燃料电池系统的制作方法

文档序号:27484313发布日期:2021-11-20 02:28阅读:156来源:国知局
燃料电池系统的制作方法

1.本说明书所公开的技术涉及燃料电池系统。


背景技术:

2.燃料电池系统为了启动燃料电池组而使用几个电气器件。例如,在日本特开2019-079656号公报中公开了燃料电池系统的例子。电气器件的例子是电磁阀、将空气送入至燃料电池组的空气压缩机、将高压的燃料气体送入至燃料电池组的喷射器、以及控制它们的控制器等。在本说明书中,将为了启动燃料电池组而使用的电气器件统称为燃料电池辅助器件。燃料电池系统具备蓄电池,在启动燃料电池组时,蓄电池向燃料电池辅助器件供给电力。
3.为了提高燃料电池组的发电效率,需要将燃料电池组内的燃料浓度(氢浓度)提高至规定的燃料浓度阈值以上。另一方面,空气压缩机、喷射器等的促动器的消耗电力大。在蓄电池的剩余电量少的情况下,无法充分发动空气压缩机、喷射器等,存在达不到燃料电池组的通常的启动条件(燃料的浓度条件)的情况。


技术实现要素:

4.本说明书所公开的燃料电池系统具备燃料电池组、燃料电池辅助器件、蓄电池以及控制器。如先前叙述那样,燃料电池辅助器件是指在燃料电池组的启动中使用的电气器件。蓄电池向燃料电池辅助器件供给电力。若在燃料电池组的启动时蓄电池的剩余电量超过电量阈值,则控制器在燃料电池组内的燃料浓度达到规定的燃料浓度阈值之后开始来自燃料电池组的电流输出。若在提高燃料浓度的期间剩余电量低于电量阈值,则无论燃料电池组内的燃料浓度如何,控制器都开始来自燃料电池组的电流输出。在蓄电池的剩余电量少的情况下,本说明书所公开的燃料电池系统在燃料浓度达到燃料浓度阈值之前开始电流输出。由于可抑制燃料电池辅助器件的消耗电量,所以即便在蓄电池的剩余电量少的情况下,也能够启动燃料电池组(开始输出电流)。
5.在燃料电池系统具备从由燃料电池组排出的燃料废气分离剩余燃料气体的气液分离器和将被气液分离器分离出的剩余燃料气体返回至燃料电池组的泵的情况下,控制器可以执行如下处理。若在提高燃料浓度的期间剩余电量低于上述电量阈值,则控制器不使泵工作地从燃料电池组开始输出电流。通过使用泵来将剩余燃料气体向燃料电池组返回,由此发电效率通常会提高。然而,燃料废气中包含杂质气体(氮气)。若启动泵则连氮气也进行循环,燃料电池组内的氮气增加。若除了燃料浓度比通常低之外杂质气体也增加,则导致发电效率进一步下降。通过在燃料电池组内的燃料浓度低时不启动泵,能够避免燃料浓度过度下降。
6.并且,通过不启动泵,能够在蓄电池的剩余电量少时抑制消耗电力。蓄电池的剩余电量通过从燃料电池组输出的电力而迅速恢复。
7.若燃料浓度超过燃料浓度阈值,则控制器可以启动泵。若燃料浓度恢复至适当浓
度,则启动泵,通过将剩余燃料气体向燃料电池组返回,由此发电效率提高。
8.可以在蓄电池的剩余电量少时,无论燃料浓度、氧浓度如何,控制器都开始电流从燃料电池组的输出。
9.本说明书所公开的技术的详细情况和进一步的改进将在以下的“具体实施方式”中进行说明。
附图说明
10.图1是包括实施例的燃料电池系统的燃料电池车的框图。
11.图2是燃料电池组的启动处理的流程图。
12.图3是燃料电池组的启动处理的流程图(图2的继续)。
具体实施方式
13.参照附图对实施例的燃料电池系统2进行说明。燃料电池系统2被搭载于燃料电池车100。图1表示包括燃料电池系统2的燃料电池车100的框图。燃料电池车100从燃料电池系统2获得电力,并使用电动马达102来行驶。燃料电池组10的输出电力在被升压转换器62升压之后被逆变器101变换为交流电力,供给至行驶用的电动马达102。在升压转换器62的输出端还连接有主蓄电池103。由燃料电池组10生成的电力中的未被电动马达102消耗的电力被充电至主蓄电池103。对于燃料电池组10而言,由于输出电力的变化的时间常数长,所以为了提高向电动马达102供给的电力的变化的响应性而使用主蓄电池103的电力。
14.在升压转换器62的输出端还连接有降压转换器63。在降压转换器63的输出端连接有副蓄电池64。燃料电池组10的输出电力的一部分被降压转换器63降压,并对副蓄电池64进行充电。
15.主蓄电池103的输出电压高于100伏特。副蓄电池64的输出电压低于50伏特。主蓄电池103的电力被供给至电动马达102。副蓄电池64的电力被供给至以小于50伏特的电压进行动作的器件。利用副蓄电池64的电力动作的器件有各种控制器(计算机)、导航系统等低功率机器等。
16.副蓄电池64还向燃料电池系统2的燃料电池辅助器件供给电力。燃料电池辅助器件是为了启动/运转燃料电池组10所使用的电气器件的统称。燃料电池辅助器件包括阀41a-41d、喷射器22、泵26、空气压缩机34、控制器50等。关于这些燃料电池辅助器件将后述。
17.燃料电池系统2具备燃料电池组10和燃料箱20。以下,为了简化说明,存在将燃料电池组10表述为fc组10的情况。
18.fc组10是多个燃料单电池的集合体。如广为人知那样,各个燃料单电池隔着电解质膜被分为阳极侧与阴极侧。通过阳极气体入口16a向阳极侧供给燃料气体。通过阴极气体入口17a向阴极侧供给空气。燃料气体所包括的氢离子化而与阴极侧的空气所包含的氧反应,生成电。由于燃料单电池(fc组10)中的化学反应广为人知,所以省略详细的说明。
19.在化学反应中未使用的燃料气体与在化学反应中生成的杂质被从阳极气体出口16b排出。有时将从阳极气体出口16b排出的气体称为燃料废气。所生成的水以及在化学反应中未使用的空气(氧)被从阴极气体出口17b排出。
20.对燃料电池系统2中的燃料气体侧的设备进行说明。燃料电池系统2具备燃料供给管21、喷射器22、废气排出管23、气液分离器24、返回管25、泵26以及排气排水阀27作为用于向fc组10的阳极侧输送燃料气体的设备。
21.燃料供给管21将燃料箱20与fc组10连接。在燃料供给管21连接有2个阀41a、41b、喷射器22、压力传感器42a。阀41a为主止阀,在燃料电池系统2停止的期间,使燃料气体从燃料箱20的放出停止。阀41b为调压阀,对供给至喷射器22的燃料气体的压力进行调整。喷射器22提高燃料气体的压力来供给至fc组10。压力传感器42a被装备于喷射器22与燃料电池组10之间,对向fc组10供给的燃料气体的压力进行测量。
22.燃料供给管21的一端与fc组10的阳极气体入口16a连接,将燃料气体供给至fc组10的阳极侧。在阳极气体出口16b连接有废气排出管23的一端,废气排出管23的另一端与气液分离器24的气体入口24a连接。
23.气液分离器24将从阳极气体出口16b排出的燃料废气分离为氢气(剩余燃料气体)与杂质。被气液分离器24分离的杂质典型为氮气、水等。氮气是供给至阴极侧的空气所包括的氮通过电解质膜到达阳极侧后的气体。剩余燃料气体被从气体出口24b放出,杂质被从杂质排出口24c排出。杂质气体(氮气)的一部分与剩余燃料气体一同从气体出口24b流出。
24.返回管25的一端与气液分离器24的气体出口24b连接,返回管25的另一端与燃料供给管21连接。在返回管25安装有泵26。泵26使由气液分离器24分离出的剩余燃料气体通过返回管25与燃料供给管21向fc组10返回。
25.在气液分离器24的杂质排出口24c连接有排气排水阀27。在排气排水阀27的出口连接有排气管32。若排气排水阀27打开,则由气液分离器24从燃料废气分离出的杂质被排出至排气管32。
26.对燃料电池系统2的空气供给侧的设备进行说明。燃料电池系统2具备空气供给管31、空气压缩机34、阀41c、41d作为用于向fc组10的阴极侧输送空气(氧)的设备。
27.空气供给管31的一端与fc组10的阴极气体入口17a连接,另一端向外部空气敞开。在空气供给管31安装有空气压缩机34、阀41c以及压力传感器42b。空气压缩机34对外部空气进行压缩,并通过空气供给管31将空气向fc组10的阴极侧供给。在fc组10的阴极气体出口17b连接有排气管32。在排气管32安装有阀41d。阀41c与阀41d为调压阀,通过这些调压阀来调整供给至fc组10的空气的压力。在阀41c与燃料电池组10之间连接有压力传感器42b。压力传感器42b对向fc组10供给的空气的压力进行测量。
28.排气管32连接于排气排水阀27的出口和阴极气体出口17b。从fc组10的阴极气体出口17b排出的排出空气与从排气排水阀27的出口排出的杂质气体在排气管32之中混合。在排气管32的下游侧连接有消声器35。排出气体(排出空气与杂质气体的混合气体)通过消声器35被向外部空气放出。在燃料电池组10生成的水也通过排气管32和消声器35向车外排出。
29.虽然省略了图示,但燃料电池系统2除了具备压力传感器42a、42b之外,还在各个位置具备压力传感器、浓度传感器或流量传感器。在fc组10的输出端安装有电压传感器18a与电流传感器19。电流传感器19对从fc组10输出的电流进行测量,电压传感器18a对fc组10的输出电压进行测量。这些传感器的测量值被输送至控制器50。
30.控制器50通过调整升压转换器62的输出电压来调整fc组10的输出电流与输出电
压。
31.在fc组10的电极经由fc继电器61连接有升压转换器62。如先前叙述那样,fc组10(燃料电池系统2)生成的电力被升压转换器62升压,并供给至逆变器101或主蓄电池103。另外,fc组10的电力的一部分被降压转换器63降压,并对副蓄电池64进行充电。
32.控制器50对喷射器22、泵26、阀41a-41e(电磁阀)、排气排水阀27、空气压缩机34、fc继电器61、升压转换器62、降压转换器63以及逆变器101进行控制。这些器件通过信号线与控制器50连接,但在图1中省略了信号线的图示。燃料电池辅助器件包括喷射器22、泵26、阀41a-41e、排气排水阀27、空气压缩机34、fc继电器61、升压转换器62、降压转换器63以及控制器50。这些燃料电池辅助器件从副蓄电池64接受电力供给。在图1中,将燃料电池辅助器件与副蓄电池64连接的电力线的图示也被省略。
33.对fc组10的启动处理进行说明。控制器50驱动空气压缩机34,向fc组10输送空气。控制器50驱动喷射器22,向fc组10输送燃料气体(氢气)。若燃料(氢)与空气(氧)被供给至fc组10,则开始化学反应,在阳极侧生成电子。控制器50若关闭fc继电器61、启动升压转换器62,则从fc组10通过升压转换器62输出电流。即,通过启动升压转换器62,从而开始从燃料电池系统2(fc组10)输出电流。
34.为了高效地生成电力,控制器50在fc组10中的燃料浓度与氧浓度分别达到阈值浓度之后开始电流输出。其中,燃料浓度与供给至fc组10的燃料气体的压力存在关联。控制器50基于压力传感器42a的测量值(即,向fc组10供给的燃料气体的压力)来推断fc组10之中的燃料浓度。另外,氧浓度与供给至fc组10的空气的压力存在关联。控制器50基于压力传感器42b的测量值(即,向fc组10供给的空气的压力)来推断fc组10之中的氧浓度。若推断出的燃料浓度达到规定的燃料浓度阈值、推断出的氧浓度达到规定的氧浓度阈值,则控制器50启动升压转换器62,开始输出电流。
35.通过喷射器22来提高燃料浓度,通过空气压缩机34来提高氧浓度。喷射器22与空气压缩机34是促动器,消耗电力大。如先前叙述那样,喷射器22与空气压缩机34从副蓄电池64接受电力供给。若副蓄电池64的剩余电量少,则无法使喷射器22与空气压缩机34长时间动作,存在无法将fc组10中的燃料浓度与氧浓度提高至浓度阈值的担忧。在控制器50使燃料浓度与氧浓度提高的期间,若副蓄电池64的剩余电量低于规定的电量阈值,则即便燃料浓度与氧浓度的一方或两方未达到浓度阈值,控制器50也开始电流输出。
36.图2与图3表示控制器50所执行的fc组10的启动处理的流程图。参照图2、图3对启动处理进行说明。若燃料电池车100的启动开关被接通,则开始图2、图3的启动处理。
37.在以下的说明以及图2、图3中,用符号“soc”(state of charge)表示副蓄电池64的剩余电量。燃料电池系统2具备测量副蓄电池64的输出电压的电压传感器18b(图1),控制器50根据电压传感器18b所测量的副蓄电池64的输出电压来推断副蓄电池64的soc。
38.若燃料电池车100的启动开关被接通,则控制器50将副蓄电池64的soc与电量阈值进行比较(s12)。若在开始启动处理之前副蓄电池64的soc低于电量阈值,则由于完全无法进行启动处理,所以控制器50显示表示为副蓄电池64的soc低而无法启动fc组10这一内容的错误消息并结束处理(步骤s12:否,s17)。其中,在控制器50连接有仪表板51(图1),控制器50在仪表板51显示错误消息。
39.当soc在启动处理的初期超过电量阈值的情况下(步骤s12:是),控制器50关闭fc
继电器61(步骤s13)。若控制器50关闭fc继电器61,则fc组10与逆变器101、电动马达102等车的驱动系统连接。
40.接下来,控制器50确认器件的健全性(步骤s14)。步骤s14中的器件包括燃料电池辅助器件和与行驶相关的器件(例如逆变器101与电动马达102)。控制器50对这些器件是否不存在异常进行检查。若在任意一个装置中检测到异常,则控制器50显示对异常检测进行通知的错误消息并结束处理(步骤s15:否,s18)。
41.在健全性ok的情况下(步骤s15:是),控制器50打开阀41a并且启动喷射器22与空气压缩机34(步骤s16)。此时,控制器50以最大输出驱动喷射器22与空气压缩机34,并且调整阀41b-41d,不断提高燃料电池组10之中的燃料浓度与氧浓度。
42.若燃料电池组10之中的燃料浓度超过燃料浓度阈值、氧浓度超过氧浓度阈值,则控制器50启动泵26并且启动升压转换器62(步骤s22:是,s23)。若启动升压转换器62,则从燃料电池组10开始输出电流。另外,通过启动泵26,使得燃料废气所包含的剩余燃料气体返回至燃料电池组10。通过将剩余燃料气体返回至燃料电池组10,使得发电效率提高。
43.在提高燃料电池组10之中的燃料浓度与氧浓度的期间,控制器50监视副蓄电池64的soc(步骤s21)。若在提高燃料电池组10之中的燃料浓度与氧浓度的期间soc变得低于电量阈值(步骤s21:否),则即便燃料浓度与氧浓度的至少一方未达到浓度阈值,控制器50也启动升压转换器62,开始来自燃料电池组10的电流输出(步骤s24)。
44.在执行步骤s24时,控制器50启动升压转换器62,不启动泵26。虽然省略图示,但在步骤s24中启动了升压转换器62之后,控制器50也监视燃料浓度与氧浓度。在不启动泵26而启动了升压转换器62之后,若燃料浓度与氧浓度均达到了浓度阈值,则控制器50启动泵26。若燃料浓度与氧浓度均达到浓度阈值,则控制器50调整喷射器22、空气压缩机34以及阀41b-41d以使燃料浓度与氧浓度均保持超过浓度阈值的值。
45.若开始来自升压转换器62的电流输出,则控制器50启动降压转换器63,利用燃料电池组10的电力对副蓄电池64进行充电。另外,若从升压转换器62开始电流输出,则燃料电池车100能够行驶。
46.对实施例的启动处理的优点进行叙述。若在提高燃料浓度与氧浓度的期间副蓄电池64的soc低于电量阈值,则即便燃料浓度与氧浓度未达到浓度阈值,控制器50也启动升压转换器62,开始电流的输出。因此,即便副蓄电池64的soc低,燃料电池车100也能够开始行驶。
47.在soc低于电量阈值的情况下,控制器50启动升压转换器62,不启动泵26。燃料废气除了包含燃料之外还包含氮气等杂质气体。杂质被气液分离器24从燃料废气分离,但一部分与剩余燃料气体一同向燃料电池组10返回。当soc低时,在燃料浓度低的状态下开始电流输出。若除了燃料浓度比通常低之外杂质气体也增加,则燃料浓度进一步降低。通过在燃料电池组10之中的燃料浓度低时不启动泵26,能够抑制燃料浓度的进一步降低。
48.另外,通过不启动泵26,能够节约副蓄电池64的剩余电量。
49.对与在实施例中说明的技术相关的注意点进行叙述。若副蓄电池64的soc超过电量阈值,则燃料电池系统2的控制器50在燃料电池组10之中的燃料浓度与氧浓度达到规定的浓度阈值之后开始电流输出。燃料浓度与向燃料电池组10供给的燃料气体的压力关联,氧浓度与向燃料电池组10供给的空气的压力关联。因此,实施例中的“燃料浓度”与“向燃料
电池组供给的燃料气体的压力”等效,“氧浓度”与向燃料电池组供给的空气的压力等效。
50.以上,对本发明的具体例详细地进行了说明,但这些只不过是例示,并不限定技术方案的范围。技术方案的范围中记载的技术包括对以上例示的具体例进行各种变形、变更所得的方式。本说明书或者附图中说明的技术要素单独或通过各种组合来发挥技术的有用性,并不限定于申请时技术方案中记载的组合。另外,本说明书或者附图中例示的技术能够同时实现多个目的,在实现其中一个目的本身中具有技术的有用性。
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1