专利名称:用于电力处理应用的微型磁性装置及其制造方法
技术领域:
本发明涉及一种微型磁性装置,具体地说,本发明涉及一种用于电力处理应用的微型磁性装置,该装置的制造方法及采用该装置的电力处理电路。
磁性装置包括一个和导体线圈耦合的磁芯,从而使得磁通量在围绕磁芯的闭合回路中流动。磁性装置通常为EE型结构或螺旋管形几何形状。EE型磁性装置中,磁芯的第一和第二芯部分围绕着导体线圈。螺旋管形磁性装置中,导体线圈的第一和第二线圈部分围绕着磁芯。
微型磁性装置(例如微型感应器或微型变压器)是微米级的集成电路磁性装置;该装置的电磁性能由磁芯和导体线圈提供。过去,微型磁性装置只适用于低电平信号应用(例如记录头)。随着集成电路制造技术的发展,现在能够为相当大的信号及电力处理应用制造微型磁性装置。例如,可在无线通信设备的电力系统中采用微型磁性装置。
尽管许多功率半导体(例如具有铁氧体磁芯的)已经按比例缩小集成到集成电路中了,但是目前感应元件还是不连续的,并且体积较大。当然就存在使感应元件也小型化的强烈要求。通过将功率半导体中采用的薄膜处理技术引入铁磁性材料中,可显著减小传统的不连续铁磁芯感应装置的尺寸。合金之类的铁磁性材料的饱和通量密度比铁氧体高(例如,10-20Kg对3KG),从而对于给定电感和能量要求减小了磁芯的物理体积。为了限制铁磁芯材料中的涡流损失,铁磁芯材料必须被制成非常薄的薄膜。当要求的带厚度低于0.001英寸(即25微米)时,用传统的滚动及带缠绕技术来处理薄膜铁磁性材料的费用将是很高的。因此用诸如溅射和电镀之类的其它集成电路表积技术来生产这样的薄膜是有利的。
有关微性磁性装置制造的另一个需要考虑的问题是把铁磁性材料固定在硅基体或类似物上面。具体地说,在铁磁性材料和与基体结合的绝缘体之间形成足够的结合力是一个需要考虑的重要问题。许多因素,例如氧化物的形成,熔点温度,介入的杂质,材料间的亲合力及界面上的机械应力都会影响薄膜和基体的附着力。例如,薄膜制造工艺中常采用的一种技术是在基体和薄膜之间的界面上形成氧化物-金属结合。可通过在含氧基体(例如玻璃或陶瓷)上采用氧活性金属(例如钨或铬)和难熔金属(例如钨或钽)一起来形成这种氧化物-金属结合。至于杂质,除去基体上介入的任何杂质将是有益的。清除方法在效率方面不同,要求选择的方法取决于表积工艺除去杂质原子的能力。例如,不同的清除技术可和溅射或电镀一起被采用。
当然,关于结合力性质需要考虑的根本问题是所采用的材料。尽管人们已经试图解决铁磁性材料和与基体结合的绝缘体的附着力问题[例如Charles R.Sullivan和Seth R.Sanders的“用于DC-DC转换器的高功率密度微变压器的实测性能”,IEEE Power Electronics Specialists Conference,第287-294页,1996年7月,该文在此作为参考文献],但是到目前,这个问题仍然没有得到解决。因此研究一种能同时和绝缘体及铁磁性材料形成结合力,使得薄膜处理方法可应用于感应元件的粘结材料将为电力微型磁性集成电路的引入提供基础。
于是,本领域所需的是一种用于微型磁性装置,能够把铁磁芯固定到和基体结合的绝缘体上,从而使得微型磁性装置能够处理和电力处理应用相关的越来越迫切的要求的粘结剂。
为了解决现有技术的上述不足之处,本发明的一个方面提供一种和具有一个铁磁芯的电力微型磁性装置一起使用的粘结剂,所述电力微型磁性装置具有一个铁磁芯,并形成于与绝缘体耦合的基体上,该粘结剂包括在绝缘体和铁磁芯之间产生结合力,把电力微型磁性装置固定到绝缘体上的金属材料。本发明还提供一种采用该金属粘结剂把电力微型磁性装置的铁磁芯固定到和基体结合的绝缘体上的方法。
在相关方面,本发明提供一种具有一个铁磁芯的电力微型集成电路及其制造方法,以及采用这种电力微型集成电路的电力处理电路,该电力微型集成电路包括(1)基体;(2)和基体结合的绝缘体;及(3)在绝缘体和铁磁芯之间形成结合力,把铁磁芯固定到基体上的金属粘结剂。
本发明引入了采用金属粘结剂把铁磁芯固定到和基体结合的绝缘体上的宽广概念。其结果是解决了和在与硅基体(或类似物)结合的绝缘体上表积薄膜铁磁性材料相关的限制。在铁磁芯材料和绝缘体之间形成的结合力可以是物理的,化学的,或者是两者的结合。于是本发明为能够处理和电力处理应用相关的要求的微型磁性装置提供了基础。对本发明的目的来说,金属粘结剂是基本上不含钛的无机基材料。
上面已经大致概述了本发明的特征,从而本领域有经验人员能够更好地理解下面对本发明的详细说明。构成本发明权利要求内容的本发明的附加特征将在下文描述。本领域有经验人员应理解他们可以容易地使用所公开的概念及特定实施例作为设计或修改为实现本发明相同目的的其它结构的基础。本领域有经验人员在不脱离本发明的精神和范围的情况下,也能实现和本发明相同的构造。
为了更完全地理解本发明,下面参考附图对本发明进行详细说明。
图1表示了根据本发明原理构造的电力处理电路的实施例的示意图。
图2表示了根据本发明原理构造的电力微型磁性装置的一个实施例的顶视图。
图3表示了根据本发明原理构造的电力微型磁性装置的另一个实施例的顶视图。
图4表示了根据本发明原理构造的电力微型磁性集成电路(“PMIC”)的实施例的横截面图。
图5表示了制造图4的电力微型磁性集成电路(“PMIC”)的方法的实施例的流程图。
首先参考图1,该图表示了根据本发明的原理构造的电力处理电路100的实施例的示意图。电力处理电路100包括一个动力系,该动力系具有一个转换区段,该转换区段包括一个用于接收输入电压VIN并产生转换后的电压的转换电路110。电力处理电路100还包括一个滤波电路(包括一个输出感应器150和一个输出电容器160),用于对转换后的电压滤波以产生输出电压(以VOUT表示)。电力处理电路100还包括一个具有初级线圈123和次级线圈126的电力微型磁性集成电路(例如变压器)120,及一个耦合于电力转换区段和滤波区段之间的整流器(包括整流二极管130、140)。变压器120按照下文说明的本发明原理构成。提出变压器120和电力处理电路100是为了说明的目的,其它的电力微型磁性集成电路及由此的应用均在本发明的宽广范围内。
现在参见图2,该图表示了根据本发明原理电力微型磁性装置200的一个实施例的顶视图。电力微型磁性装置200为EE型变压器。电力微型磁性装置200包括一个具有第一芯部分210和第二芯部分220的铁磁芯。虽然该铁磁芯可由合金(例如包括80%镍和20%铁的permalloyTM镍铁合金)组成,但是其它的铁磁性材料均包括在本发明的宽广范围内。电力微型磁性装置200还包括初级感应线圈230和次级感应线圈240。当然,感应线圈可由任意导电材料形成。初级线圈230终止于多个接线端250、260;次级线圈240终止于多个接线端270、280。
第一和第二芯部分210、220围绕着初级线圈230和次级线圈240。电力微型磁性装置200的磁通量主要沿着铁磁芯的宽度流动。于是,铁磁芯呈各向异性,从而控制了高频(例如约10MHZ)下的磁滞损失。各向异性性能可由在穿过受激螺线管或永磁体的10-500奥斯特[(“Oe”);8000-40000A/m]的均匀磁场中的表积工艺引起。诱导的各向异性还导致一个难磁化轴和一个易磁化轴,难磁化轴和易磁化轴方向的磁导率分别为最小和最大。某些情况下,由于各向异性,从难磁化轴到易磁化轴,磁导率可增加4倍。EE型结构通过控制诱导的各向异性相对于磁场矢量的方向,能够有效地控制铁磁芯的磁导率。第一和第二芯部分230、240由磁通路耦接在一起(当需要各向异性特性和控制时),或者保持分离(当需要空气隙时)。
就铁磁性材料来说,根据装置的电感要求来确定它的总厚度。对于相当高的频率(例如约10MHZ)下的运行,由于电阻率低(例如ρ~20-100μΩcm),因此铁磁性材料中感应的涡流就将成为问题。为了减小涡流,应将铁磁性材料的磁性膜厚度限制为集肤深度δ[其中对于给定工作频率f,δ=(ρ/πfμ)1/2]的几分之一。例如8MHZ并且μ=1000时,集肤深度约为2.5μm;这样为了限制涡流的效应,膜厚应约小于2μm(显然当磁导率增加时,膜厚应更小)。当电感规格要求更大的膜厚时,可采用绝缘的多层膜(每层膜的膜厚不超过必需的集肤深度)。
现在参见图3,该图表示了根据本发明的原理构成的电力微型磁性装置300的另一个实施例的顶视图。电力微型磁性装置300是一个螺旋管形变压器。电力微型磁性装置300包括一个铁磁芯310(接近窗口325)和导电线圈(总体标记为350),导电线圈通过内层连接通路(其中之一标记为375)围绕铁磁芯310,并终止于多个接线端380、385、390、395。内层连接通路375位于窗口310中。线间隔标准和通路之间的距离决定了窗口310的大小。显然随着装置小型化的趋势,窗口尺寸越小越好。但是窗口310的尺寸仍由为获得电感特性所必需的铁磁性材料的厚度控制。例如,如果螺旋管形为圆环形,则螺旋管形装置的电感达到最大;如果螺旋管形为正方形,则电感减小(约减小25%),并且当正方形拉长为矩形时,电感进一步降低。具有满足最小窗口尺寸的磁芯宽度的正方形螺旋管的电感为L=μ0[N2t]/4(1+π)其中N为线圈匝数,t为薄膜的厚度。窗口310的大小由最小通路的大小、通路之间的间隙和通路的数目(和初始和次级线圈的匝数有关)决定。于是为了减小装置的模大小,要得到和具有相同线圈匝数及磁芯宽度的EE型铁磁芯同样的电感,就需要较大的磁芯厚度。
记住对于EE型结构,需要的线圈连接通路较少,从而减少了将线圈和磁芯耦合所必需的型腔量。而螺旋管形变压器为铁磁性材料的表积提供了平坦并且光滑的表面,从而减少了应力的产生,应力可降低表积薄膜的磁性能。当铁磁性材料具有高的磁致伸缩常数时,这一点特别重要。EE型还需要特别的构造以产生从第一芯部分到第二芯部分的连续磁路。这一点通过在中央芯区内和两个外芯边缘引入通路来实现。这样的通路为铁磁性材料提供了连通性,从而使得第一和第二芯部分被连续地耦合在一起。但是这样的通路是应力集中源,需要额外地降低斜坡以减少累积的应力。
虽然前述图表示了EE型和螺旋管形变压器(包括因此带来的优点和缺点),但是其它电力微型磁性装置(包括前述装置的变形)及由此的应用均在本发明的宽广范围内。
现在参见图4,该图表示了根据本发明原理构造的电力微型磁性集成电路400(“PMIC”)的实施例的横截面图。PMIC400包括一个基体410(例如由硅、玻璃、陶瓷或类似物组成),采用常规的形成方法,例如热生长方法在基体410上形成一层钝化层(例如二氧化硅)。PMIC400还包括由第一、第二和第三绝缘层或绝缘体430、450、470围绕的第一和第二导电线圈层440、460(例如由铝或任意其它导电材料组成)。PMIC400还包括含有第一粘结剂层480(例如铬)和第二粘结剂层485(例如银)的金属粘结剂。PMIC400还包括一个铁磁芯490。PMIC400还包括在PMIC的层和连接另一装置的接线端496之间提供多重通路的多个内层通路(总体标记为493)。钝化层420和第一、第二及第三绝缘层430、450、470可由无机合成物(例如二氧化硅、二氧化铝、二氧化铍),有机聚合物(例如聚酰亚胺)或任意其它的绝缘材料组成。如前所述,金属粘结剂为基本上(约70%)不含钛的无机基材料。虽然第一粘结层480通常含有选自第4族元素(例如锆和铪;不包括(约70%)一种或多种钛的合成物),第5族元素(例如钒、铌和钽)及第6族元素(例如铬、钼和钨),但是其它元素也在本发明的宽广范围内。应注意的是上面的元素分类和周期表中表示的新的国际理论和应用化学协会的符号一致。另外,虽然第二粘结剂485通常含有象金、银、铂、钯及铜之类的金属,但是易于镀覆铁磁性材料的其它材料也包括在本发明的宽广范围内。另外,虽然铁磁芯490可由合金(例如permalloyTM或钴-铁合成物)组成,但是其它铁磁性材料(例如非晶态磷化镍)也包括在本发明的宽广范围内。
如前所述,希望以集成电路的形式制造微型磁性装置。在铁磁芯490中采用合金很有吸引力,因为它的磁致伸缩常数相当低,于是减少了由表积处理引起的应力。如果表积处理导致相当高的应力,那么PMIC40的磁性能就将降低,并且薄膜将缺少便于PMIC400的表积所必需的粘结性能。显然提供的金属粘结剂应能够减少薄膜中可能形成的应力。
为了找到能够为铁磁性材料和绝缘体提供牢固界面的金属粘结剂,已经进行了几种尝试。例如,当只采用一种金属,例如银作为金属粘结剂时,铁磁性材料/银界面强于绝缘体/银界面。其结果是在规定测试剥离作用力下(对于小于1KG/cm2的作用力,采用标准的粘附力评价技术),铁磁性材料和银薄膜会从基体上剥离下来。相反,当只采用铬作为金属粘结剂时,绝缘体/铬界面强于铁磁性材料/铬界面。其结果是在规定测试剥离作用力下(对于小于1KG/cm2的作用力,采用标准的粘附力评价技术),铁磁性材料和银薄膜会从基体上剥离下来。另外,铬不能为铁磁性材料的镀覆提供足够的种子层。于是本发明引入一种金属粘结剂,它能够在铁磁芯490和与基体410结合的绝缘体430、450、470之间提供足够的结合力,从而使得PMIC400的制造容易。
现在参见图5,该图表示了图4的PMIC的制造方法的实施例的流程图。这种制造PMIC的方法和常规的硅-硅多芯片模块工艺类似[见R.C.Frye等的“Silicon-on-Silicon MCMS with Integrated Passive components”,Proc.1992 IEEE Multi-Chip Module Conference,155,SantaCruz,Ca.(1992),该文在此作为参考文献],但是具有下述变化。一般来说,使用光刻胶的光刻工艺被用于确定基于20微米设计尺度的PMIC的几何特征。虽然该尺度相当粗略,但是对于制造象PMIC之类的装置还是足够了,因为多数尺寸均是20微米尺度的倍数。光刻工艺通常包括如下步骤对光刻胶进行暴光并显影,将光刻工艺所作用材料的不想要部分从电路蚀刻并剥离掉。本领域有经验人员应熟悉常规的光刻工艺。
PMIC采用了螺旋管形多层结构。PMIC的制造方法开始于步骤510。在基体氧化步骤520,在硅基体上氧化形成一层钝化层。通常采用常规的热生长技术或化学气相表积技术来形成钝化层。当然基体可为半成品或由具有下伏线路,并最终钝化的预制薄片组成。随后在第一导电线圈层表积步骤530中,在基体上均厚表积第一导电线圈层。第一导电线圈层可由在钝化层上溅射表积(例如,在氩气压强为5mtorr,室温条件下)的厚度约为2-10微米的铝层组成。对于较厚的导体径迹(以得到较低的电阻),可采用电镀铜以获得最高达约25微米的厚度。随后使用常规的光刻工艺使第一导电线圈层成为要求的形状(包括用于PMIC所要求的接触区)。在第一导电线圈层中还可形成另一接触区,便于和与基体耦接的其它线路电连接。在第一绝缘层表积步骤540中,在钝化层和第一导电线圈层上旋转涂覆第一绝缘层。对第一绝缘层进行处理(350℃左右进行约12小时),收缩后就可得到一层厚度约为3-5微米的绝缘层。旋转涂覆技术通常在初级和次级线圈之间提供较高的电压隔离;一般来说,这种隔离的击穿电压值从500交流伏(“VAC”)到1500VAC不等。随后采用光刻工艺使第一绝缘层形成内层通路。
在涂覆金属粘结剂层步骤550,在第一绝缘层上均厚表积包括第一和第二粘结剂层的金属粘结剂。第一粘结剂层可由在第一绝缘层上溅射表积(例如,在氩气压强为5mtorr,250℃条件下)的厚度约为250埃的铬层组成。第二粘结剂层可由在第一粘结剂层上溅射表积(例如,在氩气压强为5mtorr,室温条件下)的厚度约为500埃的银层组成。金属粘结剂也作为镀覆铁磁芯用的种子层。在铁磁芯表积步骤560,在金属粘结剂上表积铁磁芯(例如电镀约2-12微米厚)。可在受控温度(例如25-35℃)以约30mA/cm2的电流密度在缓冲氨基磺酸盐浴中镀覆铁磁芯。采用光刻工艺使金属粘结剂和铁磁芯成为要求的形状。就光刻工艺来说,蚀刻溶液应能够除去不需要的金属粘结剂(例如铬-银合成物),而不浸蚀表积的铁磁性膜。例如,一种标准工业用cerric硝酸铵(CAN)的蚀刻溶液以约50埃/秒的速率蚀刻银,以250埃/秒的速度蚀刻铬,而对铁磁性材料基本上没有影响。这样采用CAN蚀刻约60-75秒就足以使金属粘结剂和铁磁芯成形。另外,第一粘结剂层(例如铬)的表积厚度最好在200-300埃之内(标准250埃),第二粘结剂层(例如银)的表积厚度最好在400-600埃之内(标准500埃),便于控制蚀刻过程。
此外,为了消除可能的侧蚀和铁磁芯下的基蚀,第二粘结剂层可由铜组成。这种情况下,可施加碘化钾水溶液约10秒以完成对铜的蚀刻,施加铁氰化钾和氢氧化钾的溶液约1-2秒以完成对铬的蚀刻。铁氰化钾和氢氧化钾的溶液基本上不影响铁磁芯下面的铜层,从而防止了基蚀的发生。当然其它类型的蚀刻工艺(例如离子蚀刻)也在本发明的宽广范围内。
在第二绝缘层表积步骤570,在铁磁芯和第一绝缘层上旋转涂覆第二绝缘层。随后采用光刻工艺对第二绝缘层刻模,以形成内层通路。随后在第二导电线圈层表积步骤580,在第二绝缘层上均厚表积(例如溅射)第二导电线圈层。随后采用光刻工使第二导电线圈层成为要求的形状(包括要求的接触区)。接着,在第三绝缘层表积步骤590,在第二导电线圈层和第二绝缘层上旋转涂覆第三绝缘层。最后在接线端形成步骤599中,在第三绝缘层中形成一个接线端。该接线端适于丝焊(例如铝丝焊),或者精饰和用于倒装片式组件的焊药一起使用的焊料可浸湿金属(例如铬)。PMIC的制造方法在步骤599终止。随后将完成的薄片封装为集成电路或者安装在倒装片式组件中的裸片。
虽然图4和图5表示了电力微型磁性集成电路及其制造方法(包括光刻工艺)的一个实施例,但是其它的电力微型磁性集成电路(包括前述电路的变型)及其制造方法也均在本发明的宽广范围内。
为了更好地了解电力电子设备、电力磁性装置及功率变换器,参见J.Kassakian,M.Schlecht的“Principles of Power Electronics”,Addison-Wesley Publishing Company(1991)。为了更好地了解集成电路及其制造方法,参见K.Wasa和S.Hayakawa的“Handbook of Sputter DepositionTechnology”,Noyes Publications(1992)和R.W.Berry,P.M.Hall和M.T.Harris的“Thin Film Technology”,Van Nostrand(1968);J.Vossen和W.Kern的“Thin Film Processes,Academic(1978);及L.Maissel和R.Glang的Handbook of Thin Film Technology”,McGraw Hill(1970)。在此引用上述文献作为参考文献。
尽管已详细描述了本发明,但是本领域有经验人员应该明白在不脱离本发明的精神和范围的情况下,可作出各种改变、替换及变形。
权利要求
1.一种和具有一个铁磁芯的电力微型磁性装置一起使用的粘结剂,所述电力微型磁性装置具有一个铁磁芯,并形成于与绝缘体耦合的基体上,所述粘结剂包括在所述绝缘体和所述铁磁芯之间产生结合力,把所述电力微型磁性装置固定到所述绝缘体上的金属材料。
2.如权利要求1所述的粘结剂,它包含一层下述材料之一锆;及铪。
3.如权利要求1所述的粘结剂,它包含一层下述材料之一钒;铌;及钽。
4.如权利要求1所述的粘结剂,它包含一层下述材料之一铬;钼;及钨。
5.如权利要求1所述的粘结剂,它包含一层下述材料之一金;银;铂;钯;及铜。
6.如权利要求1所述的粘结剂,其中所述铁磁芯含有合金材料。
7.如权利要求1所述的粘结剂,其中所述绝缘体包括有机聚合物。
8.如权利要求1所述的粘结剂,其中所述电力微型磁性装置还包括把要求的磁性能赋予所述铁磁芯的线圈。
9.一种把电力微型磁性装置的铁磁芯固定到与绝缘体耦合的基体上的方法,所述方法包括下述步骤用金属材料在所述绝缘体和所述铁磁芯之间形成粘结结合力。
10.如权利要求9所述的方法,包括在所述绝缘体表积一层下述材料之一的步骤锆;及铪。
11.如权利要求9所述的方法,包括在所述绝缘体表积一层下述材料之一的步骤钒;铌;及钽。
12.如权利要求9所述的方法,包括在所述绝缘体表积一层下述材料之一的步骤铬;钼;及钨。
13.如权利要求9所述的方法,包括在所述绝缘体表积一层下述材料之一的步骤金;银;铂;钯;及铜。
14.如权利要求9所述的方法,其中所述铁磁芯含有合金材料。
15.如权利要求9所述的方法,其中所述绝缘体包括有机聚合物。
16.如权利要求9所述的方法,其中所述电力微型磁性装置还包括把要求的磁性能赋予所述铁磁芯的线圈。
17.一种具有铁磁芯的电力微型磁性集成电路,它包含基体;和所述基体结合的绝缘体;及在所述绝缘体和所述铁磁芯之间形成结合力,把所述铁磁芯固定到所述基体上的金属粘结剂。
18.如权利要求17所述的集成电路,其中所述金属粘结剂包括一层下述材料之一锆;及铪。
19.如权利要求17所述的集成电路,其中所述金属粘结剂包括一层下述材料之一钒;铌;及钽。
20.如权利要求17所述的集成电路,其中所述金属粘结剂包括一层下述材料之一铬;钼;及钨。
21.如权利要求17所述的集成电路,其中所述金属粘结剂包括一层下述材料之一金;银;铂;钯;及铜。
22.如权利要求17所述的集成电路,其中所述铁磁芯含有合金材料。
23.如权利要求17所述的集成电路,其中所述绝缘体包括有机聚合物。
24.如权利要求17所述的集成电路,其中所述铁磁芯和把要求的磁性能赋予所述铁磁芯的线圈耦合。
25.一种制造电力微型磁性集成电路的方法,它包含如下步骤提供基体;紧接所述基体表积绝缘体;在所述绝缘体上表积金属粘结剂;在所述金属粘结剂上表积铁磁芯,所述金属粘结剂在所述绝缘体和所述铁磁芯之间形成结合力,把所述铁磁芯固定到所述基体上。
26.如权利要求25所述的方法,其中表积的第二步包括在所述绝缘体上表积一层下述材料之一的步骤锆;及铪。
27.如权利要求25所述的方法,其中表积的第二步包括在所述绝缘体上表积一层下述材料之一的步骤钒;铌;及钽。
28.如权利要求25所述的方法,其中表积的第二步包括在所述绝缘体上表积一层下述材料之一的步骤铬;钼;及钨。
29.如权利要求25所述的方法,其中表积的第二步包括邻近所述铁磁芯表积一层下述材料之一的步骤金;银;铂;钯;及铜。
30.如权利要求25所述的方法,其中所述铁磁芯含有合金材料。
31.如权利要求25所述的方法,其中所述绝缘体包括有机聚合物绝缘体。
32.如权利要求25所述的方法,其中还包括邻近所述铁磁芯表积把要求的磁性能赋予所述铁磁芯的线圈。
33.一种电力处理电路,它包括电力输入源;接收所述电力并产生转换后的电力的转换电路;及电力微型磁性集成电路,所述电力微型磁性集成电路包括具有与其结合的绝缘体的基体;铁磁芯及将要求的磁性能赋予所述铁磁芯的线圈;及在所述绝缘体和所述铁磁芯之间形成结合力,把所述铁磁芯固定到所述基体上的金属粘结剂。
34.如权利要求33所述的电力处理电路,还包括一个整流器和一个耦接于所述集成电路和所述电力处理电路的一个输出端之间的滤波电路。
35.如权利要求33所述的电力处理电路,其中所述金属粘结剂包括一层下述材料之一锆;及铪。
36.如权利要求33所述的电力处理电路,其中所述金属粘结剂包括一层下述材料之一钒;铌;及钽。
37.如权利要求33所述的电力处理电路,其中所述金属粘结剂包括一层下述材料之一铬;钼;及钨。
38.如权利要求33所述的电力处理电路,其中所述金属粘结剂包括一层下述材料之一金;银;铂;钯;及铜。
39.如权利要求33所述的电力处理电路,其中所述铁磁芯含有合金材料。
40.如权利要求33所述的电力处理电路,其中所述绝缘体包括有机聚合物。
全文摘要
本发明涉及一种具有铁磁芯的电力微型磁性集成电路及其制造方法,以及采用这种电力微型磁性集成电路的电力处理电路,所述电力微型磁性集成电路包括:(1)基体;(2)和所述基体结合的绝缘体;及(3)在所述绝缘体和所述铁磁芯之间形成结合力,把所述铁磁芯固定到所述基体上的金属粘结剂。
文档编号H01F10/12GK1203446SQ98109818
公开日1998年12月30日 申请日期1998年6月9日 优先权日1997年6月10日
发明者迪安·保罗·科塞维斯, 阿沙夫·韦吉·罗菲, 林恩·弗朗西丝·施内迈耶, 迈克尔·路易斯·施泰格沃德, 罗伯特·布鲁斯·范多弗 申请人:朗迅科技公司