专利名称:用于物品监视系统标记物的玻璃态金属合金的热处理的制作方法
背景技术:
相互参考的相关申请本申请要求保护于1995年10月5日申请的美国临时申请No.60/004,814的利益。
1.本发明的领域本专利涉及用于电子物品监视系统的磁性玻璃态金属合金,更具体地,本专利涉及热处理该合金的方法以改进其电磁性能。
2.现有技术的描述物品监视系统可以在工业或零售市场上购得,以用于监视人或物品。这种系统的一个基本部件是一个传感元件或“标记物”,它被附着在被监测的物品上。该系统的另外的部件包括一个询问信号发射器和一个接受该标记物应答信号的接受器。然后将该应答信号中所含的信息加工成适宜于使用者的反应,例如拒绝进入、启动报警、拣出物品、等等。
已知并且已使用几种不同类型的标记物-探测系统。每一种标记物必须与一种合适的探测系统相适应。目前通用三种利用电磁现象的三种标记物-探测系统,它们是基于使用简单的天线-电容-二极管电路的射频谐振(下面称作“rf标记物”)、基于探测来自磁性高穿透性标记物的较高谐波(下面称作“谐波标记物”)以及基于探测来自磁-机械激励标记物的应答信号(下面称作“磁机式谐振器”)。前两种标记物的一个非常麻烦的问题是其探测可靠性差。这一问题主要是因为rf标记物简单谐振电路固有的宽频带性质,以及当标记物与信号接受器之间的距离增大时由谐波标记物产生的应答信号迅速衰减。磁机式谐振器是一种半活激励式元件并具有高探测敏感性、高操作可靠性以及低操作成本这些综合优点。这种系统的例子公开在US 4510489和SU 4510490中(下面称作“489”和“490”专利)。
在机械谐振器基的系统中的标记物是具有已知长度的带或多条带。每条带均由磁性软铁磁材料组成,并且被具有较高矫顽力的磁性硬铁磁材料所封装。硬铁磁材料提供了能形成峰值磁-机械耦合的附加磁场。该软铁磁标记物材料优选是金属玻璃态合金带,因为磁-机械耦合效率在玻璃态合金中非常高。该标记物材料的机械谐振频率基本上由玻璃态合金带的长度和附加磁场强度来决定。当遇到转变成谐振频率的询问信号时,该标记物材料应答以被接受器所探测到的大信号场。这种大信号部分地是由标记物的磁穿透性在谐振频率上增大而造成的。在′489和′490专利中已经公开了各种利用上述原理的询问和探测用的标记物构型和系统。
在一个特别有用的系统中,标记物材料由发射器产生的以谐振频率的信号脉冲或短脉冲群激励成振荡。当激励脉冲停止后,该标记物材料以其谐振频率进行阻尼振荡。也就是说,该标记物材料随着激励脉冲的结束而进行减幅振荡。接受器接受在该减幅振荡过程中产生的应答信号。对于这种结构来说,该监视系统对于各种发射源或电源产生的干扰相对地不会产生响应,因而降低了错误报警的可能性。
大范围的合金已公开在′489和′490专利中,它们适用于磁-机械探测系统用标记物材料。在US 4,152,144中公开了其它的具有高穿透性的金属玻璃态合金。
尽管已经公开了很多适用于磁-机械型物品监视系统用标记物的玻璃态合金,这种类型的商业系统一般使用由铸态铁-镍基玻璃态合金组成的标记物。如果这些标记物的尺寸和重量减小并且其信号振幅增大,这将是特别希望的。然而,得到这种改进的各种努力现在远未成功。在该技术领域仍需改进机械谐振标记物,以使其更小更轻并且在遭受机械变形时能防止其性能降低。
本发明的概述本发明提供了一种小型轻型磁-机械式标记物,它具有高的信号振幅并且在遭受机械变形时能防止其性能降低。在切割或截断该标记物材料的制造该标记物的过程中会发生这种机械变形。
一般说来,该标记物包括由磁性玻璃态金属合金组成的带。该合金带在炉中于一系列温度下进行退火。第一温度要高至足以使激冷和后加工产生的应力释放,第二退火温度应接近于该带的居里温度。退火在垂直该带长度并加在该带平面上的外部磁场中进行。第二温度在第一温度之后施加并产生沿磁场方向的各向异性的磁性。该退火工艺是连续的,并且退火时间由带穿过该退火炉的速度来确定。由如此制得的玻璃态合金带组成的标记物具有高的信号振幅,并为该带固有的机械谐振频率的高度谐振波。事实上消除了错误报警,并且可以以高可靠方法探测到该小且轻的标记物。
优选实施方案的说明按金属玻璃技术中已知的急冷技术,例如见US 3,856,513,通过将所需成分的熔体以至少约105℃/秒的速度冷却,制得组成本发明带的玻璃态金属合金。将组成该带的金属玻璃基本完全玻璃化,即至少90%玻璃态,因而具有低矫顽力,并且比较低玻璃态的合金更有塑性。
制备连续带、线、板等的各种技术均可得到。一般地,选择特定的成分,按所需比例将所需元素的粉或颗粒熔化并均匀,在激冷表面如快速旋转的滚筒上将该熔融合金快速激冷。
通过参照本发明优选实施方案和所包括的实施例的详细说明,可以更完整地理解本发明以认识其优点。在实施例中所列出的特定技术条件以及所给的数据用以说明本发明的原理和应用,它们仅是例举性的,并不限定本发明的范围。在实施例中所给出的所有合金成分均是标称成分。
为了比较目的,制备了标记物并进行试验。在下面表I中给出了具体值。该标记物由尺寸约为0.030×1.5×11mm的铁-镍基玻璃态金属带的切割的小片组成。在约100kA/m的外部磁场中将该标记物在300℃热处理约30分钟,该磁场是垂直于该带的长度方向并施加于带面上。通过以约200kHz频率施加交流电场,该带的小片于以该频率产生机械谐振,并且其第四谐波可由绕在该带的小片周围的常规接受线圈探测到。该振幅可以为任意单位,但与本说明书中给出的其它值成比例。σf和σa值分别是第四谐波频率及其振幅的标准偏差。
表 I第四谐波频率σf第四谐波振幅σa794kHz5kHz 4 1.5从实用观点来看,这些性能是不能接受的,这是因为标准偏差的值(即σf和σa)相当大,并且其谐波振幅低。另外,对于经济地生产标记物来说,这种批量地生产大量带小片的工艺实在是太慢了。
本发明制造的标记物克服了表I所述标记物的缺点,本发明的标记物是通过下述方法制造的,即在连续退火炉中热处理该带材,其中带材以预定速度在控温室中传送,同于垂直于该带的方向施加外部磁场。可以有效地改进或改变带的磁-机械性能的外加磁场的强度取决于相对于居里温度或顺磁至铁磁的转变温度的热处理温度。但是,对于所选用的退火温度来说,使用约88kA/m的磁场强度即可充以有效地使带材磁性退火。如表I标记物的情况,比较了在变化条件下进行热处理的带的固有磁-机械谐振频率的第四谐波,在变化条件下退火的带的第四谐波性质的结果列于下面的表II中。
表 II退火条件 第四谐波频率 σf第四谐波振幅σa温度/带速 (kHz) (kHz)(任意单位)320℃/0.3m/分790 3 4 1320℃/0.6m/分795 2 5 1.5340℃/0.3m/分800 2 5 1.5340℃/0.6m/分795 2 5 1.5360-340℃/0.3m/分796 3 5.5 1360-340℃/0.6m/分790 3 6 1360-330℃/0.6m/分797 2.5 5.5 1表II中后三个实施例的两个温度是按照本发明在连续退火炉中的两个温度区,每个区约为0.9米长。应注意到这些退火条件导致了具有小变化率的高振幅。对于表II所列所有情况,谐振频率的变化率减少了约1/2,并且振幅明显大于表I中所述批量退火工艺所得的振幅。通过对比,为铸态和切割态条件的带的振幅约为批量退火状态的1/10。另一优点是明显减少了退火时间,这使本发明更为经济。热处理温度接近于带材的居里温度是很重要的。上述表中所用的材料的居里温度约为350℃。该温度也能有效地消除在金属铸态和切割过程中引起的各种应力。在本发明中,或者可以同时进行或者可以顺序地进行消除应力和磁场退火工艺。
已经相当详细地说明了本发明,应理解地是,这种详细内容并不是严格遵循的,对于本技术领域的技术人员来说可以进一步给出变化或改变的建议,但这些均落入由权利要求书所限定的本发明范围之内。
权利要求
1.一种机械式谐振标记物,包括磁性玻璃态金属合金带,所述带已在炉中于一系列温度下退火预定时间,第一温度高至足以使激冷和后加工产生的应力释放。第二温度接近于该带的居里温度,所述退火在垂直该带长度并加在该带平面上的外部磁场中进行,第二温度在第一温度之后施加并产生沿磁场方向的各向异性的磁性。所述退火工艺是连续的,并且退火时间由带穿过该退火炉的速度来确定。
2.权利要求1的机械式谐振标记物,其中所述玻璃态金属合金是铁-镍基合金,它可以任选地含有钴。
3.权利要求1的机械式谐振标记物,其中所述玻璃态金属合金基本上由Fe40Ni38Mo4B18组成。
4.权利要求1的机械式谐振标记物,其中所述的第一退火温度在约350-400℃范围。
5.权利要求1的机械式谐振标记物,其中所述的第二退火温度在约310-350℃范围。
6.权利要求1的机械式谐振标记物,其中所述的炉子长1.8米,并且所述的带以约0.3-10米/分的恒速传送。
7.权利要求1的机械式谐振标记物,其中所述的炉子长1.8米,并且所述的带以约0.3米/分的恒速传送。
8.权利要求1的机械式谐振标记物,其中所述的炉子长1.8米,并且所述的带以约0.6米/分的恒速传送。
全文摘要
一种机械式谐振标记物,包括磁性玻璃态金属合金带,该带已经在炉中于一系列温度下退火预定时间。第一温度高至足以使激冷和后加工产生的应力释放。第二温度接近于该带的居里温度。退火在垂直该带长度并加在该带平面上的外部磁场中进行。第二温度在第一温度之后施加并产生沿磁场方向的各向异性的磁性。退火工艺是连续的,并且退火时间由带穿过该退火炉的速度来确定。
文档编号H01F1/153GK1203691SQ9619868
公开日1998年12月30日 申请日期1996年10月4日 优先权日1995年10月5日
发明者R·哈瑟嘉瓦 申请人:联合讯号公司