一种掺杂工艺提高半导体器件击穿电压的结构及其制备方法与流程

文档序号:25224160发布日期:2021-05-28 14:27阅读:333来源:国知局
一种掺杂工艺提高半导体器件击穿电压的结构及其制备方法与流程

本发明属于功率半导体技术领域,尤其是涉及一种掺杂工艺提高半导体器件击穿电压的结构及制备方法。



背景技术:

gan作为第三代宽禁带化合物半导体材料,具有禁带宽度大、击穿电压高、电子漂移速度快和抗辐射能力强等特点,algan/gan结构的hemt器件具有耐高温、耐高压、良好的高频大功率等特性。algan/gan异质结具有较强的极化效应,即使在未掺杂时,器件也可获得高达1×1013cm-2面密度的二维电子气。近年来,在现有algan/gan异质结构的基础上,如何进一步优化ganhemt器件结构和提升器件击穿电压成为研究的热点。造成器件击穿的因素有多方面:

1、栅极边缘电场强度过高:当在algan/ganhemt器件漏极施加较高电压时,沟道中的耗尽区会逐渐移动至漏极一侧。势垒层的极化正电荷引起的电场分布会集中指向栅极边缘,在边缘位置形成峰值电场。当电场强度超出器件的耐压能力时,器件容易发生击穿现象。

2、栅极泄漏电流:器件的表面的缺陷、沾污、悬挂键等容易形成表面态,其表面漂移点到现象造成栅极的泄漏电流。当栅极电压过高时,电子通过栅极峰值电场的边缘隧穿到栅源之间的表面态中,造成器件击穿。

为解决以上问题,通常在器件中设计场板,利用场板技术将峰值电场平坦化的分布于栅漏之间,以提高器件的击穿电压。但场板的引入会带来额外的电容,降低器件的频率特性。



技术实现要素:

为解决上述问题,本发明提供了一种掺杂工艺提高半导体器件击穿电压的结构及其制备方法。

为实现上述目的,本发明的技术方案为

一种掺杂工艺提高半导体器件击穿电压的结构,其特征在于,包括:

衬底;

外延层,位于所述衬底上方,包括由下至上设置的成核层、第一材料层、沟道层以及势垒层;所述沟道层内具有二维电子气,所述势垒层内具有离子掺杂区域;

源极,位于所述外延层上方,表面覆盖有侧墙;

漏极,位于所述外延层上方,表面覆盖有侧墙;

栅极,位于所述源极与漏极之间;

所述离子掺杂区域靠近漏极的侧墙边缘。

进一步的,所述势垒层包括第二材料层。

进一步的,所述势垒层还包括第三材料层,所述第三材料层位于沟道层与第二材料层之间,所述第三材料层的禁带宽度大于第二材料层。

进一步的,所述势垒层还包括第四材料层,所述第四材料层位于第二材料层上方。

进一步的,所述离子掺杂区域的宽度为栅极与漏极间距的1%~90%,高度为所述势垒层的厚度。

一种掺杂工艺提高半导体器件击穿电压的结构的制备方法,其特征在于包括以下步骤:

提供衬底,在衬底上形成外延层,所述外延层包括由下至上堆叠而成的成核层、第一材料层、沟道层以及势垒层,在外延层上表面采用光刻和蒸发工艺形成源极和漏极;

在外延层上生长钝化介质;

采用自对准刻蚀技术形成源极、漏极的侧墙;

在源极、漏极之间的势垒层内进行离子掺杂形成离子掺杂区域,并且使离子掺杂区域靠近漏极的侧墙边缘;

对势垒层进行快速热处理,使掺杂离子分布均匀;

采用光刻和蒸发工艺在源极、漏极之间的外延层表面形成栅极。

进一步的,所述离子掺杂所采用的离子元素为氢、锂、铍、硼、碳、钠、镁、铝以及硅中的一种或多种组合,浓度为1.5×1012cm-3~2×1019cm-3

进一步的,快速热处理的温度为130℃~1650℃,时间为3s~1200s。

更进一步的,所述钝化介质的材料为氧化硅、氮化硅、氧化铪、氧化镓以及氮化镓中的一种或者多种组合,钝化介质的厚度为100nm~1000nm。

与现有技术相比,本发明的有益效果在于:

本发明通过在外延层表面形成源极、漏极,利用钝化介质形成源极、漏极的侧墙,在源极、漏极之间靠近漏极侧墙边缘的外延层区域进行离子掺杂,在源极、漏极之间形成栅极。利用侧墙的保护作用,基于特定区域的离子掺杂工艺,提升漏极一侧势垒层区域的正电荷分布,同时改变沟道中部分区域的二维电子气浓度,提高漏极一侧电场分布,该峰值电场不高于栅极附近的峰值电场强度。栅、漏极间的电场均匀性得到加强,电场分布得到有效改善,器件可以承受更高的漏极电压。最终器件的击穿电压得到提升,且器件的频率特性不会降低。

附图说明

图1a~图1f为本发明实施例1中一种掺杂工艺提高半导体器件击穿电压的结构的制备方法示意图。

图2a~图2f为本发明实施例2中一种掺杂工艺提高半导体器件击穿电压的结构的制备方法示意图。

图中:1、衬底;2、外延层;201、成核层;202、第一材料层;203、沟道层;204、第二材料层;205、二维电子气;206、第三材料层;3、源极;4、栅极;5、漏极;6、离子掺杂区域;7、侧墙;8、钝化介质。

具体实施方式

为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。

实施例1:

参照图1a-图1f,本实施例中的掺杂工艺提高半导体器件击穿电压的结构的制备方法,包括以下步骤:

步骤1:如图1a所示,选择碳化硅为衬底1材料,在衬底1上依次由下至上形成成核层201、第一材料层202、沟道层203以及第二材料层204;其中成核层201的材料为氮化铝,第一材料层202的材料为氮化镓,沟道层203的材料为氮化镓,第二材料层204的材料为铝镓氮;

步骤2:如图1b所示,在第二材料层204表面采用光刻和蒸发工艺形成源极3和漏极5,源极3到漏极5距离lsd为6um;

步骤3:如图1c所示,利用干法工艺,在第二材料层204上生长由氮化硅材料构成的钝化介质8,厚度300nm;

步骤4:如图1d所示,采用自对准刻蚀技术,形成源极3与漏极5的侧墙7;

步骤5:如图1e所示,利用光刻工艺,将非离子掺杂区域遮挡,利用注入工艺在第二材料层204中引入硼离子,浓度为1.2×1018cm-3,离子掺杂区域6宽度limp为1.3um;

步骤6:进行快速热处理,处理温度350℃,时间为140s,使掺杂的硼离子分布均匀;

步骤7:如图1f所示,利用光刻和蒸发工艺,在源极3和漏极5之间制备栅极4,栅极4宽度lg为0.5um,栅极4与源极3的间距lsg为1.2um,栅极4与漏极5的间距lgd为4.3um,漏极5的侧墙7边缘与离子掺杂区域6相邻。

在其他相同条件下,相对于传统的半导体器件,本实施例的半导体器件的击穿电压由520v提升为610v。

实施例2:

参照图2a-图2f,本实施例中的掺杂工艺提高半导体器件击穿电压的结构的制备方法,包括以下步骤:

步骤1:如图2a所示,选择碳化硅为衬底1材料,在衬底1上依次由下至上形成成核层201、第一材料层202、沟道层203、第三材料层206以及第二材料层204;其中成核层201的材料为氮化铝,第一材料层202的材料为氮化镓,沟道层203的材料为氮化镓,第三材料层206的材料为铟镓氮,第二材料层204的材料为铝镓氮;

步骤2:如图2b所示,在第二材料层204表面采用光刻和蒸发工艺形成源极3和漏极5,源极3到漏极5距离lsd为4.5um;

步骤3:如图2c所示,利用干法工艺,在第二材料层204上生长由氮化硅材料构成的钝化介质8,厚度230nm;

步骤4:如图2d所示,采用自对准刻蚀技术,形成源极3与漏极5的侧墙7;

步骤5:如图2e所示,利用光刻工艺,将非离子掺杂区域遮挡,利用注入工艺在第二材料层204和第三材料层206中引入镁离子,浓度为4.7×1017cm-3,离子掺杂区域6宽度limp为0.7um;

步骤6:进行快速热处理,处理温度330℃,时间为180s,使掺杂的镁离子分布均匀;

步骤7:如图2f所示,利用光刻和蒸发工艺,在源极3和漏极5之间制备栅极4,栅极4宽度lg为0.38um,栅极4与源极3的间距lsg为0.9um,栅极4与漏极5的间距lgd为3.22um,漏极5的侧墙7边缘与掺杂区域6相邻。

在其他相同条件下,相对于传统的半导体器件,本实施例的半导体器件的击穿电压由310v提升为410v。

最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1