GaN基发光二极管及其制作方法

文档序号:7041888阅读:211来源:国知局
GaN基发光二极管及其制作方法
【专利摘要】本发明提供一种GaN基发光二极管及其制作方法,所述发光二极管的量子阱包括阱层和垒层,阱层为InxGa1-xN阱层,垒层为InyGa1-yN垒层,其中,y<x<1,0<x<1,0≤y<1,阱层和/或垒层的内部具有至少一层GaN隧穿层,由于GaN隧穿层的增加,在阱层或垒层生长到一定厚度,出现In聚集之前,生长一层GaN隧穿层,从而避免阱层和/或垒层出现In聚集现象,提高了量子阱的晶体质量,进而提高了发光二极管的发光效率。
【专利说明】GaN基发光二极管及其制作方法
【技术领域】
[0001]本发明涉及半导体器件制作【技术领域】,更具体的说是涉及GaN基发光二极管及其制作方法。
【背景技术】
[0002]发光二级管(Light-Emitting Diode,简称LED)具有高亮度、低能耗、长寿命、响应速度快等优点,作为新型高效固体光源,在室内照明、景观照明、显示屏、信号指示等领域都有广泛的应用。随着发光二极管的发展,GaN基发光二极管成为市场的主流产品。
[0003]并且,现今市场对于蓝绿光LED需求越来越大,对蓝绿光LED的性能要求也越来越高。目前蓝绿光LED的量子阱有源层一般为InxGa^NAnyGahN,其中InxGai_xN阱层中的In组分X大于InyGai_yN垒层中In组分y。由于在量子阱有源层生长过程中,出现生长层缺陷,影响LED发光效率,因此,如何提高蓝绿光LED内量子效率成为现在研究的热点。

【发明内容】

[0004]有鉴于此,本发明提供一种GaN基发光二极管及其制作方法,以提高蓝绿光LED的内量子效率,提高LED的发光效率。
[0005]为实现上述目的,本发明提供如下技术方案:
[0006]一种GaN基发光二极管,包括:
[0007]衬底;
[0008]位于所述衬底表面的缓冲层;
[0009]位于所述缓冲层表面的η型GaN层;
[0010]位于所述η型GaN层表面的至少一个量子阱,所述量子阱包括阱层和位于所述阱层表面上的垒层,所述阱层为InxGahN阱层,所述垒层为InyGai_yN垒层,其中,y〈x〈l,0〈x〈l,0≤y〈l,所述阱层和/或所述垒层的内部具有至少一层GaN隧穿层;
[0011]位于所述量子阱表面的电子阻挡层;
[0012]位于所述电子阻挡层表面的P型GaN层。
[0013]优选地,所述量子阱中的阱层为包括两层子阱层和位于所述两层子阱层之间的一
层GaN隧穿层的多层结构。
[0014]优选地,所述两层子阱层的厚度均小于3nm,大于0,且两层子阱层的厚度之和的范围为2nm-5nm,包括端点值。
[0015]优选地,当0〈y〈l时,所述量子阱中的垒层为包括多层子垒层和位于相邻两层子垒层之间的GaN隧穿层的多层结构。
[0016]优选地,当0〈y〈l时,所述量子阱中的阱层和所述垒层的内部均具有至少一层GaN
隧穿层。
[0017]优选地,所述多层子垒层的厚度均小于3nm,大于0,且所述多层子垒层的厚度之和的范围为4nm-20nm,包括端点值。[0018]优选地,所述GaN隧穿层的厚度范围为2.5A-7.5 A,包括端点值。
[0019]优选地,所述量子阱的个数为1-20个。
[0020]本发明还提供了一种GaN基发光二极管的制作方法,所述GaN基发光二极管的量子阱的阱层内部具有至少一层GaN隧穿层的多层结构;
[0021]所述GaN基发光二极管的制作方法为:
[0022]Al、提供具有缓冲层和η型GaN层的半导体衬底;
[0023]B1、在所述η型GaN层表面生长形成第一 InxGa^N子阱层;
[0024]Cl、停止生长InxGa1J子阱层的含铟气体通入,生长形成GaN隧穿层;
[0025]D1、通入生长InxGa^N子阱层的含铟气体,生长形成第二 InxGapxN子阱层;
[0026]Ε1、在第二 InxGa1J^子讲层表面生长形成InyGapyN鱼层,其中,y〈x〈l,0〈x〈l,O < y〈l;
[0027]F1、在InyGahyN鱼层表面依次生长形成电子阻挡层和P型GaN层,形成发光二极管。
[0028]优选地,所述量子阱的个数为一个或多个。
[0029]优选地,所述量子阱为多个时,在步骤El和步骤Fl之间还包括:
[0030]El1、在InyGa1J垒层表面继续生长形成第一 InxGai_xN子阱层;
[0031]E12、重复步骤Cl、步骤Dl和步骤El至少一次。
[0032]本发明还提供了另一种GaN基发光二极管的制作方法,所述量子阱的垒层为包括多层InyGai_yN子垒层和位于相邻两层InyGa^yN子垒层之间的GaN隧穿层的多层结构,其中,0<y<l ;
[0033]所述GaN基发光二极管的制作方法为:
[0034]A2、提供具有缓冲层和η型GaN层的半导体衬底;
[0035]Β2、在所述η型GaN层表面生长形成InxGa1J^讲层;
[0036]C2、在所述InxGa1J^讲层表面生长形成第一 InyGahyN子鱼层;
[0037]D2、停止生长InyGa^N的含铟气体通入,生长形成GaN隧穿层;
[0038]Ε2、通入生长InyGapyN的含铟气体,生长形成第二 InyGapyN子垒层;
[0039]G2、在形成的InyGai_yN子垒层表面生长形成电子阻挡层和P型GaN层,形成发光二极管。
[0040]优选地,在步骤E2与步骤G2之间还包括:
[0041]F2、重复步骤D2和步骤E2,至少一次。
[0042]优选地,所述量子阱的个数为一个或多个。
[0043]优选地,所述量子阱为多个时,在步骤F2和步骤G2之间还包括:
[0044]F21、在InyGa1^N子鱼层表面形成InxGa1^N讲层;
[0045]F22、重复步骤C2至步骤F2至少一次。
[0046]本发明还提供了又一种GaN基发光二极管的制作方法,所述量子阱的InxGai_xN阱层和InyGapyN鱼层的内部均具有至少一层GaN隧穿层,其中,y〈x〈l, 0〈x〈l, 0〈y〈l ;
[0047]所述GaN基发光二极管的制作方法为:
[0048]A3、提供具有缓冲层和η型GaN层的半导体衬底;
[0049]Β3、在所述η型GaN层表面生长形成第一 InxGa1J^子讲层;[0050]C3、停止生长InxGahN子阱层的含铟气体通入,生长形成GaN隧穿层;
[0051]D3、通入生长InxGa^N子阱层的含铟气体,生长形成第二 InxGapxN子阱层;
[0052]E3、在第二 InxGa^N子阱层表面生长形成第一 InyGai_yN子垒层;
[0053]F3、停止生长InyGa^N的含铟气体通入,生长形成GaN隧穿层;
[0054]G3、通入生长InyGa1J的含铟气体,生长形成第二 InyGai_yN子垒层;
[0055]13、在InyGahyN鱼层表面依次生长形成电子阻挡层和P型GaN层,形成发光二极管。
[0056]优选地,在步骤G3和步骤13之间还包括:
[0057]H3、重复步骤F3和步骤G3,至少一次。
[0058]优选地,所述量子阱的个数为一个或多个。
[0059]优选地,所述量子阱为多个时,在步骤H3和步骤13之间还包括:
[0060]H31、在InyGahyN子鱼层表面形成第一 InxGa^xN子讲层;
[0061]H32、重复步骤C3至步骤H3,至少一次。
[0062]经由上述的技术方案可知,本发明提供的GaN基发光二极管,包括至少一个量子阱,所述量子阱内的阱层和/或垒层的内部具有至少一层GaN隧穿层。即本发明提供的GaN基发光二极管在有源层的阱层和垒层的至少一层中插入GaN隧穿层,使得GaN基发光二极管的阱层或垒层生长一定厚度后,生长一层GaN隧穿层,避免阱层或垒层中的In组分过多,造成In分布不均,形成In聚集对后续制程造成影响,进而保证了量子阱中阱层和/或垒层的晶体质量,提高了 LED的发光效率。
[0063]本发明还提供了上述GaN基发光二极管的制作方法,在生长阱层和/或垒层的过程中,生长一层或多层GaN隧穿层,以避免In聚集影响阱层和/或垒层的晶体质量,进而提高了 LED的发光效率。
【专利附图】

【附图说明】
[0064]为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
[0065]图1为传统的发光二极管内InxGahNAnyGanN量子阱结构示意图;
[0066]图2为本发明提供的一种阱层中包含GaN隧穿层的GaN基发光二极管的结构示意图;
[0067]图3为本发明提供的一种垒层中包含GaN隧穿层的GaN基发光二极管的结构示意图;
[0068]图4为本发 明提供的一种阱层和垒层中均包含GaN隧穿层的GaN基发光二极管的结构示意图;
[0069]图5为本发明提供的一种GaN基发光二极管的制作方法流程图;
[0070]图6为本发明提供的另一种GaN基发光二极管的制作方法流程图;
[0071]图7为本发明提供的又一种GaN基发光二极管的制作方法流程图。【具体实施方式】
[0072]正如【背景技术】部分所述,现有技术中的蓝绿光GaN基LED的内量子效率还有待提闻。
[0073]发明人发现,出现上述现象的原因是,在传统的量子阱,如图1所示,包括阱层101和位于所述阱层表面的垒层102,在有源层(阱层和垒层)生长过程中,随着InxGahN阱层或InyGai_yN垒层的生长,有源层厚度增加,阱层或垒层中的In组分分布变得不均匀,甚至在生长结束时会在下一个生长界面形成In “聚集”,严重情况下会形成In的纳米级的“球”(In-droplet),在这种界面下生长的下一个层结构(阱层或垒层)的晶体质量也会随之变差,影响LED的发光效率。对于多量子阱LED来说,还会进一步影响后面阱层和垒层的生长,形成恶性循环,严重影响多量子阱LED的发光效率。
[0074]基于此,发明人经过研究发现,提供了一种GaN基发光二极管,包括:
[0075]衬底;
[0076]位于所述衬底表面的缓冲层;
[0077]位于所述缓冲层表面的η型GaN层;
[0078]位于所述η型GaN层表面的至少一个量子阱,所述量子阱包括阱层和位于所述阱层表面上的垒层,所述阱层为InxGahN阱层,所述垒层为InyGai_yN垒层,其中,y〈x〈l,0〈x〈l,0 ( y〈l,所述阱层和/或所述垒层的内部具有至少一层GaN隧穿层;
[0079]位于所述量子阱表面的电子阻挡层;
[0080]位于所述电子阻挡层表面的P型GaN层。
[0081]由上述的技术方案可知,本发明提供的GaN基发光二极管在有源层的阱层和垒层的至少一层中设置了 GaN隧穿层,使得GaN基发光二极管的阱层或垒层生长一定厚度后,生长一层GaN隧穿层,避免阱层或垒层中的In组分过多,造成In分布不均,形成In聚集对后续制程造成影响,进而保证了量子阱中阱层和/或垒层的晶体质量,提高了 LED的发光效率。
[0082]以上是本申请的核心思想,下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0083]在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。
[0084]其次,本发明结合示意图进行详细描述,在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。
[0085]下面通过几个实施例具体描述本发明中提供的GaN基发光二极管及其制作方法。
[0086]本发明的一个实施例公开了一种GaN基发光二极管,包括:衬底;位于所述衬底表面的缓冲层;位于所述缓冲层表面的η型GaN层;位于所述η型GaN层表面的至少一个量子阱,所述量子阱包括阱层和位于所述阱层表面上的垒层,所述阱层为InxGahN阱层,所述垒层为11\631_#鱼层,其中,7〈1〈1,0〈1〈1,0 ( y〈l,所述讲层和/或所述鱼层的内部具有至少一层GaN隧穿层;位于所述量子阱表面的电子阻挡层;位于所述电子阻挡层表面的P型GaN层。
[0087]本实施例中所述GaN基发光二极管可以为单量子阱发光二极管,也可以是多量子阱发光二极管,本实施例中对此不做限定,优选地所述发光二极管中的量子阱数量为1-20个。
[0088]本实施例中所述发光二极管的量子阱中的阱层为InxGahN阱层,其中,0〈χ〈1,所述量子阱中的垒层为InyGai_yN垒层,其中,y〈x〈l,且O < y〈l,即本实施例中所述量子阱的垒层可以为InyGa^yN垒层也可以为GaN垒层,本实施例中对此不做限定。
[0089]需要说明的是,由InGaN本身的物理、化学性质决定,在InGaN生长过程中,随着阱层或垒层厚度的不断增加,In组分会不断升高,其分布变得不均匀,会形成In聚集。本实施例中提供的发光二极管,在阱层或垒层中加入了至少一层的GaN隧穿层,或者同时在阱层和垒层中加入至少一层GaN隧穿层,在阱层或垒层生长到一定厚度,In组分出现分布不均匀时,停止生长InGaN层,生长一层GaN层,然后继续生长含In的阱层或垒层,从而避免阱层或垒层中出现In聚集,影响量子阱的晶体质量。
[0090]发明人经过实践发现,在阱层或垒层In浓度不同时,一般形成In聚集的InGaN层的厚度为3nm-4nm,因此,本实施例中优选的,在生长讲层或鱼层到3nm时或小于3nm时,即停止In源的通入,仅通入Ga源和N源,生长形成GaN隧穿层。本实施例中在未加入GaN隧穿层时,所述量子阱阱层的厚度范围为2nm-5nm,包括端点值,由于所述阱层厚度较薄,在本实施例中优选地,所述阱层中仅增加一层GaN隧穿层,当然,在阱层厚度较厚的情况下,也可以在所述阱层内增加多层GaN隧穿层以改善阱层的晶体质量,避免出现In聚集,本实施例中对此不作限定,可以 根据实际情况进行设置。
[0091]如图2所示,为本实施例提供的一种在阱层中增加一层GaN隧穿层的发光二极管,包括:衬底 21、GaN 或 AlN 缓冲层 22、η 型 GaN 层 23、InxGahNAnyGahyN 量子阱 26、AlGaN电子阻挡层27、P型GaN层28。其中,In.Ga^.N/I^Gai^N量子阱26包括InxGai_xN阱层24和InyGai_yN垒层25。InxGa^N阱层24的厚度为2nm_5nm,包括一层InxGa1J子阱层24a、一层GaN隧穿层24b和一层InxGa^N子阱层24c,且InxGapxN子阱层24a和InxGa^N子阱层24c的厚度均小于3nm,大于0,且两层子阱层的厚度之和的范围为2nm_5nm,包括端点值。
[0092]所述量子阱垒层的厚度一般为4nm_20nm,包括端点值,对于不同厚度的垒层,可以根据实际情况,在生长垒层过程中增加GaN隧穿层的层数,以达到避免垒层中In聚集的效果O
[0093]如图3所示,为本实施例提供的一种在垒层中增加一层GaN隧穿层的发光二极管,包括:衬底 31、GaN 或 AlN 缓冲层 32、η 型 GaN 层 33、InxGahNAnyGahyN 量子阱 36、AlGaN电子阻挡层37、P型GaN层38。其中,In.Ga^.N/I^Gai^N量子阱36包括InxGai_xN阱层34和InyGa1J垒层35,本实施例中InyGa1J垒层35的厚度优选为4nm,且包括一层InyGapyN子鱼层35a、一层GaN隧穿层35b和一层InyGahyN子鱼层35c。在鱼层35的厚度大于4nm时,还可以在垒层35中设置多层子垒层和位于相邻两层子垒层之间的GaN隧穿层,其中多层子垒层的厚度均小于3nm,大于O。
[0094]需要说明的是,当所述InyGapyN垒层中y为O时,即所述垒层中不含In,无论生长垒层的厚度为多大,均不会出现In聚集现象,因此此时,仅需在量子阱的阱层中增设GaN隧穿层即可,如图1所示的发光二极管;当0〈y〈l时,由于所述垒层的厚度为4nm-20nm,包括端点值,相较于阱层来说,垒层厚度较厚,可以优选在垒层中增设GaN隧穿层,如图2所示的发光二极管;为保证量子阱的阱层和垒层均不出现In聚集,还可以同时在量子阱的阱层和垒层中增设GaN隧穿层。
[0095]如图4所示,为本实施例提供的一种在阱层和垒层中同时增加一层GaN隧穿层的发光二极管,包括:衬底41、GaN或AlN缓冲层42、n型GaN层ASUnxGahNZlnyGahN量子阱46,AlGaN 电子阻挡层 47、p 型 GaN 层 48。其中,InxGa^NZlnyGahN 量子阱 46 包括 InxGa1J阱层44和InyGa1J垒层45,本实施例中InxGai_xN阱层44包括一层InxGa1J子阱层44a、一层GaN隧穿层44b和一层InxGa^N子阱层44c,InyGa1^yN垒层45的厚度优选为4nm,且包括一层InyGahyN子鱼层45a、一层GaN隧穿层45b和一层IriyGa^N子鱼层45c,其中,子讲层和子垒层的厚度均小于3nm,大于O。
[0096]需要说明的是,本实施例中并不限定所述增设的GaN隧穿层的位置和层数,GaN隧穿层还可以为多层,具体可根据实际需求而定。本实施例中GaN隧穿层的厚度范围优选为一个到几个GaN单原子层的厚度,具体为2.5A-7.5A,包括端点值。由于GaN隧穿层的厚度较薄,几乎100%的载流子都能穿过,所以不会影响电子和空穴的移动,不会减少电子-空穴复合率(即发光效率),同时,由于GaN隧穿层的增加,能够避免出现In聚集,从而提高InxGa1J或InyGa1J发光层的晶体质量,提高LED的发光效率。
[0097]本发明的另一个实施例提供了一种阱层内部具有GaN隧穿层的GaN基发光二极管的制作方法,其中,所述GaN基发光二极管可以是单量子阱发光二极管也可以是多量子阱发光二极管,本实施例中对此不做限定。下面以单量子阱发光二极管为例进行具体说明所述阱层内部具有GaN隧穿层的GaN基发光二极管的制作方法,且本实施例中以高纯氢气或氮气作为载气,以三甲基镓和/或三乙基镓为镓源;三甲基铝为铝源、三甲基铟为铟源、以氨气为氮源,采用硅烷作为N型掺杂剂、二茂镁作为P型掺杂剂,采用MOVCD((Metal-organic Chemical Vapor DePosition,金属有机化合物化学气相淀积)工艺制作形成GaN基发光二极管为例进行说明。在本发明的其他实施例中,所述GaN基发光二极管的制作原料还可以为其他材料,工艺也可以为其他工艺,本实施例中对此不做限定。
[0098]请参考图5,所述阱层内部具有GaN隧穿层的GaN基发光二极管的制作方法包括以下步骤:
[0099]步骤SlOl:提供具有缓冲层和η型GaN层的半导体衬底;
[0100]本实施例中所述半导体衬底包括衬底、位于所述衬底表面上的缓冲层,以及位于所述缓冲层表面上的η型GaN层。其中,所述衬底可以为蓝宝石衬底、或氮化镓衬底、或碳化硅衬底、或硅衬底,本实施例中对所述衬底的材料不做限定,优选地,所述衬底为蓝宝石衬底。所述缓冲层可以为氮化镓缓冲层,也可以为氮化铝缓冲层,本实施例中对此不做限定。
[0101]本实施例中提供的发光二极管的制作步骤可以参见图2所示的发光二极管的结构,本实施例中所述的半导体衬底包括衬底21、位于衬底21表面上的缓冲层22,以及位于缓冲层22表面上的η型GaN层23。
[0102]步骤S102:在η型GaN层23表面生长形成第一 InxGai_xN子阱层24a ;
[0103]生长InxGa^N子阱层24a的具体过程为:在温度范围为700°C -800°C,压力范围为50Torr-800Torr,V/III比为300-20000的条件下,同时通入含镓的气体、含铟的气体和含氮的气体,通过MOCVD生长形成第一 InxGahN子阱层,其中,厚度范围为0.5nm_2.5nm,包括端点值。
[0104]步骤S103:停止生长InxGahN子阱层24a的含铟气体通入,生长形成GaN隧穿层24b ;
[0105]第一 InxGahN子阱层24a生长完成后,在生长条件不变的情况下,停止通入含铟气体,继续通入含镓气体和含氮气体,生长形成厚度为2.5 A-7.5 A的GaN隧穿层,其中所述生长条件为:温度范围为700°c -800°c,压力范围为50Torr-800Torr,V/III比为300-20000。即本步骤中仅需将MOCVD设备提供含铟气体的铟源通道关闭即可,其他生长条件不变。
[0106]步骤S104:通入生长InxGahN子阱层的含铟气体,生长形成第二 InxGapxN子阱层24c ;
[0107]在GaN隧穿层24b生长完毕后,不改变生长条件,并通入生长Ιηχ6&1_χΝ子阱层的含铟气体,在所述GaN隧穿层上生长一层第二 InxGahN子阱层,所述第二 InxGai_xN子阱层的厚度,本实施例中不做限定,只要其满足与所述第一 InxGahN子阱层的厚度之和为2nm_5nm即可。
[0108]步骤S105:在第二 InxGa^N子阱层24c表面生长形成InyGapyN垒层25,其中,y〈x〈l,0〈χ〈1,O ≤ y〈l;
[0109]在第二 InxGa1^N子讲层24c生长完毕后,生长InyGahyN鱼层25,两层InxGa1J^子阱层24a、24c与位于两者之间的GaN隧穿层24b组成新的阱层,再与垒层25形成一个量子阱,如图2中的量子阱26所示。
[0110]需要说明的是,当则所述垒层为GaN层,此时,生长InyGa1J垒层的具体过程为:在温度范围为700°C -900°C,压力范围为50Torr-800Torr,V/III比为300-20000的条件下,同时通入含镓的气体和含氮的气体,通过MOCVD生长形成垒层,所述垒层的厚度范围为4nm-20nm,包括端点值。
[0111]当InyGai_yN垒层中的y值满足0〈y〈l时,所述垒层的生长过程为:在温度范围为7000C -900°C,压力范围为50Torr-800Torr,V/III比为300-20000的条件下,同时通入含镓的气体、含铟的气体和含氮的气体,通过MOCVD生长形成垒层,所述垒层的厚度范围为4nm-20nm,包括端点值。
[0112]由于所述垒层厚度较厚,且未增设GaN隧穿层,本实施例中优选的所述垒层为GaN垒层。
[0113]步骤S106:在InyGa1J垒层25表面依次生长形成电子阻挡层27和p型GaN层28,形成发光二极管。
[0114]本实施例中电子阻挡层27优选为AlGaN,在本发明的其他实施例中,所述电子阻挡层还可以为其他材质,本实施例中对此不做限定。
[0115]本实施例中提供一种在InxGahNAnyGanN量子阱的InxGa1J阱层中包含一层GaN隧穿层的发光二极管的制作方法,在生长InxGahN阱层的过程中,生长InxGapxN阱层一定厚度后,生长一层GaN隧穿层,然后再继续生长InxGahN阱层,一方面GaN隧穿层的厚度较薄,几乎100%的载流子都能够通过,由于量子隧穿效应,不会对载流子在量子阱中的传输产生负面影响;另一方面,GaN隧穿层的制作,能够避免生长厚度较厚的InxGahN阱层时,由于In含量较多,分布不均匀,造成的In聚集现象,从而提高了 InxGahNAnyGahN量子阱阱层的晶体质量,进而提高了发光二极管的发光效率。
[0116]需要说明的是,上面是以单量子阱为例进行说明的,当所述发光二极管为多量子阱发光二极管时,在一个量子阱制作完成后以及制作电子阻挡层之前还需要再重复至少一次制作子阱层(该子阱层制作在上一个量子阱的垒层表面)、隧穿层(该隧穿层的制作可以参考步骤S103)、子阱层(该子阱层的制作可以参考S104)、垒层(该垒层的制作可以参考步骤S105)的步骤,从而形成多量子阱发光二极管,由于多量子阱发光二极管与单量子阱发光二极管的制作方法相似,本领域技术人员能够根据本实施例中提供的单量子阱发光二极管的制作方法推导出多量子阱发光二极管的制作方法,因此,本实施例中不再以多量子阱为例进行说明。
[0117]本发明的另一个实施例中提供了一种InyGa1J (其中,0〈y〈l)垒层内部具有GaN隧穿层的GaN基发光二极管的制作方法,其中,所述GaN基发光二极管可以是单量子阱发光二极管也可以是多量子阱发光二极管,本实施例中对此不做限定。下面以单量子阱发光二极管为例进行具体说明所述垒层内部具有GaN隧穿层的GaN基发光二极管的制作方法,同样的,本实施例中以高纯氢气或氮气作为载气,以三甲基镓和/或三乙基镓为镓源;三甲基铝为铝源、三甲基铟为铟源、以氨气为氮源,采用硅烷作为N型掺杂剂、二茂镁作为P型掺杂齐Li,米用 MOVCD ( (Metal-organic Chemical Vapor DePosition,金属有机化合物化学气相淀积)工艺制作形成GaN基发光二极管为例进行说明。
[0118]请参考图6,所述垒层内部具有GaN隧穿层的GaN基发光二极管的制作方法包括以下步骤:
[0119]步骤S201:提供具有缓冲层和η型GaN层的半导体衬底; [0120]本实施例中所述半导体衬底包括衬底、位于所述衬底表面上的缓冲层,以及位于所述缓冲层表面上的η型GaN层。其中,所述衬底可以为蓝宝石衬底、或氮化镓衬底、或碳化硅衬底、或硅衬底,本实施例中对所述衬底的材料不做限定,优选地,所述衬底为蓝宝石衬底。所述缓冲层可以为氮化镓缓冲层,也可以为氮化铝缓冲层,本实施例中对此不做限定。
[0121]本实施例中提供的发光二极管的制作步骤可以参见图3所示的发光二极管的结构,本实施例中所述的半导体衬底包括衬底31、位于衬底31表面上的缓冲层32、以及位于缓冲层32表面上的η型GaN层33。
[0122]步骤S202:在η型GaN层33表面生长形成InxGapxN阱层34 ;
[0123]生长InxGahN阱层34的具体过程为:在温度范围为700°C -800°C,压力范围为50Torr-800Torr, V/III比为300-20000的条件下,同时通入含镓的气体、含铟的气体和含氮的气体,通过MOCVD生长形成InxGahN阱层,其中,阱层的厚度范围为2nm_5nm。
[0124]步骤S203:在InxGahN阱层34表面生长形成第一 InyGai_yN子垒层35a ;
[0125]其中,本实施例中InyGa1J垒层中的y值满足0〈y〈I,生长InyGa1J子垒层的具体过程为:在温度范围为700°C _900°C,压力范围为50Torr-800Torr,V/III比为300-20000的条件下,同时通入含镓的气体、含铟的气体和含氮的气体,通过MOCVD生长形成InyGapyN子鱼层,其中,InyGa1^yN子鱼层35a的厚度范围为0nm-3nm,包括3nm或0nm-4nm,包括4nm。
[0126]步骤S204:停止生长InyGai_yN的含铟气体通入,生长形成GaN隧穿层35b ;
[0127]第一 InyGai_yN子垒层生长完成后,在生长条件不变的情况下,停止通入含铟气体,继续通入含镓气体和含氮气体,生长形成厚度为2.5 A-7.5 A的GaN隧穿层,其中所述生长条件为:温度范围为700°c -900°c,压力范围为50Torr-800Torr,V/III比为300-20000。即本步骤中仅需将MOCVD设备提供含铟气体的铟源通道关闭即可,其他生长条件不变。
[0128]步骤S205:通入生长InyGapyN的含铟气体,生长形成第二 InyGapyN子垒层35c ;
[0129]第二 InyGa^N子垒层35c的生长条件与第一 InyGapyN子垒层35a的生长条件相同。在第二 InyGahyN子鱼层35c生长完毕后,两层IriyGa^N子鱼层35a、35c与位于两者之间的GaN隧穿层35b组成新的垒层,再与阱层34形成一个量子阱,如图3中的量子阱36所示 ο
[0130]由于本实施例中所述的InyGahyN鱼层厚度范围为4nm-20nm,包括端点值,而在InyGa1^yN的生长厚度达到3nm_4nm时,出现In聚集,因此,本实施例中优选的鱼层中的第一InyGa1^yN子鱼层和第二 InyGa^N子鱼层的厚度均小于3nm,大于O。当所述InyGa^N鱼层的总厚度较小,如4nm-6nm时,所述鱼层中可以仅仅增加一层GaN隧穿层,而当所述InyGapyN垒层的总厚度较大,如大于6nm时,所述垒层中的GaN隧穿层可以为多层,本实施例中优选的,所述GaN隧穿层的层数范围为I层-5层。需要说明的是,所述GaN隧穿层的具体层数可以根据实际垒层的总厚度进行设置,本实施例中对此不再进行限定。
[0131]当所述InyGai_yN垒层的总厚度较大时,在该步骤之后还可以包括步骤S206:重复步骤S204和步骤S205,至少一次,即形成至少两层GaN隧穿层。
[0132]步骤S206:在形成的InyGai_yN子垒层35c表面生长形成电子阻挡层37和P型GaN层38,形成发光二极管。
[0133]本实施例中电子阻挡层37优选为AlGaN,在本发明的其他实施例中,所述电子阻挡层还可以为其他材质,本实施例中对此不做限定。
[0134]本实施例中提供一种在InxGahNAnyGanN量子阱的InyGa1J垒层中包含一层GaN隧穿层的发光二极管的制作方法,在生长InyGai_yN垒层的过程中,生长InyGapyN垒层一定厚度后,生长一层GaN隧穿层,然后再继续生长InyGai_yN垒层,一方面GaN隧穿层的厚度较薄,几乎100%的载流子都能够通过,由于量子隧穿效应,不会对载流子在量子阱中的传输产生负面影响;另一方面,GaN隧穿层的制作,能够避免生长厚度较厚的InyGai_yN垒层时,由于In含量较多,分布不均匀,造成的In聚集现象,从而提高了 InxGahNAnyGapyN量子讲鱼层的晶体质量,进而提高了发光二极管的发光效率。
[0135]需要说明的是,上面是以单量子阱为例进行说明的,当所述发光二极管为多量子阱发光二极管时,在一个量子阱制作完成后以及制作电子阻挡层之前还需要再重复至少一次制作阱层(该子阱层制作在上一个量子阱的子垒层表面)、子垒层(该子垒层的制作可以参考步骤S203)、隧穿层(该隧穿层的制作可以参考步骤S204)、子垒层(该垒层的制作可以参考步骤S205)的步骤,从而形成多量子阱发光二极管,由于多量子阱发光二极管与单量子阱发光二极管的制作方法相似,本领域技术人员能够根据本实施例中提供的单量子阱发光二极管的制作方法推导出多量子阱发光二极管的制作方法,因此,本实施例中不再以多量子阱为例进行说明。
[0136]需要说明的是,当垒层的厚度较厚,且量子阱的个数为多个时,步骤S205之后,步骤S206之间还包括重复制作阱层和包括多个隧穿层的垒层的步骤,本实施例中不限定上述重复的次数,可以根据实际发光二极管的量子阱个数和量子阱中垒层的厚度进行设置。[0137]本发明的另一实施例还公开了一种同时在InxGahNAnyGahN量子讲的讲层和鱼层中增设GaN隧穿层的GaN基发光二极管,其中,y〈x〈l,0〈x〈l,0〈y〈l。所述GaN基发光二极管可以为单量子阱发光二极管,也可以为多量子阱发光二极管,本实施例中以单量子阱为例进行详细介绍。
[0138]请参考图7,所述发光二极管的制作方法包括以下步骤:
[0139]步骤S301:提供具有缓冲层和η型GaN层的半导体衬底;
[0140]本实施例中所述半导体衬底包括衬底、位于所述衬底表面上的缓冲层,以及位于所述缓冲层表面上的η型GaN层。其中,所述衬底可以为蓝宝石衬底、或氮化镓衬底、或碳化硅衬底、或硅衬底,本实施例中对所述衬底的材料不做限定,优选地,所述衬底为蓝宝石衬底。所述缓冲层可以为氮化镓缓冲层,也可以为氮化铝缓冲层,本实施例中对此不做限定。
[0141]本实施例中提供的发光二极管的制作步骤可以参见图4所示的发光二极管的结构,本实施例中所述的半导体衬底包括衬底41、位于衬底41表面上的缓冲层42,以及位于缓冲层42表面上的η型GaN层43。
[0142]步骤S302:在η型GaN层43表面生长形成第一 InxGa1J阱层44a ;
[0143]生长InxGa^N子阱层44a的具体过程为:在温度范围为700°C -800°C,压力范围为50Torr-800Torr,V/III比为300-20000的条件下,同时通入含镓的气体、含铟的气体和含氮的气体,通过MOCVD生长形成第一 InxGahN子阱层,其中,厚度范围为0.5nm_2.5nm,包括端点值。
[0144]步骤S303:停止生长InxGahN子阱层的含铟气体通入,生长形成GaN隧穿层44b ;
[0145]第一 InxGahN子阱层44a生长完成后,在生长条件不变的情况下,停止通入含
铟气体,继续通入含镓气体和含氮气体,生长形成厚度为2.5 A-7.5 A的GaN隧穿层,其中所述生长条件为:温度范围为700°c -800°c,压力范围为50Torr-800Torr,V/III比为300-20000。即本步骤中仅需将MOCVD设备提供含铟气体的铟源通道关闭即可,其他生长条件不变。
[0146]步骤S304:通入生长InxGahN子阱层的含铟气体,生长形成第二 InxGapxN子阱层44c ;
[0147]在GaN隧穿层44b生长完毕后,不改变生长条件,并通入生长InxGapxN子阱层的含铟气体,在所述GaN隧穿层上生长一层第二 InxGahN子阱层44c,所述第二 InxGai_xN子阱层的厚度,本实施例中不做限定,只要其满足与所述第一 InxGahN子阱层的厚度之和为2nm_5nm SP 可。
[0148]步骤S305:在第二 InxGahN子阱层44c表面生长形成第一 InyGai_yN子垒层45a ;
[0149]本实施例中InyGai_yN垒层中的y值满足0〈y〈l,所述垒层的生长过程为:在温度范围为700°C _900°C,压力范围为50Torr-800Torr,V/III比为300-20000的条件下,同时通入含镓的气体、含铟的气体和含氮的气体,通过MOCVD生长形成垒层,所述垒层的厚度范围为4nm-20nm, 包括端点值。
[0150]步骤S306:停止生长InyGa1J的含铟气体通入,生长形成GaN隧穿层45b ;
[0151]在生长条件不变的情况下,关闭含铟气体的通道,仅继续通入含镓气体和含氮气体,生长形成厚度为2.5 A-7.5 A GaN隧穿层45b。[0152]步骤S307:通入生长InyGa1J的含铟气体,生长形成第二 InyGa1J子垒层45c ;
[0153]第二 InyGa^N子垒层45c的生长条件与第一 InyGapyN子垒层45a的生长条件相同。在第二 InyGahyN子鱼层45c生长完毕后,两层InxGa1J^子讲层44a、44c与位于两者之间的GaN隧穿层44b组成新的讲层44,两层InyGapyN子讲层45a、45c与位于两者之间的GaN隧穿层45b组成新的垒层45,阱层44与垒层45形成一个量子阱46,如图4中的量子阱46所示。
[0154]由于本实施例中所述的InyGapyN鱼层厚度范围为4nm-20nm,包括端点值。当所述InyGa1^yN鱼层的总厚度较小,如4nm_6nm时,所述鱼层中可以仅仅增加一层GaN隧穿层,而当所述InyGai_yN垒层的总厚度较大,如大于6nm时,所述垒层中的GaN隧穿层可以为多层,本实施例中优选的,所述GaN隧穿层的层数范围为I层-5层。需要说明的是,所述GaN隧穿层的具体层数可以根据实际垒层的总厚度进行设置,本实施例中对此不再进行限定。
[0155]当所述InyGapyN鱼层的总厚度较大时,在该步骤之后还可以包括步骤S3071:重复步骤S306和步骤S307,至少一次,即形成至少两层GaN隧穿层。
[0156]步骤S308:在InyGai_yN垒层表面依次生长形成电子阻挡层47和p型GaN层48,形成发光二极管。
[0157]本实施例中电子阻挡层47优选为AlGaN,在本发明的其他实施例中,所述电子阻挡层还可以为其他材质,本实施例中对此不做限定。
[0158]本实施例中提供一种在InxGa1JVlnyGa1IN量子讲的InxGa^xN讲层和InyGatyN鱼层中均包含至少一层GaN隧穿层的发光二极管的制作方法,在生长量子阱的过程中,生长一定厚度的InGaN后,生长一层GaN隧穿层,然后再继续生长InGaN层。一方面GaN隧穿层的厚度较薄,几乎100%的载流子都能够通过,由于量子隧穿效应,不会对载流子在量子阱中的传输产生负面影响;另一方面,GaN隧穿层的制作,能够避免生长厚度较厚的InGaN层时,由于In含量较多,分布不均匀,造成的In聚集现象,从而提高了 InxGahNAnyGapyN量子阱阱层和垒层的晶体质量,进而提高了发光二极管的发光效率。
[0159]需要说明的是,上面是以单量子阱为例进行说明的,当所述发光二极管为多量子阱发光二极管时,在一个量子阱制作完成后以及制作电子阻挡层之前还需要再重复至少一次制作阱层和垒层的步骤,从而形成多量子阱发光二极管,由于多量子阱发光二极管与单量子阱发光二极管的制作方法相似,本领域技术人员能够根据本实施例中提供的单量子阱发光二极管的制作方法推导出多量子阱发光二极管的制作方法,因此,本实施例中不再以多量子阱为例进行说明。
[0160]需要说明的是,当垒层的厚度较厚,且量子阱的个数为多个时,发光二极管的制作方法为:步骤S301至步骤S307,然后进行步骤S3071,之后再重复步骤S302至步骤S3071至少一次,最终形成具有多个量子阱,且每一个量子阱中的阱层均包括一层GaN隧穿层,每一个量子阱的垒层中均包括至少两个GaN隧穿层的发光二极管。
[0161]本说明书中各个部分采用递进的方式描述,每个部分重点说明的都是与其他部分的不同之处,各个 部分之间相同相似部分互相参见即可。
[0162]对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
【权利要求】
1.一种GaN基发光二极管,其特征在于,包括: 衬底; 位于所述衬底表面的缓冲层; 位于所述缓冲层表面的η型GaN层; 位于所述η型GaN层表面的至少一个量子阱,所述量子阱包括阱层和位于所述阱层表面上的垒层,所述阱层为InxGa^N阱层,所述垒层为InyGa^N垒层,其中,y〈x〈l,0〈x〈l,O ( y〈l,所述阱层和/或所述垒层的内部具有至少一层GaN隧穿层; 位于所述量子阱表面的电子阻挡层; 位于所述电子阻挡层表面的P型GaN层。
2.根据权利要求1所述的GaN基发光二极管,其特征在于,所述量子阱中的阱层为包括两层子阱层和位于所述两层子阱层之间的一层GaN隧穿层的多层结构。
3.根据权利要求2所述的GaN基发光二极管,其特征在于,所述两层子阱层的厚度均小于3nm,大于O,且两层子阱层的厚度之和的范围为2nm-5nm,包括端点值。
4.根据权利要求1所述的GaN基发光二极管,其特征在于,当0〈y〈l时,所述量子阱中的垒层为包括多层子垒层和位于相邻两层子垒层之间的GaN隧穿层的多层结构。
5.根据权利要求1 所述的GaN基发光二极管,其特征在于,当0〈y〈l时,所述量子阱中的阱层和所述垒层的内部均具有至少一层GaN隧穿层。
6.根据权利要求4或5所述的GaN基发光二极管,其特征在于,所述多层子垒层的厚度均小于3nm,大于O,且所述多层子垒层的厚度之和的范围为4nm-20nm,包括端点值。
7.根据权利要求1_3、6任意一项所述的GaN基发光二极管,其特征在于,所述GaN隧穿层的厚度范围为2.5A-7.5 A,包括端点值。
8.根据权利要求7所述的GaN基发光二极管,其特征在于,所述量子阱的个数为1-20个。
9.一种GaN基发光二极管的制作方法,其特征在于,所述GaN基发光二极管的量子阱的阱层内部具有至少一层GaN隧穿层的多层结构; 所述GaN基发光二极管的制作方法为: Al、提供具有缓冲层和η型GaN层的半导体衬底; B1、在所述η型GaN层表面生长形成第一 InxGapxN子讲层; Cl、停止生长InxGahN子阱层的含铟气体通入,生长形成GaN隧穿层; D1、通入生长InxGa^N子阱层的含铟气体,生长形成第二 InxGa^N子阱层; Ε1、在第二 InxGa1^N子讲层表面生长形成InyGahyN鱼层,其中,y〈x〈l, 0〈χ〈1,0 ( y〈l ; F1、在InyGai_yN垒层表面依次生长形成电子阻挡层和P型GaN层,形成发光二极管。
10.根据权利要求9所述的GaN基发光二极管的制作方法,其特征在于,所述量子阱的个数为一个或多个。
11.根据权利要求10所述的GaN基发光二极管的制作方法,其特征在于,所述量子阱为多个时,在步骤El和步骤Fl之间还包括: E11、在InyGa^N垒层表面继续生长形成第一 InxGa^N子阱层; E12、重复步骤Cl、步骤Dl和步骤El至少一次。
12.—种GaN基发光二极管的制作方法,其特征在于,所述量子阱的垒层为包括多层InyGa1^yN子垒层和位于相邻两层InyGai_yN子垒层之间的GaN隧穿层的多层结构,其中,0<y<l ; 所述GaN基发光二极管的制作方法为: A2、提供具有缓冲层和η型GaN层的半导体衬底; Β2、在所述η型GaN层表面生长形成InxGai_xN阱层; C2、在所述InxGa^N阱层表面生长形成第一 InyGa^N子垒层; D2、停止生长InyGai_yN的含铟气体通入,生长形成GaN隧穿层; E2、通入生长InyGa1J的含铟气体,生长形成第二 InyGa1J子垒层; G2、在形成的InyGahyN子鱼层表面生长形成电子阻挡层和p型GaN层,形成发光二极管。
13.根据权利要求12所述的GaN基发光二极管的制作方法,其特征在于,在步骤E2与步骤G2之间还包括: F2、重复步骤D2和步骤E2,至少一次。
14.根据权利要求13所述的GaN基发光二极管的制作方法,其特征在于,所述量子阱的个数为一个或多个。
15.根据权利要求14所述的GaN基发光二极管的制作方法,其特征在于,所述量子阱为多个时,在步骤F2和步骤G2之间还包括: F21、在InyGai_yN子垒层表面形成InxGa1J阱层; F22、重复步骤C2至步骤F2至少一次。
16.一种GaN基发光二极管的制作方法,其特征在于,所述量子阱的InxGahN阱层和InyGa1^yN垒层的内部均具有至少一层GaN隧穿层,其中,y<x< I,0〈x〈 I,0〈y〈 I ; 所述GaN基发光二极管的制作方法为: A3、提供具有缓冲层和η型GaN层的半导体衬底; Β3、在所述η型GaN层表面生长形成第一 InxGapxN子讲层; C3、停止生长InxGahN子阱层的含铟气体通入,生长形成GaN隧穿层; D3、通入生长InxGa^N子阱层的含铟气体,生长形成第二 InxGa^N子阱层; Ε3、在第二 InxGa^N子讲层表面生长形成第一 InyGapyN子鱼层; F3、停止生长InyGai_yN的含铟气体通入,生长形成GaN隧穿层; G3、通入生长InyGa1J的含铟气体,生长形成第二 InyGa1J子垒层; 13、在InyGai_yN垒层表面依次生长形成电子阻挡层和P型GaN层,形成发光二极管。
17.根据权利要求16所述的GaN基发光二极管的制作方法,其特征在于,在步骤G3和步骤13之间还包括: H3、重复步骤F3和步骤G3,至少一次。
18.根据权利要求17所述的GaN基发光二极管的制作方法,其特征在于,所述量子阱的个数为一个或多个。
19.根据权利要求18所述的GaN基发光二极管的制作方法,其特征在于,所述量子阱为多个时,在步骤H3和步骤13之间还包括: H31、在InyGahyN子鱼层表面形成第一 InxGa1J^子讲层;H32、重复 步骤C3至步骤H3,至少一次。
【文档编号】H01L33/00GK103794690SQ201410055139
【公开日】2014年5月14日 申请日期:2014年2月18日 优先权日:2014年2月18日
【发明者】张冀, 李鹏 申请人:佛山市国星半导体技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1