1.本发明涉及集成电路材料的制备方法,尤其涉及带绝缘埋层的硅衬底的制备工艺。
背景技术:2.基于带绝缘埋层的硅衬底的soi半导体器件,因其绝缘埋层的存在,实现了物理上的完全隔离,消除了闩锁效应,减小了寄生电容,在功耗,运行速度,抗辐照以及器件集成度方面具有明显的优势,备受关注。近些年,随着工艺技术的不断进步,在soi材料的制备方面都得到了快速的发展。
3.对于顶层硅厚度在1um以上的厚膜soi,其应用范围较为广泛,比如汽车电子,无线通信,传感器和抗辐照器件等。目前,厚膜绝缘体上硅材料的制备技术主要有智能剥离(smart
‑
cut)叠加外延技术和besoi键合减薄技术。智能剥离(smart
‑
cut)技术因为ip专利限制,仅有少数几家经授权的硅材料厂商可以生产;besoi键合减薄技术具有工艺简单,成本低等特点,尽管受制于减薄工艺,顶层器件硅层的厚度均匀性很难得到精确控制,但由于besoi硅片具有跟体硅相比拟的晶体缺陷密度和表面质量,并且可以在大范围内调节,在功率器件衬底方面也有很广泛的应用。
4.常规besoi硅片一般采用普通直拉cz单晶抛光片做衬底,将支撑衬底片和器件衬底片键合后直接进行高温退火处理,以对键合强度进行提升和加固,然后进行减薄,达到器件层顶硅的目标厚度。受制于直拉单晶的晶体质量影响,尤其是原生颗粒缺陷cop,会影响绝缘体上硅衬底最终的器件栅氧完整性及有可能导致其他电性失效的问题,因此在制备绝缘体上的硅衬底的同时,也需要采取一些手段,最大程度降低器件层顶硅的晶体缺陷。
技术实现要素:5.本发明的目的是提供一种带绝缘埋层的硅衬底的制备工艺,在常规besoi键合减薄工艺的基础上,通过键合前的等离子活化处理,以及键合后的两步退火,第一步低温退火可以确保经过等离子表面活化处理的硅衬底可以比较牢固的贴合在一起,保证足够的键合强度来应对后续的减薄工艺,减薄完成后进行第二步高温氩退火,既提升了键合强度,又可以在器件层顶硅的表面形成一层极低原生颗粒缺陷的近乎完美的单晶硅层。
6.本发明通过如下技术方案实现上述目的:一种带绝缘埋层的硅衬底的制备工艺,包括以下步骤:
7.s101,提供普通直拉cz单晶硅衬底,所述硅衬底正面为抛光面,体硅内含cop原生颗粒缺陷;
8.s102,提供支撑衬底,所述支撑衬底正面为抛光面;
9.s103,支撑衬底进行热氧化,生长二氧化硅作为绝缘层;
10.s104,以单晶硅衬底的抛光表面和支撑衬底表面有绝缘层的表面为键合面,分别进行等离子表面活化处理后,常温下将单晶硅衬底和支撑衬底键合在一起,形成键合衬底;
11.s105,将键合衬底放入炉管进行低温退火;
12.s106,对键合衬底采用机械研磨的减薄方式,研磨至目标厚度;
13.s107,对键合衬底进行cmp抛光,得到所需的平整度和表面粗糙度;
14.s108,对抛光后的键合衬底进行高温氩退火处理,进一步提升键合强度,同时确保绝缘层上的硅衬底表层具有极低的cop原生颗粒缺陷密度。
15.进一步的,所述s101单晶硅衬底为直拉cz单晶抛光硅片,硅衬底正面为抛光面,体硅内含cop原生颗粒缺陷。
16.进一步的,所述s102单晶硅衬底为直拉cz单晶抛光硅片。
17.进一步的,所述s103的二氧化硅厚度0.1~2um。
18.进一步的,所述s104的等离子表面活化采用n2或o2或n2/o2混合气体,键合的温度为常温。
19.进一步的,所述s105的退火温度不超过400度,时间大于1小时。
20.进一步的,所述s106的机械研磨后预留的顶硅厚度为10~50um。
21.进一步的,所述s107中cmp抛光去除量大于5um。
22.进一步的,所述s108中高温氩退火为氩气的退火氛围,工艺温度不低于1180度,工艺时间不低于1小时。
23.与现有技术相比,本发明功率绝缘体上的硅衬底的制备工艺的有益效果是:在常规键合减薄工艺制备绝缘体上硅衬底材料的工艺基础上,综合运用了等离子表面活化处理和低温退火工艺来保证相对强的键合强度来应对后续的减薄工艺,然后最后通过高温的氩退火工艺来实现键合强度进一步提升的同时,获得近乎完美晶体的极低原生颗粒缺陷的器件层顶硅,从而制备出带绝缘埋层的硅衬底材料。
附图说明
24.图1是本发明具体实施方式的实施步骤流程图。
25.图2是步骤s101和步骤s102的产品状态示意图。
26.图3是步骤s103的产品状态示意图。
27.图4是步骤s104的产品状态示意图。
28.图5是步骤s106的产品状态示意图。
29.图6是步骤s107的产品状态示意图。
30.图7是步骤s108的产品状态示意图。
具体实施方式
31.下面结合附图对本发明提供的带绝缘埋层的硅衬底的制备方法具体实施方式做详细说明。
32.图1所示为本具体实施方式的实施步骤流程图,一种带绝缘埋层的硅衬底的制备工艺,包括如下步骤:
33.步骤s101,提供普通直拉cz单晶硅衬底,所述硅衬底正面为抛光面,体硅内含cop原生颗粒缺陷;
34.步骤s102,提供支撑衬底,所述支撑衬底正面为抛光面;
35.步骤s103,支撑衬底进行热氧化,生长二氧化硅作为绝缘层;
36.步骤s104,以单晶硅衬底的抛光表面和支撑衬底表面有绝缘层的表面为键合面,分别进行等离子表面活化处理后,常温下将单晶硅衬底和支撑衬底键合在一起,形成键合衬底;
37.步骤s105,将键合衬底放入炉管进行低温退火;
38.步骤s106,对键合衬底采用机械研磨的减薄方式,研磨至目标厚度;
39.步骤s107,对键合衬底进行cmp抛光,得到所需的平整度和表面粗糙度;
40.步骤s108,对抛光后的键合衬底进行高温氩退火处理,进一步提升键合强度,同时确保绝缘层上的硅衬底表层具有极低的cop原生颗粒缺陷密度。
41.附图2所示,参考步骤s101和步骤s102,提供单晶硅衬底100,所述单晶硅衬底100的掺杂物质可以是b、p、as也可以是别的杂质元素,体硅内含有一定数量的cop原生颗粒缺陷。
42.附图3所示,参考步骤s103,提供单晶硅支撑衬底200,所述支撑衬底200正面为抛光面,然后进行热氧化,在支撑衬底正反面分别形成正面二氧化层和反面二氧化层220,其中正面的二氧化层将作为绝缘层210。优选二氧化硅厚度0.5~1um。
43.附图4所示,参考步骤s104,分别对支撑衬底的绝缘层210表面和单晶衬底硅层100的表面进行等离子表面活化,然后在常温下将这两个面贴合在一起完成键合,形成键合衬底。优选为采用n2为气源,在真空腔室内进行等离子处理。
44.参考步骤s105,对键合衬底进行低温退火,退火温度不高于400℃。
45.因为步骤s104已对键合前的表面进行过等离子活化处理,只需一个低温退火即可达到足够强的键合强度;退火气氛可以是氮气,氧气或其他惰性气体。退火时间大于2小时。退火温度低于400度,既可以避免产生热载流子效应,又可以满足后续减薄工艺对键合强度的要求。优选退火温度300℃,退火时间3小时。
46.附图5参考步骤s106,采用机械研磨的减薄方式,将单晶衬底100的厚度减薄至<80um的预留厚度;优选预留厚度20~40um;
47.附图6参考步骤s107,对机械研磨减薄后的键合衬底进行cmp抛光,抛光去除量不低于5um,既满足完全去除机械研磨造成的表面应力损伤层,又满足表面粗糙度及平整度要求。优选去除量8~10um。
48.附图7参考步骤s108,对抛光后的键合衬底进行高温氩退火处理,退火工艺温度不低于1180度,退火时间不低于2小时,该步骤的退火工艺气氛是氩气。通过高温氩退火处理,既可以进一步提升键合强度,又可以使得经过减薄后的器件层顶硅形成近乎完美晶体的具有极低cop原生颗粒缺陷的洁净层区域。优选高温氩退火温度1200度,退火时间2小时。
49.本发明在常规键合减薄工艺制备绝缘体上硅衬底材料的工艺基础上,综合运用了键合前等离子表面活化处理提升键合强度,以及结合两步退火的方式,制备出了具有极低原生颗粒缺陷密度的近乎完美晶体的带绝缘埋层的绝缘体上硅衬底材料。
50.以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和调整,这些改进和调整也应视为本发明的保护范围。