专利名称:晶体管与竖直腔面发射激光器的集成化的制作方法
本申请涉及我们于1991年11月7日申请,现正在审理中的关于“可见光面发射半导体激光器”申请系列NO.07/790,964及同时申请的关于“竖直腔面发射激光器的耦合工艺”申请系列,在此将他们列为参考文献。
本发明涉及半导体激光器与电子器件的集成化,尤其涉及竖直列阵的异质结构激光器及他们与诸如晶体管的集成。
常规的边缘发射激光二极管是众所周知的。在这些二极管中,激光辐射沿着形成二极管的p-n结平面延伸的平面发射。不同类型的这种二极管广泛地用于提供红外及可见光范围的激光辐射。虽然这类二极管已取得很大的商业成功,但因其较大而难于与其它器件结合。
近来发展出一种被称为竖直腔面发射激光器的新型半导体激光器。它与边缘发射激光器不同之处在于,竖直腔激光器沿着与该激光二极管中形成的p-n结平面垂直的方向发射激光辐射。大量有关这种激光二极管构造和结构的信息载于诸如美国专利US.4,949,350;J.Jewell等人的“MicroLasers”(ScientificAmerican,Vol.265,No.5,P86-94,1991.11);J.Jewell等人的“Vertical-cavitySurface-EmittingLasersDesign,Growth,Fabrication,Characterization”(IEEEJournalofQuantnmElectronics,Vol.27,No.6,P1332-1346,1991.6);G.R.Olbright等人的“CascadableLaserLogicDevicesDiscreteIntergrationofphototransistorswithSurfaceEmittingLaserDiodes”(ElectronicsLetters,Vol.27,No.3,P216-277,1991.1.31);J.Jewell等人的“Low-thresholdelectrically-pumpedvertical-CavitySurfaceEmittingLaser”(ElectronicsLett.Vol.25,P1123,1989)以及J.Jewell等人的“VerticalCavityLasersforOpticalInterconnects”(SPIEVol.1389,InternationalConferenceonAdvancesinInterconnectionandPacKaging.P401-407,1990)中,在此上述为参考文献。
正如上述出版物中的某些记载,竖直腔激光器具有许多优于边缘发射激光器的优点,其中最主要的是他们可制成极小尺寸(如直径为微米量级)并能与其它器件,如晶体管相结合。
本发明即针对竖直腔激光器的这种组合,已研制出与诸如三引出端晶体管这样的电子开关为一体的竖直腔激光器。
在本发明的优选实施例中,竖直腔面发射激光器(VCSEL)具有一夹在两个分布布喇格反射器之间的激光腔,该激光腔具有一对隔离层,他们围绕着一个或多个激活的、光发射量子阱层,后者用作为该装置的激活光学发射的材料。激光腔的厚度为mλ/2neff,其中m为整数,λ为激光辐射的波长,neff为该腔的有效折射率。将底部反射层及衬底重掺杂成一种导电类型,同时将上部反射层重掺杂成相反的导电类型。制成二极管结构,并对此二极管结构加上适当的电压,实现激光器的电泵浦。
开关可取多种形式,而且可相对于竖直腔面发射激光器放置于不同的位置。开关可以为电子开关,如双极型晶体管或场效应晶体管。当用双极型晶体管时,该晶体管可置于竖直腔面发射激光器的下面,顶部或侧面,恰如光敏晶体管那样;当用场效应晶体管时,该晶体管可置于竖直腔面发射激光器的侧面。
开关还可以是光学开关,如置于竖直腔面发射激光器侧面的光敏晶体管。
本发明也可以采用光控开关与电控开关的结合。
本发明的组合开关提供一种方便地控制竖直腔面发射激光器的光信号或电信号输出激光辐射的机构。这些开关容易执行布尔逻辑函数,也容易实现信号放大以及由电信号转换成光信号,或由光信号转换成电信号。
从下面有关本发明的详细描述中,能更容易明白本发明的这些以及其它的目的,特点和进步,其中
图1是现有技术的竖直腔面发射激光器的示意图;
图2A、2B和2C是一光电集成电路的简图,它将竖直腔面发射激光器与异质结双极型晶体管组合在一起;
图3是图2A集成电路的详细图解;
图4是图3集成电路的电路简图;
图5是图3集成电路的顶视图;
图6是图2B集成电路的详细图解;
图7是图6集成电路的顶视图;
图8是图2C集成电路的详细图解;
图9是图8集成电路的顶视图;
图10是一光电集成电路的简图,它将竖直腔面发射激光器与场效应晶体管组合在一起;
图11是图10集成电路的详细图解;
图12是图11集成电路的说明性实例的顶视图;
图13是一光电集成电路的简图,它将竖直腔面发射激光器与光敏晶体管组合在一起;
图14是图13集成电路的详细图解;
如图1所示,现有技术的竖直腔面发射激光器包括第一n+反射层10,第一隔离层20,量子阱层30,第二隔离层40和第二p+反射层。这项技术的以下工艺在譬如上列参考文献US4,949,350中有过描述,层10、20、30、40以及50之一部分外延地形成于衬底60上;层50的其余部分通过介质淀积形成。由此,层10、20、30、40和50均具有与衬底60相同的直径。
为了方便,通过质子注入,在量子阱层30的四周确定一约束区33,用以限制激光器中的电流到达该激光器中央纵轴周围的狭窄区域。在外延形成这些层之后,利用光学平版印刷术及光刻技术确定量子阱层30,隔离层40和反射层50,形成多个列70。对第二反射层50及衬底60在其56和60处提供电接点。每一列70为一分立的激光器,并可通过在该列的接点66和56之间加上适当的电压产生光激射,产生足够的电流通过该列。
作为例证,衬底60是直径为3吋或4吋(7.5或10厘米)的在外延过程中掺杂3N+的GaAs晶片,每一列直径约为20微米,高出隔离层20约2.5微米,通常将这种晶片切割成几个单元,以方便使用。
层10、20、30、40和50均有多层结构。例如对于我们的正在审理中的申请系列NO.07/790,964中所述发射红光的竖直腔激光器,其反射层10包含掺有n+的AlAs及AlGaAs的交叠层、每层厚度为1/4波长,在此所述的波长是由激光器发射的辐射在该层中的波长。如本技术领域普通技术人员所理解、反射层10的结构为分布布喇格反射器结构,其中AlAs是具有较低折射率的层。反射层10设计成全反射层,没有透射。
隔离层20具有多层AlGaInP层,他们所具有的Ga数量是朝着量子阱层渐增。如现有技术中公知,这些层与GaAs晶格匹配。隔离层40则类似地具有朝着反射层50渐减的Ga数量。量子阱层30包含三层大约50埃厚的GaInP层。他们被两层厚约90埃的AlGaInP阻挡层隔开。隔离层20,量子阱层30和隔离层40组成激光腔。激光腔的长度(即层20、30和40的厚度)为mλ/2neff,其中λ是所发激光辐射在自由空间的波长,m为整数,neff是该腔的有效折射率。
第二反射层50包含多层交叠的P+掺杂AlAs层和AlGaAs层。此外,这些层中的每一层均为1/4波长厚,他们组成分布布喇格反射器。不过这种反射器是部分透射的,以便从最上层给出激光辐射。
在上述文章中说明并报告了许多其它的竖直腔面发射激光器的结构,譬如在本发明背景中引述的参考文献及我们同时提交的申请系列中的描述。通常这些结构的任何一种均能用于本发明。
按照本发明,它是通过将竖直腔面发射激光器与三引出极晶体管组合在一起,形成光电集成电路器件。此外,还揭示了将竖直腔面发射激光器与异质结光敏晶体管以一种新颖的组合方式结合在一起的集成电路。
如图2A,2B和2C所示,竖直腔面发射激光器可以三种方式之一与异质结双极型晶体管(HBT)组合。图2A是通过在衬底的上表面113上形成异质结双极型晶体管116,并在晶体管的上表面117上形成竖直腔面发射激光器118,而在衬底112上形成光电集成电路110的。图2B是在衬底的上表面123上形成竖直腔面发射激光器128,并在该竖直腔面发射激光器的上表面127上形成异质结双极型晶体管126,而在衬底122上形成光电集成电路120的。图2C是通过在衬底132上表面133的第一部分135上形成竖直腔面发射激光器138,并在衬底132上表面133的第二部分134上面形成异质结双极型晶体管136,而在衬底132上形成光电集成电路130的。这些组合的细节将结合附图陈述。
图3更详细地描述了集成电路110,其中竖直腔面发射激光器118形成于衬底112上的异质结双极型晶体管116上面。如图3所示,竖直腔面发射激光器118包含能部分透射的反射层141、P-型隔离层142、量子阱层143、n-型隔离层144以及n-型反射层145。为简便,量子阱层的激活区由与图1中约束区33相类似的圆周约束区(图未示)变窄。正如图1的讨论所表明,竖直腔发射激光器的反射层、隔离层以及量子阱层,每一个都是由几层做成的。异质结双极型晶体管116是n-p-n型晶体管,由n-型集成电路110进一步还包括隔离层142上表面的环形接点149,基层147的环形接点152以及衬底112的n-型欧姆接点155。
自层148开始,在衬底112上,以一层在另一层上面的方式淀积各层组元141~148,形成电路110。采用本技术领域公知的工艺,以及如美国US4,949,350所公开的工艺,通过外延生长,将各层组元142-148形成于衬底112上。反射层141也可以外延生长。不过,图3结构的一个优点在于,反射层141不是给竖直腔面发射激光器加置偏压的电路的一部分,因而与反射层145不同,后者因其是偏压电路的一部分,所以必须由半导体材料制成,而反射层141可由各种各样的材料制成,尤其可用介质材料制成。
为方便起见,衬底112由n-型GaAs制做,光敏晶体管116是GaAs光敏晶体管,它具有厚度约为0.2微米的n-型AlGaAs发射极层,厚度约为0.25微米的p-型GaAs基极层和厚度约为0.5微米的n-型InGaAs/GaAs集电极层。也为了方便,竖直腔面发射激光器118与图1所描述的相同,包括多个反射层,他们包括多层交叠的AlAs和AlGaAs层,AlGaAs隔离层以及由GaAs阻挡层分隔开的InGaAs制成的量子阱层。
下面通过光刻工艺和刻蚀工艺来确定各层的沉积和整个集成电路110。首先,通过清除落在隔离层142上表面上的反射层无用部分来确定集成电路的上反射层。进而淀积接点149的材料,并通过清除这种淀积材料的无用部分来确定该接点。通过清除隔离层142,144,量子阱层143,反射层145和集电极层146的无用部分来确定单个的竖直腔面发射激光器。然后,将接点152的材料淀积在基极层147的暴露面上。最后,通过清除这种淀积材料的无用部分而确定接点152。
在集成电路110的接点层149与衬底112之间加上适当的电压V0,这个电路就通过一个电激励的激光器而工作。图4表示集成电路的一个简图,其中该电路包括异质结双极型晶体管116、竖直腔面发射激光器118和做为反射层145电阻的电阻器Rn。
当有足够的电流(如数拾微安)加到异质结双极型晶体管116的基极层147上时,该晶体管导通,从而就有相当大的电流(几毫安)通过竖直腔面发射激光器118,引起竖直腔面发射激光器118通过部分透射的反射层141发射激光辐射(约1毫瓦)。
图5表示图3集成电路列阵的顶视图。为方便说明,接点152围绕着竖直腔面发射激光器118的基极层分布。接点149为环形,围绕着该竖直腔面发射激光器上部反射层141的周围。为形成接点149与152的电连接,可采用各种按排。在图5的示意性实例中,接点149接到一个公共连接线150上,将偏压V0加于其上,从而给列阵中的各个竖直腔面发射激光器加上偏压。作为说明,每个接点152经单独的导线153与一单独的焊接点(图未示)连接,因而可将单个的控制信号加到每个竖直腔面发射激光器的基极上。
图6详述了集成电路120,其中异质结双极型晶体管126形成于p-型衬底122上的竖直腔面发射激光器128上面。正如图6所示那样,异质结双极型晶体管126为n-p-n型晶体管,它包含n-型集电极层66,p-型基极层167和n-型发射层168。竖直腔面发射激光器128包括有部分透射的反射层161,p-型隔离层162、量子阱层163、n-型隔离164和n-型反射层165。而且,竖直腔面发射激光器128的各个反射层、隔离层以及量子阱层均由几层组成。同时,量子阱层的激活区方便地由约束区163′所限制。电路120进一步还含有发射极层168上表面的电接点169、基极层167上表面上的环形接点172以及衬底122上的p-型欧姆接点175。
恰如通过比较图3和图6所表明那样,除了竖直腔面发射激光器与异质结双极型晶体管颠倒过来和改变电接点之外,电路120与电路110是相似的。电路120的制做也与电路110的制做相似,适当地改变各层的淀积次序即可实现结构上的不同。电路120的工作与电路V0的工作相同,不过偏压为-V0而不是V0。
电路120的优点在于,它可以比电路110更容易制做,因为它无需形成深的刻蚀进入基极层,以便在那里形成电连接。更确切地说,它只需去掉发射极层168的无用部分。采用像对图1和图3的器件所做的那样切割或者采用常规的离子注入技术、可将电路120与相同结构的集成电路隔开。
图7表示集成电路120的二维列阵顶视图。在这个示意性的实例中,各个接点169连到公共的横接线170上,给它加上偏压-V0,以便对横列上的所有竖直腔面发射激光器上加偏压,各个接点172通过单独的导线接到公共的纵接线173上。横接线与纵接线彼此电绝缘。这种布置的结果,给出一个选址图,使我们可以选择地激发这个二维列阵中的任何一个竖直腔面发射激光器。如果需要,也可采用其它布置,譬如图5所示那样,对基极层接点使用单独的操纵导线。
图8详细描述了集成电路130。其中,在竖直腔面发射激光器138的旁边形成有异质结双极型晶体管136。正如图8所示,竖直腔面发射激光器138包括部分透射的反射层181,p-型隔离层182,量子阱层183、n-型隔离层184和n-型反射层185。此外,量子阱层183的激活区由其周围的约束区183′而变窄。异质结双极型晶体管136为-n-p-n型晶体管,它有-n-型集电极层186,p-型基极层187和n-型发射极层188。集成电路130还包括集电极层186的电接点191、基极层187的环形接点192以及发射极层188的电接点193。如图8所示,异质结双极型晶体管136形成于竖直腔面发射激光器138的各层182-185顶部,反射层181的旁边,所以它对于竖直腔面发射激光器138的激光输出是偏轴的。异质结双极型晶体管136借助于绝缘层196和离子注入保护环197与竖直腔面发射激光器区域绝缘,并利用接点193与竖直腔面发射激光器产生激光发射的区域电连接。如图8及图9所示那样,接点193包括两个耦合的环形接点,其一限定于发射极层上,另一则在反射层181上限定。
通过在衬底132上依次淀积反射层185,隔离层184、量子阱层183以及隔离层182而形成集成电路130,进而在隔离层182上面形成绝缘层196,苒在该层上面形成发射极层188、基极层187和集电极层186。随后采用光刻工艺或刻蚀技术确定异质结双极型晶体管,并去掉落在隔离层182上的无用材料,再淀积反射层。最后,淀积并确定电接点191、192和193。
在图8所示的实例中,反射层181包括绝缘层196以及淀积成发射极层188,基极层187和集电极层186的半导体材料层。只要这些材料不吸收过量的由竖直腔面发射激光器发出的激光辐射就可以。如果这些半导体材料的禁带能量比激光频率高,就能满足这一条件。另一方面,可将形成层186、187、188以及196的材料自形成反射层181的区域取去,而采用其它材料来形成该反射层的上述这些层。
在集成电路130的接点191与衬底132之间加上适当的电压V0,则如同集成电路110和120同样的方式,随着电启动激光器而产生电流。
图9表示集成电路130二维列阵的顶视图。在该示意性实例中,接点191接到加有偏压V0的公共纵接线198上,使列阵的纵列中各竖直腔面发射激光器加上偏压。作为说明,每个接点192与一公共横接线199相连,而且,横、纵公共接线是彼此电绝缘的。这种布置的结果,给出一个选址图,使我们可以选择性地激发这个二维列阵中的任何一个竖直腔面发射激光器。
如图10所示,也可将竖直腔面发射激光器与场效应晶体管(FET)组合在一起。在这个实例中,通过在衬底312上表面313的一部分315上形成竖直腔面发射激光器318,并在该衬底上表面的第二部分上形成场效应管316,即可在衬底312上形成一个光电集成电路130。
图11详细描述了这个电路的一种说明性实例。如图11所示,竖直腔面发射激光器318包括具有部分选射的反射层141、p-型隔离层342、量子阱层343、n-型隔离层344和n-型反射层345。该竖直腔面发射激光器的各个反射层、隔离层以及量子阱层均由几层构成;约束区343′使激活的量子阱区变窄。场效应晶体管316有-n-型场效应管(FET)316有-n-型场效应管沟道346以及源极347、栅极348和漏极349,他们分别形成在绝缘层350上面。保护环351使源极347绝缘,以致电流必须通过由约束区343′所围绕的窄区。
如图11所示,以及图12顶视图所示,场效应管基本上包围着竖直腔面发射激光器的整个反射层341。这种布置便于使我们把具有很长尺寸的环形栅极用来横过沟道346。由于通过场效应管沟道的最大电流恰与沟道的横向尺寸成正比,所示这个环状外形尺寸对于提供激发竖直腔面发射激光器所需的电流(约10毫安)是极有益的。
需说明,衬底312由n-型GaAs制成,场效应晶体管316是GaAs或AlGaAs场效应管,它具有在栅极下面的厚约600埃的沟道。亦需说明,竖直腔面发射激光器具有与图1所述的类似结构,并包括反射层、该反射层包括交叠的掺杂的AlAs和AlGaAs层、AlGaInP隔离层以及由AlGaInP阻挡层隔开的GaInP层制成的量子阱层。
集成电路310可用于类似上面图8所示制作电路130的方式制成。依次在衬底312上淀积反射层345、隔离层344、量子阱层343、隔离层342、和反射层341。为了形成场效应晶体管,可在隔离层342上面形成绝缘层350,再在该绝缘层上面形成场效应晶体管的沟道。随后,淀积反射层,并用光刻工艺确定反射层341的形状,再从非反射(层)区域去掉这种淀积层。最后,镀上导电金属,形成源极,栅极和漏极。
在漏极349与电路310的衬底312之间加上适当的电压V0,随后电启动激光器,此电路将响应于加到栅极上的电压信号而工作。对栅极使用适当的电压、就能使足够的电流流过竖直腔面发射激光器318,引起光激射,并通过反射层341发出激光辐射。
图12表示集成电路310的二维列阵顶视图。为简便,各个漏极都与加了偏压V0的公共横接线352相连,使横列中的各个竖直腔面发射激光器都加上偏压。需说明,各个栅极都连到公共的纵接线354上。此外,每个横接线和纵接线都是电绝缘的。因此,该列阵的每个竖直腔面发射激光器都能单独选址和工作。
图13和14详细描述了集成电路410,其中,衬底412上的竖直腔面发射激光器418旁边形成有异质结光敏晶体管(HPT)416。如图(13)所示,竖直腔面发射激光器418包括具有部分透射的反射层421、p-型隔离层422、量子阱层423、n-型隔离424和n-型反射层425。异质结光敏晶体管416为n-p-n型晶体管,它有n-型集电极层426、p-型基极层427以及n-型发射极层428。集成电路410还包括集电极层426上的透明接点431和发射极层428上的环形接点433。异质结光敏晶体管形成在竖直腔面发射激光器418的层422-426上面、反射层421旁边。它借助于绝缘层435和离子注入保护环436与竖直腔面发射激光器范围电绝缘,并利用接点433与竖直腔面发射激光器产生激光发射的区域电连接。如图13所示,接点433包括两个耦合的环形接点,其一限定在反射极层上,另一则在反射层421上限定。
电路410的制做与电路130的制做相类似。连接地将反射层425、隔离层424、量子阱层423、隔离层422以及晶体管416淀积于衬底上,继而淀积反射层421,并采用光刻工艺和刻蚀工艺除去该层的无用部分以此来确定这个器件的结构。
图14表示集成电路410二维列阵的顶视图。其中,接点431与公共连接线435相连,可将偏压V0加到此连接线上。当把足够强度的光入射于异质结光敏晶体管时,该晶体管导通,同时竖直腔面发射激光器发出激光。
调节使异质结光敏晶体管导通的阈值或者调节触发异质结光敏晶体管的入射辐射强度,均可以使集成电路410执行初等布尔逻辑函数。譬如,提供一个或门,通过使导通阈值足够低,以致将任意强度的光束入射到该或门都能触发该异质结光敏晶体管导通;又,提供一个与门,设定阈值或输入的强度,以致于任何入射到与门使其导通的射束,都必须达到触发异质结光敏晶体管导通的强度。
通过上面的叙述,本发明的多种变化对于本领域的技术人员均是显见的。譬如,Ⅲ-Ⅴ族半导体以及Ⅱ-Ⅵ族半导体的其它材料组合,如ZnCdSe都可用来代替确定量子阱层、隔离层以及反射层的材料。如果需要,可利用异质结光敏晶体管和异质结双极性晶体管组合结构,可在一种结构中既实现竖直腔面发射激光器的电控制,又可实现光控制,例如对图14所示的异质结光敏晶体管416附加一栅极,使该装置的外部形态与图8和图9所示的电路130相同,这一点是可以通过简单的方式做到的。
权利要求
1.一种光电集成电路,由整体形成于衬底上的一个竖直腔面发射激光二极管和一个三引出端晶体管组成。
2.如权利要求1所述的集成电路,其中晶体管为双极型晶体管。
3.如权利要求1所述的集成电路,其中晶体管为双极型晶体管,竖直腔面发射激光二极管形成于该晶体管上。
4.如权利要求1所述的集成电路,其中晶体管为双极型晶体管,该晶体管形成于竖直腔面发射激光二极管上。
5.如权利要求1所述的集成电路,其中显象管为双极型晶体管,该晶体管形成于竖直腔面发射二极管的旁边。
6.如权利要求1所述的集成电路,其中晶体管是场效应晶体管。
7.如权利要求1所述的集成电路,其中晶体管为场效应晶体管,该晶体管形成于竖直腔面发射激光器的旁边。
8.如权利要求1所述的集成电路,其中竖直腔面发射激光器包括形成于所述衬底上或所述晶体管上的第一反射层,形成于所述第一反射层上的第一隔离层,形成于所述第一隔离层上含有至少一个量子阱层的激活层,形成于所述激活层上的第二隔离层,以及形成于所述第二隔离层上的第二反射层。
9.如权利要求8所述的集成电路,其中第二反射层包括多层,他们一层形成在另一层上面,所述的各层均由半导体材料制成。
10.如权利要求8所述的集成电路,其中第二反射层包括多层,他们一层形成在另一层上,靠近所述第二隔离层的那些层由半导体材料制成,远离所述第二隔离层的那些层由介质材料制成。
11.一种光集成电路,由衬底上的竖直腔面发射激光二极管和整体形成于该激光二极管旁边的光敏晶体管组成。
全文摘要
一种光电集成电路,由竖直腔面发射激光器和晶体管组成。该激光器包括夹在两个分布布喇格反射器间的激光腔,激光腔由一对隔离层包围着一或多个激活的光发射量子阶层组成,量子阶层有在可见光区内的一禁带,作为器件激活的光发射材料。激光腔厚mλ/2n
文档编号H01S5/00GK1078330SQ9310238
公开日1993年11月10日 申请日期1993年1月21日 优先权日1992年1月21日
发明者G·P·奥尔布赖特, J·L·耶威尔 申请人:班德加普技术公司