1.本发明涉及锂电池制备技术领域,具体为基于石墨烯的锂离子电池复合负极材料的制备方法。
背景技术:
2.锂离子电池作为一种化学电源的能源形式,具有工作电压高、能量密度大、重量轻、体积小、安全性好、绿色环保等优点,已经在便携式移动设备、电动汽车(ev)、混合动力车(hev)等领域得到广泛应用。
3.刻蚀多壁碳纳米管(cnts)与纳米zns复合的锂离子电池负极材料zns-cnts能够显著增加电化学反应面积,具有典型的比容量恢复现象,且在长期循环过程中具有良好的稳定性,目前硫化物负极材料都是通过化学方法合成,合成条件相对复杂,耗时长、成本高,而且其存在充放电过程中体积变化大、电导率低等缺点,严重制约了其在锂离子电池中的商业应用。
技术实现要素:
4.(一)解决的技术问题
5.针对现有技术的不足,本发明提供了基于石墨烯的锂离子电池复合负极材料的制备方法,解决了硫化物负极在放电过程积极变化大的问题。
6.(二)技术方案
7.为实现以上目的,本发明通过以下技术方案予以实现:基于石墨烯的锂离子电池复合负极材料的制备方法,包括以下步骤:
8.步骤一、提取硫化物
9.选择辉钼矿和闪锌矿两种天然硫化物,获取粒径为10-20纳米的硫化物纳米颗粒;
10.步骤二、冲击融合
11.将步骤1中获得的硫化物纳米颗粒与石墨烯纳米颗粒一起采用静电吸引复合-微波加热法合成硫化物掺杂石墨烯复合材料;
12.步骤三、制备电极初体
13.将步骤二获得的硫化物掺杂石墨烯复合材料涂覆于导电基体上,形成负极材料的电极初体;
14.步骤四、对电极初体进行处理
15.将涂覆有硫化物掺杂石墨烯复合材料的导电基体置于等离子体处理装置中进行处理,获得锂离子电池负极。
16.优选的,所述静电吸引复合-微波加热法的具体步骤为:
17.1)通过超声波使硫化物纳米颗粒、水、乙醇形成悬浮液,利用改性剂对硫化物表面进行氨基改性,形成溶液;
18.2)向溶液中放入石墨烯纳米材料,采用静电吸引的方式使硫化物与石墨烯紧密结
合,形成结团物质;
19.3)通过将结团物质放置入微波反应器,辐射合成硫化物掺杂石墨烯复合材料。
20.优选的,所述改性剂利用氩气气氛管式炉进行热解处理。
21.优选的,所述步骤四中等离子体处理装置中的气压为1pa~100pa,温度为-30~80℃,等离子体处理的功率为1w~21000w/cm。
22.(三)有益效果
23.本发明提供了基于石墨烯的锂离子电池复合负极材料的制备方法。具备以下有益效果:
24.1、本发明,过渡金属硫化物具有无毒、低成本、理论容量高等优点,利用材料纳米化和与碳材料复合可以解决充放电过程中体积变化大、电导率低的缺点。
25.2、本发明,石墨烯片层两侧同时可以储存锂离子,并且锂可能以共价分子的形式嵌入无序碳材料形成lic2,以此种储锂机制得到的石墨烯理论比容量为1116ma
·
h/g。石墨烯的锂离子存储能力远高于石墨。
26.3、本发明,硫化物负极材料目前都是通过化学方法合成,合成条件相对复杂,耗时长、成本高。而自然界中的天然硫化物矿物种类多、储量丰富、成本低,选择合适的硫化物矿物为原料,通过设计合理的合成制备及性能调控工艺,可以有效降低硫化物负极材料的成本。
具体实施方式
27.下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
28.石墨烯(ng)除了具有尺寸和形貌的优势以及高导电性、高强度、超轻薄、韧性好、高比表面积、导热系数高、化学性质稳定等优点,还具有一些独特的性能,如量子隧道效应、半整数量子霍尔效应等。这些优异的特性使石墨烯在材料学、电子、能源、信息、生物医学等领域具有广泛应用。相比石墨和碳纳米管等其他碳材料,石墨烯纳米片层可以更有效地提高材料的电化学性能。超薄且具有柔韧性的石墨烯在充当导电基质的同时,可以作为纳米颗粒的负载和支撑,防止团聚现象的发生并有效缓解锂离子脱嵌过程中电极材料的体积膨胀效应。同时,石墨烯的加入还可以有效克服硅基、锡基和过渡金属材料作为负极材料在反复充放电后的粉化和脱落,从而导致循环性能差的缺陷。
29.实施例一:
30.本发明实施例提供基于石墨烯的锂离子电池复合负极材料的制备方法,包括以下步骤:
31.步骤一、提取硫化物
32.选择辉钼矿和闪锌矿两种天然硫化物,获取粒径为10-20纳米的硫化物纳米颗粒;
33.步骤二、冲击融合
34.将步骤1中获得的硫化物纳米颗粒与石墨烯纳米颗粒一起采用静电吸引复合-微波加热法合成硫化物掺杂石墨烯复合材料;
35.所述静电吸引复合-微波加热法的具体步骤为:
36.1)通过超声波使硫化物纳米颗粒、水、乙醇形成悬浮液,利用改性剂对硫化物表面进行氨基改性,形成溶液;
37.2)向溶液中放入石墨烯纳米材料,采用静电吸引的方式使硫化物与石墨烯紧密结合,形成结团物质,剩余的改性剂利用氩气气氛管式炉进行热解处理;
38.3)通过将结团物质放置入微波反应器,辐射合成硫化物掺杂石墨烯复合材料。
39.步骤三、制备电极初体
40.将步骤二获得的硫化物掺杂石墨烯复合材料涂覆于导电基体上,形成负极材料的电极初体;
41.步骤四、对电极初体进行处理
42.将涂覆有硫化物掺杂石墨烯复合材料的导电基体置于等离子体处理装置中进行处理,获得锂离子电池负极,等离子体处理装置中的气压为1pa~100pa,温度为-30~80℃,等离子体处理的功率为1w~21000w/cm。
43.尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
技术特征:
1.基于石墨烯的锂离子电池复合负极材料的制备方法,其特征在于:包括以下步骤:步骤一、提取硫化物选择辉钼矿和闪锌矿两种天然硫化物,获取粒径为10-20纳米的硫化物纳米颗粒;步骤二、冲击融合将步骤1中获得的硫化物纳米颗粒与石墨烯纳米颗粒一起采用静电吸引复合-微波加热法合成硫化物掺杂石墨烯复合材料;步骤三、制备电极初体将步骤二获得的硫化物掺杂石墨烯复合材料涂覆于导电基体上,形成负极材料的电极初体;步骤四、对电极初体进行处理将涂覆有硫化物掺杂石墨烯复合材料的导电基体置于等离子体处理装置中进行处理,获得锂离子电池负极。2.根据权利要求1所述的基于石墨烯的锂离子电池复合负极材料的制备方法,其特征在于:所述静电吸引复合-微波加热法的具体步骤为:1)通过超声波使硫化物纳米颗粒、水、乙醇形成悬浮液,利用改性剂对硫化物表面进行氨基改性,形成溶液;2)向溶液中放入石墨烯纳米材料,采用静电吸引的方式使硫化物与石墨烯紧密结合,形成结团物质;3)通过将结团物质放置入微波反应器,辐射合成硫化物掺杂石墨烯复合材料。3.根据权利要求2所述的基于石墨烯的锂离子电池复合负极材料的制备方法,其特征在于:所述改性剂利用氩气气氛管式炉进行热解处理。4.根据权利要求1所述的基于石墨烯的锂离子电池复合负极材料的制备方法,其特征在于:所述步骤四中等离子体处理装置中的气压为1pa~100pa,温度为-30~80℃,等离子体处理的功率为1w~21000w/cm。
技术总结
本发明提供基于石墨烯的锂离子电池复合负极材料的制备方法,涉及锂电池制备领域。该基于石墨烯的锂离子电池复合负极材料的制备方法,包括以下步骤:步骤一、提取硫化物;步骤二、冲击融合;步骤三、制备电极初体;步骤四、对电极初体进行处理。过渡金属硫化物具有无毒、低成本、理论容量高等优点,利用材料纳米化和与碳材料复合可以解决充放电过程中体积变化大、电导率低的缺点,石墨烯片层两侧同时可以储存锂离子,并且锂可能以共价分子的形式嵌入无序碳材料形成L i C2,以此种储锂机制得到的石墨烯理论比容量为1116mA
技术研发人员:葛涛 李丙国
受保护的技术使用者:安徽理工大学环境友好材料与职业健康研究院(芜湖)
技术研发日:2022.06.22
技术公布日:2022/8/5