-相电力开关、所述V-相电力开关和所述W-相电力开关包括II1-V族晶体管。
15.根据权利要求1所述的PQFN封装,其中所述PQFN封装具有大于12mmX12mm的覆盖区O
16.根据权利要求1所述的PQFN封装,其中所述PQFN封装具有小于12mmX12mm的覆盖区O
17.一种电力方形扁平无引线PQFN封装,包括: U-相输出节点,其位于引线框的第一引线框条上,所述第一引线框条被连接到所述引线框的U-相管芯垫; V-相输出节点,其位于所述引线框的第二引线框条上,所述第二引线框条被连接到所述引线框的V-相管芯垫;W-相输出节点,其位于所述引线框的W-相管芯垫上。
18.根据权利要求17所述的PQFN封装,包括位于所述W-相管芯垫上的第一W-相电力开关。
19.根据权利要求17所述的PQFN封装,其中所述W-相管芯垫是所述PQFN封装的W-相输出端子。
20.根据权利要求17所述的PQFN封装,包括被连接到所述W-相管芯垫的至少一条键合线。
【文档编号】H01L23/495GK104037150SQ201410038717
【公开日】2014年9月10日 申请日期:2014年1月27日 优先权日:2013年3月7日
【发明者】迪安·费尔南多, 罗埃尔·巴尔博萨 申请人:国际整流器公司