反向流动泄压阀和燃料电池系统的制作方法

文档序号:7043604阅读:133来源:国知局
反向流动泄压阀和燃料电池系统的制作方法
【专利摘要】本发明公开了一种反向流动泄压阀,所述反向流动泄压阀包括:第一进给口;第二进给口;单向阀,位于在第一进给口和第二进给口之间延伸的主流体通路中,单向阀被配置以允许流体从第一进给口流到第二进给口,且阻止流体沿相反方向的流过;与主流体通路流体连通的旁路流体通路;密封阀,压靠在旁路通路和清除端口之间的旁路通路的端部上,其中密封阀被配置以在第一进给口中的流体压力超过第二进给口处的流体压力时保持对旁路通路的密封以阻止通过旁路流体通路从主流体通路到清除端口的流体流,且被配置以在第二进给口处的流体压力超过第一进给口处的流体压力时允许流体流通过旁路流体通路从第二进给口流到清除端口。本发明还公开了一种燃料电池系统。
【专利说明】反向流动泄压阀和燃料电池系统
[0001]本申请是申请日为2008年09月25日、申请号为200880117728.5、发明名称为“燃料电池系统”的专利申请的分案申请。
【技术领域】
[0002]本发明涉及一种燃料电池系统的操作以及与其相关的设备的操作,且具体地但不排他地涉及用于使燃料电池系统停止的策略。
【背景技术】
[0003]水对于燃料电池系统的操作是不可缺少的,所述燃料电池系统例如成此处所述的系统的形式,此处所描述的系统包括围绕质子交换膜(PEM)建立的燃料电池堆。从阳极流动路径传导通过PEM的质子(氢离子)与存在于阴极流动路径中的氧的反应产生水。需要从燃料电池堆去除过量的水,以避免溢流并引起随之发生的性能退化。然而,需要至少在阴极流动路径中存在一定量的水以维持PEM的水合作用,以便实现燃料电池的优化的性能。通过仔细权衡注入和去除来控制所述水,也可以提供用于从燃料电池堆中去除过量的热量的有用的机制。
[0004]为了优化性能,可以在这种燃料电池系统内有意地利用通过注射进入所述堆的阴极流动路径中的水。与其他类型的采用分离的冷却通道的燃料电池系统相比,这种注水燃料电池系统潜在的优点是减小的尺寸和复杂度。如例如在GB2409763中所描述的,水可以通过水配送歧管直接注入到阴极流动路径中。
[0005]对于注水系统,重要的是进给返回至阴极流动路径中的所有水是高纯度的,以便避免对PEM的污染和由此带来的堆性能的退化。然而,这种对高纯度的要求意味着,不能使用降低水的凝固点或冰点的添加剂。尤其对于汽车领域,通常的要求包括从冰点以下(典型地低至-20°C)启动以复制燃料电池在实际上可能使用的环境。因为高纯度水具有0°C的冰点(在Ibar压强下),假定有充足的时间任何遗留在燃料电池系统中的水将在燃料电池停止之后冻结。
[0006]燃料电池系统中的冰,尤其是阴极流动路径内的冰可能会阻止所述堆适当地操作,或者完全阻止堆操作。如果阴极流动路径中的任何部分被冰阻塞,空气不能通过阴极,且燃料电池不能自加热到冰点以上。此后将需要加热整个堆的其他方法,这将会在燃料电池可以开始供应电能和自身加热之前,需要消耗外部电力。
[0007]例如在US6479177中描述的清除操作可以在使燃料电池堆停止时使用。这一文件公开一种燃料电池堆,其具有与阴极流动路径分开的水冷却通路。在允许堆的温度下降到冰点以下之前,加压的干燥的氮气进给被用于从所述堆清除水。然而这种方法需要加压的氮气的供给,在汽车环境下这可能是不可行的或甚至是不被期望的。
[0008]本发明的目的在于解决上述问题中的一个或更多个的问题。

【发明内容】
[0009]在第一方面中,本发明提供一种停止燃料电池系统操作的方法,所述燃料电池系统包括燃料电池堆,所述方法包括以下连续的步骤:
[0010]i)停止燃料到燃料电池堆的供给;
[0011]ii)关闭位于与燃料电池系统的阴极系统流体连通的排放管线上的截止阀,所述阴极系统包括穿过燃料电池堆的阴极流体流动路径;
[0012]iii)用与所述燃料电池堆中的阴极空气入口流体连通的空气压缩机给所述阴极系统加压;和
[0013]iv)从所述阴极流动路径排出水。
[0014]在第二方面中,本发明提供一种燃料电池系统,其包括:
[0015]燃料电池堆;
[0016]具有阴极流体流动路径的阴极系统,所述阴极流体流动路径包括以串联方式连接并配置成允许空气通过所述燃料电池堆的阴极空气入口管线、位于所述燃料电池堆中的阴极体积和阴极引出管线;
[0017]与所述阴极空气入口管线流体连通的空气压缩机;
[0018]隔热的收集容器,其被配置成通过水回流管线接收来自所述阴极流动路径的水,
[0019]其中所述燃料电池系统被配置以在停止所述系统的操作期间将来自所述阴极流动路径的水通过所述水回流管线排入到所述收集容器中。
[0020]在第三方面中,本发明提供一种反向流动泄压阀,所述反向流动泄压阀包括:
[0021]第一进给口 ;
[0022]第二进给口 ;
[0023]单向阀,所述单向阀位于在所述第一进给口和所述第二进给口之间延伸的主流体通路中,所述单向阀被配置以允许流体从所述第一进给口流到所述第二进给口,且阻止流体沿相反方向的流过;
[0024]与所述主流体通路流体连通的旁路流体通路;
[0025]密封阀,所述密封阀压靠在所述旁路通路和清除端口之间的所述旁路通路的端部上,
[0026]其中所述密封阀被配置以在所述第一进给口中的流体压力超过所述第二进给口处的流体压力时保持对所述旁路通路的密封以阻止通过所述旁路流体通路从所述主流体通路到所述清除端口的流体流,且被配置以在所述第二进给口处的流体压力超过所述第一进给口处的流体压力时允许流体流通过所述旁路流体通路从所述第二进给口流到所述清除端口。
[0027]在第四方面中,本发明提供一种燃料电池系统,其包括:
[0028]燃料电池堆;
[0029]具有阴极流体流动路径的阴极系统,所述阴极流体流动路径包括以串联方式连接并被配置以允许空气流过所述燃料电池堆的阴极空气入口管线、位于所述燃料电池堆中的阴极体积和阴极引出管线;
[0030]热交换器,所述热交换器与水分离器串联连接到所述阴极流体流动路径的所述阴极引出管线上,
[0031]其中所述水分离器的排水出口管线通过第一水回流管线连接到水收集容器上。【专利附图】

【附图说明】
[0032]本发明将仅以示例的方式且参照附图进行描述,在附图中:
[0033]图1示出在整个燃料电池系统内的各个部件的布置的示意图;
[0034]图2示出示例性水收集容器的示意图;
[0035]图3示出示例性反向流动泄压阀的剖面立体图;
[0036]图4a和4b示意地示出图3中的反向流动泄压阀的操作;和
[0037]图5a和5b示意地示出用于阴极引出流液体分离的两种替换配置。
【具体实施方式】
[0038]图1示出了包括燃料电池堆110和其他相关部件的示例性燃料电池系统100的示意图。燃料电池堆Iio具有通过其的阴极流动路径,阴极流动路径包括空气入口 124,该空气入口 124通向空气入口管线123并在阴极空气入口 126处进入所述堆。在穿过燃料电池堆110内的内部阴极体积(未示出)之后,阴极流动路径从燃料电池堆110出来、进入阴极引出管线121中、通过阴极排放管线122和排放截止阀120。在正常操作期间,排放截止阀120部分打开或完全打开。例如具有相关的冷却风扇139的热交换器130和水分离器(water separator) 131的各种部件可以连接到阴极流动路径中的阴极引出管线121和排放管线122或连接至其的一部分。温度传感器TX1、TX2、TX3、TX5和压力传感器ΡΧ2、ΡΧ3也可以被设置,被连接到适合的位置上以监测阴极流动路径的入口管线123和引出管线121。
[0039]在本文中的措辞“阴极系统”意图是要包括燃料电池系统100中的与燃料电池堆中的阴极体积相关的部分。这些部分包括燃料电池中的各种内部部件(例如入口、出口、内部流动路径和水配送结构)以及与阴极体积流体连通的部件(例如液体和气体的各种入口、出口、流通和排放管线。术语“阴极流动路径”的意图是要包含阴极系统的次级系统(subset),所述次级系统包括从空气入口 124通过空气压缩机133、入口管线123、燃料电池堆110的阴极体积和阴极引出管线121的流体流动路径。术语“阳极系统”和“阳极流动路径”可以参考与阳极体积相关的燃料电池系统100的各个部件,进行类似地诠释。
[0040]连接到阴极空气入口管线123的空气压缩机133给阴极流动路径提供压缩空气。其他部件(例如空气入口热交换器134、流量计135、一个或更多的空气过滤器136、137以及空气加热器138)可以设置在空气入口 124和燃料电池堆110之间的阴极入口管线123中。空气入口热交换器134可以用于连接冷却剂管线141、三通阀142以及温度传感器TX7,以便在燃料电池系统100操作期间预先加热来自空气压缩机133的空气和来自冷却剂管线141的冷却剂。通过空气入口热交换器134的冷却剂管线141形成分立的冷却回路,其被配置以从压缩机133之后的空气流中抽取热量。这种冷却剂管线141优选在燃料电池堆110达到正常操作温度之后进行操作,以便避免在系统100的启动期间从阴极空气入口管线123的空气入口流中抽取热量。管线141中的冷却剂的导流可以通过使用阀142来实现,从而允许对冷却剂是否被输送给热交换器134进行控制。因为冷却剂管线141与进给到阴极系统中的水分离开,所以对高纯水的要求是不一样的。因此在冷却剂管线141中所使用的冷却剂可以包括例如乙二醇的添加剂以降低所使用的冷却剂的冰点。
[0041]通常为气态氢形式的燃料经由减压阀151和激励阀152(优选为通常是关闭的电磁激励阀形式),进入燃料电池系统。当燃料供给150为气态氢形式时,其通常远离燃料电池系统设置,例如成朝向车辆后部的加压罐的形式。另一电磁激励阀153和减压阀154可以设置为较靠近燃料电池堆110,且位于燃料源150和燃料电池堆110的阳极入口 156之间的阳极流动路径的燃料入口管线155中。因此,提供通向阳极入口 156的两组分开的阀,一组阀151、152靠近罐,另一组阀153、154较靠近燃料电池堆110,其中中间加压燃料管线119位于它们之间。减压阀154将干燃料气体压力调节到适于引入到燃料电池堆110中的水平。减压阀154优选是已经施加预定压力设定的被动装置,尽管也可以使用主动控制装置。可选地,例如图1所示燃料加热器145被设置在增压燃料管线119中且在阀153的前面,或者替换地被设置在燃料入口管线155中、在减压阀154的前面或后面。
[0042]在阳极引出管线165上设置另一激励阀161。每个激励阀152、153、161可以设置有局部加热器元件,以根据需要给阀解冻,尽管通过流过螺线管的电流的流过对阀152、153、161的激励将提供一定程度的加热。优选地,每个激励阀152、153、161被配置成是故障安全防护的,即当通过流过螺线管的电流进行激励时才打开阀。
[0043]为了监测并释放阳极流动路径中的燃料压力,可以设置压力传感器PXl和/或泄压阀157。优选地,泄压阀157设置成当阳极流动路径中的压力超过安全操作水平时打开并且通过压力释放排放管线158从阳极流动路径排出流体。
[0044]在阳极引出管线165中可以设置另一可手动操作的阀162,该阀162例如在维修期间被使用,以确保对阳极流动路径减压。在燃料电池堆110的阳极流动路径中会发生水的累积(Water build-up),例如由于水从阴极侧通过质子交换膜PEM扩散所导致的水的累积。从而,阳极排水分离器163可以设置在阳极排放管线164中,以分离排放管线164中存在的所有水。这些水可以被排掉或可选地被再循环。在燃料电池堆110的操作期间,阀161通常保持关闭,并且仅间歇地打开以从阳极流体路径排出所有累积的水。
[0045]在燃料电池堆110中设置阴极注水入口 127,入口 127连接到阴极注水管线125。阴极注水管线125可以沿其整个长度或部分长度进行加热,并且在水收集容器140和阴极注水入口 127之间延伸。可以设置加热器129以施加热量到管线125的特定区域,以加热朝向阴极注水入口 127通过注入管线125的水。另一压力传感器PX4可以设置在阴极注水管线125上,以便在操作期间监测管线125上的回压(back-pressure)。
[0046]来自阴极引出管线121的水被用水泵132 (可选地其设置有加热器143)抽吸,朝向水收集容器140通过水回流管线128,在下文中参考图2提供了关于其的另外的细节。将过量的水从燃料电池系统100通过水溢流管线144排到水收集容器140的外面。
[0047]图2示出的是图1中的水收集容器140的横截面示意图。容器140包括隔热壁210和盖211,盖211也可以是隔热的。优选地,容器140的壁210是双壁构造,其在两个壁之间具有真空或其他隔热层(例如空气或膨胀的聚苯乙烯)。容器210的内表面215优选由例如不锈钢的抗腐蚀的材料制成,以防止对容器内的水212的污染。
[0048]盖211的目的是允许连接被容纳在容器140内的各种元件,同时还保持好的程度的绝缘。通常,盖211由具有额外的绝缘泡沫层的玻璃增强尼龙制造。盖中用以提供管线125、144、128通过的端口优选地被配置使得当在使系统停止时,所有剩余的水回流到容器中。这涉及使用适当大直径的管子,使得水珠不会形成以跨过管的内部孔,且停留在管线中。优选地,在盖中不使用接头配件,使得通过盖211的管不含有尖锐的弯曲。因此,总的来说,在水收集容器140和阴极注水入口 127之间延伸的注水管线125,以及在阴极引出管线121和水收集容器140之间延伸的排放管线121、128都包括具有内部孔的管道,使得在从阴极系统排出水之后水珠不会跨过所述孔。
[0049]容器140中的恒温加热元件236被设置,以将容器140内的水212的温度维持在冰点以上。水平传感器233提供指示容器内的水212的水平的信号。除了恒温加热元件236之外,设置了加热器237以便提供较快的加热,用以解冻水212 (如果被冻结的话)。由于将水从固相改变至液相的能量需要,通常所述加热器237的额定功率高于恒温加热元件236的额定功率,例如约180W或更高。恒温加热器236被配置以确保容器140中的水212的温度保持高于设定点。所述设定点通常是5°C,以便用以防止水冻结。恒温加热器236可以由12V电池电源进行供电,并且设定以操作规定的时期周期。因此,在这一周期中,可以确保容器中的水是液态的。对于较长期间在零度以下的周围温度,为了节省电池电力,而停用恒温加热器236。之后,水212可能冻结,且将需要用较高功率的加热器237进行解冻。通常,恒温加热器处于额定功率,使得最大热量输出稍微高于容器的最大额定损失(ratedlosses)。通常的额定功率是在2到4W的范围内。
[0050]安装温度传感器TX4(其优选地包括浸没式的热敏电阻器),以便允许监测容器140中的水212的温度。
[0051]溢流管线144被设置,以在如果容器内的水位超过预定量,将过量的水从收集容器排出。
[0052]来自水回流管线128的水通过过滤器234进入容器140。泵230、231、240将从容器140抽吸水212、通过另一过滤器214、反向流动泄压阀213且进入到阴极注水管线125中。流量计235被配置以监测穿过阴极注水管线125的水量。
[0053]优选地,泵被构造,使得电机部分231位于容器140的收集体积的外面,且因此避免与容器中的水212直接接触。电机231和泵压头230之间的轴240允许电机231驱动泵压头230。至少包括入口、出口和叶轮的泵压头优选地具有这样的构造,使得在被浸没到冻结的水中之后如果水被解冻那么泵能够再次操作。优选地电机231被定级(rated)用于在零度以下的温度操作。
[0054]泵压头230被设置,以便被容器140中的水212浸没。这具有泵压头230在停止期间不需要被清除或在启动期间不需要被加热的优点,尤其是在停止以后水212被保持在瓶(flask)内时。优选地,泵压头230被配置成具有小的热质。在它解冻时,通过从周围的水传递的热量来实现泵压头230中的所有冰的融化。优选地,泵压头230还配置以适应由于冰的形成所造成的膨胀。在融化时,泵压头230则返回到其原始形状,且不会折中(compromise)其的操作。
[0055]反向流动泄压阀213被构造,使得在泵是可运转的时,允许水从泵压头230朝向阴极注水入口 127流过阴极注水管线125,从而沿流动方向在阀上产生压力降。然而,当泵被停止且阴极注水管线125中的压力被增加时,阀213允许水通过清除端口 238流回到容器140 中。
[0056]反向流动泄压阀213的目的是在系统100停止期间允许水从燃料电池堆110和连接管线反冲(back flushed)到容器140中。关闭阴极排放阀120允许燃料电池堆110中的水在来自空气压缩机133的压力下被迫使返回穿过阴极注水入口 127、流到堆110的外面且朝向水收集容器140通过注水管线125。然而,如果在收集容器中使用齿轮泵,且没有使用反向流动泄压阀213,那么由于推动水返回通过泵压头230所需要的压力而没有水流动。因此,反向流动泄压阀213被配置,使得在正常操作中,它允许水通过它从泵到燃料电池堆110。当在泵压头230没有被操作时且隔膜受到小的回压(例如在300mBar.g的范围中)时,隔膜打开且允许水通过清除端口 238回流到瓶中。
[0057]在图3中以剖视视图的形式显示出反向流动泄压阀213的示例性实施例。在正常操作中,水沿箭头301所示的方向从收集容器140流过反向流动泄压阀213。水流过第一进给口 314、通过单向阀316,且朝向阴极注水管线125通过第二进给口 320流到阀213的外面。第一进给口 314中的水的压力通过连接通路313和传递通路312被传递到由密封阀(例如成隔膜321的形式)密封的且由盖的表面323包封的腔311。压力保持隔膜321的密封面317抵靠旁路通路318的表面,因此防止流体在第二进给口 320和在隔膜321后面的低压腔315之间通过。
[0058]如果水收集容器泵230停用,第一进给口 314中的压力的损失和由燃料电池堆110的阴极体积中的增大的压力所引起的第二进给口 320中的压力的增加,导致单向阀316闭合。第二进给口中的增大的压力导致隔膜321(优选由弹性材料(例如橡胶)构成)弯曲且打开旁路通路318和低压腔315之间的通路。然后水从第二进给口 320通过旁路通路318流入到低压腔315中,通过清除通路322且通过清除端口 238流到阀213的外面。箭头302示出沿相反方向的流的整体方向。
[0059]反向流动泄压阀的配置允许水从燃料电池堆的阴极体积和阴极注水管线排出,同时允许收集容器140中的泵压头230保持用水灌注。只要容器中的水212没有冻结,那么泵压头230保持处于准备立刻开始抽吸水用于注入到燃料电池堆110的阴极体积中的状态。
[0060]图4a和4b示意地示出反向流动泄压阀213可能的两种不同的操作模式。在图4a中,示出清除操作,其中来自燃料电池堆的低压空气通过第二进给口 320进入阀213中,且没有流进入到第一进给口 314中。所述低压空气使得隔膜321偏转,并允许流通过旁路通路318和通过清除端口 238流到阀的外面,用于输送到水收集容器140中的水池中。单向阀316防止通过第一进给口 314的流动。
[0061]在图4b中,示出反向流动泄压阀213的水输送操作,其中从水收集容器140中的水池中抽取的高压水通过第一进给口 314进入阀213中。通过连接通路313传递到高压腔311的压力将保持隔膜321处于闭合位置且紧靠旁路通路318。水流穿过单向阀316,且经由第二进给口 320流出到反向流动泄压阀213的外面。没有出现通过清除端口 238的流。
[0062]图5a和5b中示意地示出了阴极出口、排放和排水管线的两种可替代的布置。在图5a中,水分离器131首先与阴极引出管线121管线连接,与热交换器130串联并在其的前面,使用两个排水管线128a、128b以经由泵132a、132b将水传送到收集容器140。在图5b中,水分离器131与热交换器130串联连接,但位于其的后面,且使用单个泵132通过水回流管线128将水抽到收集容器140。
[0063]在图5a的配置中,阴极引出流通过阴极引出管线121流到气旋式水分离器131,其在将饱和的空气重新引导至热交换器130之前去除液体含量。热交换器130冷却饱和空气流,这导致一部分所携带的(entrained)水变成液相。两个泵132a、132b用于将回收的水输送到收集容器140,一个泵132a经由水回流管线128a连接到分离器131的底部,另一个泵132b经由水回流管线128b连接到热交换器130引出歧管箱。在正常的燃料电池操作期间,可变截止阀120保持打开。然而,在燃料电池系统的停止期间,所述阀被关闭以使阴极流动路径回压。在这种情况下,压缩机133 (或根据限定的流量设定点将空气供给到燃料电池的其他装置)努力地运行以维持固定的空气流量。分离器131包括泄压阀(未示出),其在这种回压停止阶段期间打开,从而允许将水从水分离器131通过水清除管线510排出(通常排到大气中)。在系统停止时使阴极流动路径回压之前,通常允许泵132a运行几秒钟以清除来自分离器131的大部分水。
[0064]在图5b的配置中,除了气旋式分离器131被设置在热交换器130的后面之外,其的操作类似于图5a的操作。同理,阴极引出流的液体成分穿过热交换器130。此外,仅需要一个泵132以将回收的水输送回收集容器140。这种配置的一个优点在于,由于热交换器130的入口远离底部,在停止之后保留在热交换器130中的任何剩余的水将落下,以占据热交换器130的下部。在热交换器130随后遭受零度以下温度的情况下,这些水将会冻结。然而,通过阴极流动路径、通过热交换器的剩余部分的流仍然是可以的,之后所述流将加热且解冻在下部中被冻结的水。
[0065]在每种情形中清除端口 510允许气旋式分离器被清除成干的,从而允许随后在低温的储存。
[0066]优选地,气旋式分离器131的热惯量低,使得当分离器131低于0°C时且少量的液态水进入分离器时,液态水不会冻结。
[0067]可选地,泄压阀可以用于增加系统的回压至使得不需要传送泵132、132a、132b的程度。然而,在这种情况下可以不装配气旋式泄压阀和清除端口 510,以确保阴极水引出管线121中的内部压力迫使水朝向水收集容器140通过排水管线。如果没有装配传送泵132,那么图5b中示出的布置是更优选的,以确保从阴极引出管线排出的水穿过单个排水管线128。
[0068]在燃料电池系统100的操作期间(参照图1和2),来自收集容器140的水被经由阴极注水管线125和阴极注水入口 127抽取通过阴极流动路径。在穿过燃料电池堆110内的阴极体积之后,水经由阴极水引出管线121流到堆110的外面,并进入到热交换器130。排放的气体和冷凝的水的混合物穿过水分离器131。然后冷凝的水流过水回流管线128并进入水收集容器140。所有过量的水通过水溢流管线144排出。排放的气体通过排放截止阀120排出,排放截止阀120至少保持部分地打开以控制阴极流动路径内的压力。
[0069]参照图1,燃料气体被进给到阳极入口 156且进入燃料电池堆110内的阳极体积(未示出)中。阀153、161被操作以保持阳极体积中的期望的压力。连接到阳极出口 159的手动阀162保持闭合。可选地,从阳极排放流排出的水被用另外的水分离器163分离成液相和气相。
[0070]在停止燃料电池系统100时,首先通过关闭燃料供给管线155上的电磁激励阀153来停止到燃料电池堆110的燃料供给。然后关闭阴极排放管线122上的截止阀120的同时,空气压缩机133继续操作。实际上,在截止阀120被关闭之前需要一时间,用以用空气冲洗通过阴极流动路径。然后阴极流动路径中的压力升高。在截止阀被关闭之后,排水管线泵132 (如果有的话)优选地继续操作一时间,以允许水连续流到收集容器140。收集容器泵230停止操作,且因此水停止进给到阴极注水管线125。[0071]在停止期间,也可以使用阳极流动路径的短的清除操作,来排出存在于阳极流动路径中的水,其中水被迫使通过打开的阳极引出阀161之后,使燃料电池堆110中的阳极体积降压。
[0072]通过阴极流动路径进行冲洗的空气迫使剩余的水流到燃料电池堆110中的阴极体积的外面且流过阴极引出管线121、通过热交换器130流到水分离器131。泵132将水从分离器131抽吸通过水回流管线128并进入水收集容器140。当截止阀120关闭时,阴极空气压力将会升高,从而迫使水流到燃料电池堆110中的阴极体积的外面,朝向水收集容器140通过阴极注水入口 127和通过阴极注水管线125和反向流动泄压阀213的清除端口238。
[0073]将水从阴极流动路径清除到水收集容器140的能力允许去除水,其可能是被诱捕到内部特征中和水配送道中。对于汽车应用的典型尺寸的燃料电池堆,这可能导致从阴极流动路径中去除大约30ml的水。使用空气压缩机133而不是氮气清除进给,减少了所需的部件数量且避免过度地使燃料电池堆干燥。之后所述堆中的膜可以保持处于较合适用于随后的启动操作的状态中。在停止时空气压缩机的计时操作可以被优化,以提供在去除足够的水以防止零度以下条件的不利作用和所述膜的脱水之间的平衡。对于典型的燃料电池系统,空气压缩机可以在关闭排放阀120之后被操作大约I到2分钟。也可以使用氢气,以从阳极流动路径清除过量的水。
[0074]本发明的其他实施例将落入到如随附的权利要求所限定的本发明的范围内。
【权利要求】
1.一种反向流动泄压阀,所述反向流动泄压阀包括: 第一进给口; 第二进给口; 单向阀,所述单向阀位于在所述第一进给口和所述第二进给口之间延伸的主流体通路中,所述单向阀被配置以允许流体从所述第一进给口流到所述第二进给口,且阻止流体沿相反方向的流过; 与所述主流体通路流体连通的旁路流体通路; 密封阀,所述密封阀压靠在所述旁路通路和清除端口之间的所述旁路通路的端部上, 其中所述密封阀被配置以在所述第一进给口中的流体压力超过所述第二进给口处的流体压力时保持对所述旁路通路的密封以阻止通过所述旁路流体通路从所述主流体通路到所述清除端口的流体流,且被配置以在所述第二进给口处的流体压力超过所述第一进给口处的流体压力时允许流体流通过所述旁路流体通路从所述第二进给口流到所述清除端□。
2.如权利要求1所述的反向流动泄压阀,其中所述密封阀被配置以在所述第二进给口处的流体压力超过所述第一进给口处的流体压力一预定量时允许流体流通过所述旁路流体通路从所述第二进给口流到所述清除端口。
3.如权利要求2所述的反向流动泄压阀,其中所述预定量不小于300毫巴。
4.如权利要求1到3中任一项所述的反向流动泄压阀,其中所述密封阀包括弹性隔膜,所述隔膜的一面与所述第一进给口流体连通,所述隔膜的相对的第二面被压靠到所述旁路通路的端部上。
5.如权利要求1到4中任一项所述的反向流动泄压阀,包括在所述第一进给口和所述密封阀之间延伸的连接流体通路。
6.一种燃料电池系统,所述燃料电池系统包括如权利要求1到5中任一项所述的反向流动泄压阀,其中所述反向流动泄压阀的所述第二进给口连接到阴极注水管线,所述第一进给口连接到泵且所述清除端口与水收集容器的内部体积流体连通。
【文档编号】H01M8/04GK103953755SQ201410087634
【公开日】2014年7月30日 申请日期:2008年9月25日 优先权日:2007年9月26日
【发明者】保罗·阿德考克, 彼得·戴维·胡德, 斯科特·贝尔德 申请人:智慧能量有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1