半导体装置及其制造方法
【专利摘要】本申请提供一种半导体装置及其制造方法。IGBT区具备集电层、第一漂移层、第一体层、发射层和从半导体基板的表面侧起贯穿第一体层而到达第一漂移层的沟槽栅。二极管区具备阴极层、第二漂移层和第二体层。在位于沟槽栅的下端的深度与第一漂移层以及第二漂移层的表面之间的位置处的第一漂移层以及第二漂移层中,形成有包含结晶缺陷密度的峰值的寿命控制区。在半导体基板的表面侧的沟槽栅的上方还设置有氮化硅膜层。
【专利说明】
半导体装置及其制造方法
技术领域
[0001 ] 本申请要求基于2013年12月27日申请的日本国专利申请第2013-271726号以及2014年8月7日申请的日本国专利申请第2014-161668号的优先权。这些申请的全部内容通过参照而被援用于本说明书中。本说明书所记载的技术涉及一种半导体装置及其制造方法。
【背景技术】
[0002]在日本国专利公开公报第2011-238872号中记载了一种在同一半导体基板中形成有IGBT(Insulated Gate Bipolar Transistor:绝缘栅双极性晶体管)区和二极管区的半导体装置。在该半导体装置中,跨及IGBT区和二极管区而形成有寿命控制区。寿命控制区在与被设置于IGBT区中的沟槽栅的下端相比较深的位置处的漂移层内具有结晶缺陷密度的峰值。通过寿命控制区,改善了二极管区的反向恢复特性。
【发明内容】
[0003]发明所要解决的课题
[0004]为了改善二极管区的反向恢复特性,优选为,寿命控制区形成在漂移层内的尽可能靠近体层与漂移层的边界的位置处。当在这样的位置处形成寿命控制区时,形成有沟槽栅的位置与形成有寿命控制区的位置会重叠。其结果为,在沟槽栅的栅极绝缘膜和与之相接的半导体基板之间会形成界面态。由于载流子会被界面态捕捉,因此,多条沟槽栅的阈值电压不同,从而各沟槽栅的阈值电压的偏差变大。
[0005]用于解决课题的方法
[0006]本说明书所公开的第一半导体装置具备:半导体基板,其形成有IGBT区和二极管区;层间绝缘膜以及表面电极,其被形成于半导体基板的表面上;背面电极,其被形成于半导体基板的背面上。在该半导体装置中,IGBT区具备:第一导电型的集电层;第二导电型的第一漂移层,其相对于集电层而被设置于半导体基板的表面侧;第一导电型的第一体层,其相对于第一漂移层而被设置于半导体基板的表面侧,且一部分露出于半导体基板的表面;第二导电型的发射层,其被设置于第一体层的表面上,且露出于半导体基板的表面;沟槽栅,其从半导体基板的表面侧起贯穿第一体层而到达第一漂移层。二极管区具备:第二导电型的阴极层;第二导电型的第二漂移层,其相对于阴极层而被设置于半导体基板的表面侧,且与阴极层相比第二导电型的杂质浓度较低;第一导电型的第二体层,其相对于第二漂移区而被设置于半导体基板的表面侧。层间绝缘膜使沟槽栅与表面电极绝缘。在位于沟槽栅的下端的深度与第一漂移层以及第二漂移层的表面之间的第一漂移层以及第二漂移层中,形成有包含结晶缺陷密度的峰值的寿命控制区。在半导体基板的表面侧的沟槽栅的上方还设置有氮化硅膜层。
[0007]并且,上述的第一漂移层的表面意味着第一漂移层与第一体层的边界面。另外,上述的第二漂移层的表面意味着第二漂移层与第二体层的边界面。另外,上述的“结晶缺陷密度的峰值”意味着第一漂移层或第二漂移层内的深度方向上的结晶缺陷密度分布的极大值。另外,优选为,上述的“结晶缺陷密度的峰值”为所述结晶缺陷密度分布中的最大值。
[0008]根据上述的第一半导体装置,由于从被设置于半导体基板的表面侧的沟槽栅的上方的氮化硅膜层供给氢原子,界面态被氢终结而减少,因此,抑制了沟槽栅的阈值电压的偏差。能够同时实现抑制沟槽栅的阈值电压的偏差和改善二极管区的反向恢复特性。
[0009]在上述半导体装置中,氮化硅膜层可以被设置于发射层的上方。而且,氮化硅膜层可以具备在第一体层的上方开口的开口部。
[0010]本说明书公开的第二半导体装置具备:半导体基板,其形成有IGBT区和二极管区;层间绝缘膜以及表面电极,其被形成于半导体基板的表面上;背面电极,其被形成于半导体基板的背面上。在该半导体装置中,IGBT区具备:第一导电型的集电层;第二导电型的第一漂移层,其相对于集电层而被设置于半导体基板的表面侧;第一导电型的第一体层,其相对于第一漂移层而被设置于半导体基板的表面侧,且一部分露出于半导体基板的表面;第二导电型的发射层,其被设置于第一体层的表面上,且露出于半导体基板的表面;沟槽栅,其从半导体基板的表面侧起贯穿第一体层而到达第一漂移层。二极管区具备:第二导电型的阴极层;第二导电型的第二漂移层,其相对于阴极层而被设置于半导体基板的表面侧,且与阴极层相比第二导电型的杂质浓度较低;第一导电型的第二体层,其相对于第二漂移区而被设置于半导体基板的表面侧。层间绝缘膜使沟槽栅与表面电极绝缘。在位于沟槽栅的下端的深度与第一漂移层以及第二漂移层的表面之间的第一漂移层以及第二漂移层中,形成有包含结晶缺陷密度的峰值的寿命控制区。表面电极包含Al基电极层和势皇金属层,势皇金属层被设置于第一体层的露出于半导体基板的表面的部分与Al基电极层之间,且未被设置于沟槽栅与Al基电极层之间。
[0011]根据上述第二半导体装置,由于从Al基电极层供给氢原子,界面态被终结而减少,因此,抑制了沟槽栅的阈值电压的偏差。另外,容易吸附氢原子的势皇金属层被设置在位于从作为氢原子的供给目标的沟槽栅比较远离的位置处的、第一体层的露出于半导体基板的表面的部分与Al基电极层之间,且未被设置于作为氢原子的供给目标的沟槽栅与Al基电极层之间。因此,氢原子从Al基电极层向沟槽栅的供给不会被势皇金属层妨碍。能够在确保通过设置势皇金属层而获得的效果的同时向沟槽栅供给氢原子,从而能够同时实现抑制沟槽栅的阈值电压的偏差和改善二极管区的反向恢复特性。
[0012]另外,本说明书公开一种半导体装置的制造方法,所述半导体装置具备:半导体基板,其形成有IGBT区和二极管区;层间绝缘膜以及表面电极,其被形成于半导体基板的表面上;背面电极,其被形成于半导体基板的背面上。在该半导体装置中,IGBT区具备:第一导电型的集电层;第二导电型的第一漂移层,其相对于集电层而被设置于半导体基板的表面侧;第一导电型的第一体层,其相对于第一漂移层而被设置于半导体基板的表面侧,且一部分露出于半导体基板的表面;第二导电型的发射层,其被设置于第一体层的表面上,且露出于半导体基板的表面;沟槽栅,其从半导体基板的表面侧起贯穿第一体层而到达第一漂移层。二极管区具备:第二导电型的阴极层;第二导电型的第二漂移层,其相对于阴极层而被设置于半导体基板的表面侧,且与阴极层相比第二导电型的杂质浓度较低;第一导电型的第二体层,其相对于第二漂移区而被设置于半导体基板的表面侧。层间绝缘膜使沟槽栅与表面电极绝缘。在位于沟槽栅的下端的深度与第一漂移层以及第二漂移层的表面之间的第一漂移层以及第二漂移层中,形成有包含结晶缺陷密度的峰值的寿命控制区。在该半导体装置的制造方法中,包括如下步骤:在半导体基板上形成沟槽栅;在沟槽栅的表面侧形成氮化硅膜层;在存在氮化硅膜层的状态下,向位于沟槽栅的下端的深度与第一漂移层以及第二漂移层的表面之间的区域照射带电粒子;在照射了带电粒子之后,在存在氮化硅膜层的状态下,对半导体基板进行退火。
[0013]在上述半导体装置的制造方法中,在沟槽栅的表面侧存在氮化硅膜层的状态下,形成寿命控制区。由于由从氮化硅膜层供给的氢原子产生的界面态的终结化在退火时特别有效地进行,因此能够有效地减少界面态。
[0014]另外,本说明书公开一种半导体装置的制造方法,所述半导体装置具备:半导体基板,其形成有IGBT区和二极管区;层间绝缘膜以及表面电极,其被形成于半导体基板的表面上;背面电极,其被形成于半导体基板的背面上。在该半导体装置中,IGBT区具备:第一导电型的集电层;第二导电型的第一漂移层,其相对于集电层而被设置于半导体基板的表面侧;第一导电型的第一体层,其相对于第一漂移层而被设置于半导体基板的表面侧,且一部分露出于半导体基板的表面;第二导电型的发射层,其被设置于第一体层的表面上,且露出于半导体基板的表面;沟槽栅,其从半导体基板的表面侧起贯穿第一体层而到达第一漂移层。二极管区具备:第二导电型的阴极层;第二导电型的第二漂移层,其相对于阴极层而被设置于半导体基板的表面侧,且与阴极层相比第二导电型的杂质浓度较低;第一导电型的第二体层,其相对于第二漂移区而被设置于半导体基板的表面侧。层间绝缘膜使沟槽栅与表面电极绝缘。在位于沟槽栅的下端的深度与第一漂移层以及第二漂移层的表面之间的第一漂移层以及第二漂移层中,形成有包含结晶缺陷密度的峰值的寿命控制区。表面电极包含Al基电极层和势皇金属层,在该半导体装置的制造方法中,包括如下步骤:在半导体基板上形成沟槽栅;在半导体基板的表面侧形成势皇金属层,势皇金属层至少被设置于第一体层的露出于半导体基板的表面的部分上,且在沟槽栅的表面侧开口;进一步在势皇金属层的表面侧形成Al基电极层;在存在势皇金属层以及Al基电极层的状态下,向位于沟槽栅的下端的深度与第一漂移层以及第二漂移层的表面之间的区域照射带电粒子;在照射了带电粒子之后,在存在势皇金属层以及Al基电极层的状态下,对半导体基板进行退火。
[0015]在上述的半导体装置的制造方法中,在沟槽栅的表面侧存在势皇金属层以及Al基电极层的状态下形成寿命控制区。由于由从Al基电极层供给的氢原子产生的界面态的终结化在退火时特别有效地进行,因此能够有效地减少界面态。另外,由于容易吸附氢原子的势皇金属层在作为氢原子的供给目标的沟槽栅的表面侧开口,因此,氢原子从Al基电极层向沟槽栅的供给不会被势皇金属层妨碍。
【附图说明】
[0016]图1为实施例1所涉及的半导体装置的纵剖视图。
[0017]图2为实施例1所涉及的半导体装置的半导体基板的俯视图。
[0018]图3为实施例1所涉及的半导体装置的俯视图。
[0019]图4为对实施例1所涉及的半导体装置的制造方法进行说明的图。
[0020]图5为对实施例1所涉及的半导体装置的制造方法进行说明的图。
[0021]图6为对实施例1所涉及的半导体装置的制造方法进行说明的图。
[0022]图7为对实施例1所涉及的半导体装置的制造方法进行说明的图。
[0023]图8为对实施例1所涉及的半导体装置的制造方法进行说明的图。
[0024]图9为对实施例1所涉及的半导体装置的制造方法进行说明的图。
[0025]图10为对实施例1所涉及的半导体装置的制造方法进行说明的图。
[0026]图11为改变例所涉及的半导体装置的纵剖视图。
[0027]图12为实施例2所涉及的半导体装置的纵剖视图。
[0028]图13为对实施例2所涉及的半导体装置的制造方法进行说明的图。
[0029]图14为对实施例2所涉及的半导体装置的制造方法进行说明的图。
[0030]图15为对实施例2所涉及的半导体装置的制造方法进行说明的图。
[0031]图16为对实施例2所涉及的半导体装置的制造方法进行说明的图。
[0032]图17为对实施例2所涉及的半导体装置的制造方法进行说明的图。
[0033]图18为改变例所涉及的半导体装置的纵剖视图。
[0034]图19为对改变例所涉及的半导体装置的制造方法进行说明的图。
[0035]图20为改变例所涉及的半导体装置的纵剖视图。
[0036]图21为改变例所涉及的半导体装置的纵剖视图。
[0037]图22为改变例所涉及的半导体装置的半导体基板的俯视图。
[0038]图23为改变例所涉及的半导体装置的俯视图。
【具体实施方式】
[0039]实施例1
[0040]如图1至图3所示,本实施例所涉及的半导体装置10具备:形成有IGBT区11和二极管区12的半导体基板100;被形成于半导体基板100的表面上的层间绝缘膜135、表面电极121以及氮化硅膜层143;和被形成于半导体基板100的背面上的背面电极120。表面电极121为,从半导体基板100侧起依次层叠有Al-Si基电极层、Ni基电极层、焊锡接合层等的复合电极层。背面电极120为层叠有Al基电极层、Ti基电极层、Ni基电极层、焊锡接合层等的复合电极层。
[0041 ] IGBT区11具备:P型的集电层101;与集电层101的表面相接的η型的缓冲层103;与缓冲层103的表面相接的η型的漂移层104;相对于漂移层104而被设置于半导体基板100的表面侧的P型的体层105;被设置于体层105的表面上且露出于半导体基板100的表面的体接触层109;被设置于体层105的表面上且露出于半导体基板100的表面的η型的发射层107;从半导体基板100的表面侧起贯穿体层105而到达漂移层104的沟槽栅130。如图2所示,当俯视观察半导体基板100时,发射层107具有沿着沟槽栅130的长边方向延伸的梯子形形状,体接触层109以嵌入发射层107的梯子形形状之间的方式而相邻。发射层107具有沿着沟槽栅130延伸的部分107a和沿着沟槽栅130的短边方向(与长边方向正交的方向)延伸的部分107b。部分107b于在其短边方向上相邻的沟槽栅130之间,对沿着各个沟槽栅130延伸的两个部分107a之间进行连接,在由部分107a和部分107b包围的区域内配置有体接触层109。并且,在图2中图示了半导体基板100的表面,被形成于该半导体基板的表面上的层间绝缘膜135、表面电极121以及氮化硅膜层143省略了图示。沟槽栅130包括:被形成于半导体基板100上的沟槽131;被形成于沟槽131的内壁上的栅极绝缘膜132 ;和以被栅极绝缘膜132覆盖的状态而被填充于沟槽131内的栅电极133。层间绝缘膜135对沟槽栅130的表面和发射层107的靠近沟槽栅130的一侧的部分进行覆盖,并使栅电极133与表面电极121绝缘。表面电极121与发射层107以及体接触层109的露出于半导体基板100的表面的部分相接。如图1以及图3所示,氮化硅膜层143被形成于IGBT区11内的表面电极121的表面的一部分上。氮化硅膜143被形成于沟槽栅130的上方以及发射层107的上方(在此,上方是指,沿着半导体基板100的厚度方向而成为表面侧的位置,在图1中,为铅垂上方),而未被形成于体接触层109的上方。氮化硅膜层143具有在体接触层109的上方开口的开口部145。在开口部145中露出有表面电极121。
[0042]二极管区12具备:η型的阴极层102;与阴极层102的表面相接的η型的缓冲层103;与缓冲层103的表面相接的η型的漂移层104;相对于漂移层104而被设置于半导体基板100的表面侧的P型的体层105;被设置于体层105的表面上且露出于半导体基板100的表面的阳极层106。如图2所示,阳极层106以占据在其长边方向上相邻的沟槽栅之间的方式而被设置于半导体基板100的表面。在二极管区12内,与IGBT区11相同,也设置有从半导体基板100的表面侧起贯穿体层105而到达漂移层104的沟槽栅130。如图1至图3所示,在二极管区12内,氮化硅膜层143仅被形成于最靠近IGBT区11的阳极层106中的表面被层间绝缘膜135覆盖的部分处。表面电极121与阳极层106的露出于半导体基板100的表面的部分相接。并且,漂移层104的η型的杂质浓度低于阴极层102的η型的杂质浓度。优选为,漂移层104的η型的杂质浓度小于I X 1014atoms/cm3o
[0043]缓冲层103、漂移层104、体层105跨及IGBT区11和二极管区12双方而分别作为一个层被形成。缓冲层103和漂移层104中的被包含于IGBT区11中的部分为第一漂移层的一个示例,缓冲层103和漂移层104中的被包含于二极管区12中的部分为第二漂移层的一个示例。体层105的被包含于IGBT区中的部分以及体接触层109为第一体层的一个示例。体层105的被包含于二极管区12中的部分以及阳极层106为第二体层的一个示例。
[0044]跨及IGBT区11和二极管区12,在漂移层104内形成有寿命控制区150。寿命控制区150为与其周围相比结晶缺陷密度较高的区域。寿命控制区150具有结晶缺陷密度的峰值。即,当对漂移层104内的深度方向上的结晶缺陷密度分布进行测量时,该结晶缺陷密度分布的极大值(优选为,最大值)所在的区域为寿命控制区150。寿命控制区150被形成在位于沟槽栅130的下端的深度与漂移层104和体层105的边界之间的漂移层104(即,存在于与沟槽栅130的下端的深度相比较浅的位置处的漂移层104)内。即,存在于与沟槽栅130的下端的深度相比较浅的位置处的漂移层104中的结晶缺陷密度的平均值高于,存在于与沟槽栅130的下端的深度相比较深的位置处的漂移层104中的结晶缺陷密度的平均值。在寿命控制区150内,载流子的寿命有效地被衰减。由此,二极管区12的反向恢复特性良好。在半导体装置10中,寿命控制区150在漂移层104内被形成于靠近体层105和漂移层104的边界的位置处,因此,特别有效地使二极管区12的反向恢复特性变得良好。另外,在半导体装置10中,形成有沟槽栅130的深度与形成有寿命控制区150的深度部分重叠,从而在沟槽栅130的栅极绝缘膜132和与之相接的半导体基板100之间容易产生界面态。一般而言,在产生该界面态时,IGBT的栅极的阈值电压不稳定,在批量生产IGBT时,阈值电压的偏差将变大。但是,虽然将在后文详细叙述,但在半导体装置10的制造时,通过由氮化硅膜层143供给的氢原子,该界面态被终结而减少。因此,抑制了沟槽栅130的阈值电压的偏差。根据半导体装置10,能够同时实现抑制沟槽栅130的阈值电压的偏差和改善二极管区12的反向恢复特性。
[0045]对半导体装置10的制造方法的一个示例进行说明。并且,关于能够利用现有公知的半导体装置的制造方法的工序,省略详细的说明。
[0046]首先,如图4所示,准备原料晶片90。例如,利用离子注入以及退火等现有公知的方法而在η型的娃晶片的表面侧,形成体层105、阳极层106、发射层107、体接触层109。11层904为η型的硅晶片的未被实施离子注入的部分,且为成为半导体装置10的漂移层104的层。此后,利用蚀刻、热氧化、CVD(Chemical Vapor Deposit1n,化学气相沉积)等现有公知的方法,形成沟槽栅130、层间绝缘膜135。由此,能够制造出图4所示的原料晶片90。并且,在形成栅极绝缘膜132的热氧化工序中,能够优选使用火焰式(pyro genic)氧化法,该火焰式氧化法使用水蒸汽以作为氧化剂(oxidizing spe cies)。由此,当利用热氧化法来形成时,能够形成含有较多的水的栅极绝缘膜。
[0047]接下来,如图5所示,在原料晶片90的表面上形成表面电极121。表面电极121被形成为进一步覆盖被形成于沟槽栅130的表面上的层间绝缘膜135的表面的程度的厚度。接下来,如图6所示,利用CVD等现有公知的成膜方法,在表面电极121的表面上形成氮化硅膜层943。氮化硅膜层943被形成为对表面电极121的整体进行覆盖的程度。
[0048]接下来,如图7所示,对原料晶片90的背面进行切削而使其厚度变薄之后,对背面实施离子注入。由此,在原料晶片90的背面侧,形成P型的离子注入层901、n型的离子注入层902、n型的离子注入层903。
[0049]接下来,如图8所示,在氮化硅膜层943存在于表面电极121的表面上的状态下,为了形成结晶缺陷,而从原料晶片90的背面侧向漂移层104内照射带电粒子。以在从沟槽栅130的下端的深度至漂移层104和体层105的边界之间的区域内包含结晶缺陷密度的峰值的方式,而对照射带电粒子的位置进行调节。当以上述方式照射带电粒子时,一部分的带电粒子会被注入至栅极绝缘膜132中。因此,当实施离子注入时,容易在栅极绝缘膜132和与之相接的半导体基板100之间产生界面态。另外,结晶缺陷也可以通过从表面侧穿过沟槽栅而向漂移层内进行照射来形成。
[0050]接下来,如图9所示,在氮化硅膜层943存在于表面电极121的表面上的状态下,实施用于使结晶缺陷稳定化的退火,从而形成寿命控制区150。在该退火工序中,P型的离子注入层901、n型的离子注入层902、n型的离子注入层903也被退火,分别形成P型的集电层101、η型的阴极层102、n型的缓冲层103。另外,当如上述方式那样在存在氮化硅膜层943的状态下实施退火工序时,氢原子会从氮化硅膜层943被供给至半导体基板100中。通过所供给的氢原子,存在于栅极绝缘膜132和半导体基板100的边界处的界面态的终结化有效地进行,从而能够有效地减少界面态。并且,在利用火焰式氧化法形成了栅极绝缘膜132的情况下,通过从含有较多的水的栅极绝缘膜132被供给的氢原子,也会使界面态终结化,从而能够更加有效地减少界面态。
[0051]接下来,如图10所示,通过蚀刻等现有公知的方法来对氮化硅膜层943进行局部去除。被形成于阳极层106的上方以及体接触层109的上方的氮化硅膜层943被去除,从而成为被图案形成为与图1相同的形状的氮化硅膜层143。而且,通过在图10所示的原料晶片90的表面、背面上形成背面电极120,从而能够制造出图1至图3所示的半导体装置10。
[0052](改变例)
[0053]虽然在实施例1中,对在实施了用于使结晶缺陷稳定化的退火之后,局部去除氮化硅膜层943的制造方法进行了说明,但是,即使将氮化硅膜层943全部去除,也能够获得由从氮化硅膜层943供给的氢原子产生的界面态减少的效果。在该情况下,可制造具有从图1至图3所示的半导体装置10中去除了氮化硅膜层143的结构的半导体装置。另外,虽然在实施例I中,例示了表面电极121为不含势皇金属层的复合电极的情况而进行了说明,但是并不限定于此。也能够代替表面电极121,而使用包含被形成于与半导体基板100之间的边界面的整体或一部分上的势皇金属层的复合电极层。即使在利用了容易吸附氢原子的势皇金属层的情况下,由于从氮化硅膜层供给氢原子而进行补充,因此,也能够抑制沟槽栅的阈值电压的偏差。
[0054]另外,氮化硅膜只需被形成于沟槽栅130的上方以及发射层107的上方即可,无需被形成于表面电极121的上方。即使氮化硅膜被配置于表面电极121的下方或内部,也能够获得本申请发明的效果。例如,也可以如图11所示的半导体装置1a那样,在表面电极121的下方配置氮化硅膜143a。氮化硅膜143a被形成于表面电极121的下方且沟槽栅130的上方以及发射层107的上方,而未被形成于体接触层109的上方。氮化硅膜143a对被设置于IGBT区11中的层间绝缘膜135的表面以及侧面进行覆盖,并对发射层107的表面中的未被层间绝缘膜135覆盖的部分进行覆盖。在IGBT区11内,氮化硅膜层143a未被形成于体接触层109的表面上,且具有在体接触层109的表面侧开口的开口部145a。在二极管区12内,氮化硅膜层143a仅被形成于最靠近IGBT区11的阳极层106中的表面被层间绝缘膜135覆盖的部分上。表面电极121进一步覆盖氮化硅膜层143a的表面,并贯穿氮化硅膜层143a的开口部145a而与体接触层109的表面相接。另外,表面电极121与阳极层106的露出于半导体基板100的表面的部分相接。背面电极120与集电层101相接。
[0055]实施例2
[0056]图12所示的半导体装置20于在半导体基板100的表面以及层间绝缘膜135的表面上未形成有氮化硅膜层143这一点,以及表面电极包含Al基电极层221、势皇金属层244这一点上,与半导体装置10不同。并且,虽然未图示,但是,作为表面电极的一部分,在Al基电极层的表面上,还层叠有Ni基电极层以及焊锡接合层。
[0057]Al基电极层221由在半导体领域中常用的AUAl-Si合金等以铝为主要成分的电极材料形成,这些电极材料因氢原子的供给性较高而被熟知。
[0058]势皇金属层244在二极管区12内被形成于对半导体基板100的表面以及层间绝缘膜135的表面进行覆盖的位置上。势皇金属层244在IGBT区11内被形成于对体接触层109的表面进行覆盖的位置上,而未被形成于对发射层107的表面以及层间绝缘膜135的表面进行覆盖的位置上。即,势皇金属层244被设置于第一体层(二极管区12内的体层105)的露出于半导体基板100的表面的部分与Al基电极层221之间,且未被设置于IGBT区11内的沟槽栅130与Al基电极层221之间。势皇金属层244的材料能够使用钛(Ti)、氮化钛(TiN)、钛钨合金(TiW)等现有公知的作为势皇金属而使用的材料。其他结构由于与半导体装置10相同,因此省略说明。
[0059]在实施例2的半导体装置20中,也在沟槽栅130的下端附近形成有寿命控制区150。但是,如后文详细叙述的那样,在半导体装置20的制造工序中,氢原子从Al基电极层221被供给,存在于栅极绝缘膜132和半导体基板100的边界处的界面态被终结而减少。因此,抑制了沟槽栅130的阈值电压的偏差。
[0060]另外,容易吸附氢原子的势皇金属层244在IGBT区11内被设置于体接触层109的露出于半导体基板100的表面的部分与Al基电极层221之间,且未被设置于沟槽栅130与Al基电极层221之间。即,势皇金属层244仅被形成于从作为氢原子的供给目标的被设置于IGBT区11内的沟槽栅130比较远离的位置处。因此,在IGBT区11内,氢原子从Al基电极层221向沟槽栅130的供给不会被势皇金属层244妨碍。
[0061]根据半导体装置20,能够在确保通过设置势皇金属层244而获得的效果(Al尖峰的防止等)的同时,向被设置于IGBT区11内的沟槽栅130供给氢原子,从而能够抑制IGBT区11的工作时的沟槽栅130的阈值电压的偏差。
[0062]对半导体装置20的制造方法的一个示例进行说明。并且,关于能够利用现有公知的半导体装置的制造方法的工序,省略详细的说明。
[0063]首先,通过与实施例1相同的方法,准备图4所示的原料晶片90ο如图13所示,在原料晶片90上,通过溅射法等而形成势皇金属层244。势皇金属层244与阳极层106的表面以及体接触层109的表面相接,并且,以在沟槽栅130的表面侧开口的方式被图案形成。
[0064]接下来,如图14所示,进一步在势皇金属层244的表面上通过溅射法等而形成Al基电极层221。
[0065]接下来,如图15所示,对原料晶片90的背面进行切削而使其厚度变薄之后,对背面实施离子注入。由此,在原料晶片90的背面侧,形成P型的离子注入层901、n型的离子注入层902、n型的离子注入层903。
[0066]接下来,如图16所示,在势皇金属层244以及Al基电极层221存在于原料晶片90的表面上的状态下,为了形成结晶缺陷,而从原料晶片90的背面侧向漂移层104内照射带电粒子。以在从沟槽栅130的下端的深度至漂移层104和体层105的边界之间的区域内包含结晶缺陷密度的峰值的方式,对照射带电粒子的位置进行调节。当以上述方式照射带电粒子时,一部分的带电粒子会被注入至栅极绝缘膜132中。因此,当实施离子注入时,容易在栅极绝缘膜132和与之相接的半导体基板100之间产生界面态。
[0067]接下来,如图17所示,在势皇金属层244以及Al基电极层221存在于原料晶片90的表面上的状态下,实施用于使结晶缺陷稳定化的退火,从而形成寿命控制区150。与实施例1相同,在该退火工序中,形成P型的集电层101、n型的阴极层102、n型的缓冲层103。另外,当如上述方式那样在存在Al基电极层221的状态下实施退火工序时,氢原子会从Al基电极层221被供给至半导体基板100中。通过所供给的氢原子,存在于栅极绝缘膜132和半导体基板100的边界处的界面态的终结化有效地进行,从而能够有效地减少界面态。另外,由于容易吸附氢原子的势皇金属层244在作为氢原子的供给目标的沟槽栅130的表面侧开口,因此,氢原子从Al基电极层221向沟槽栅130的供给不会被势皇金属层244妨碍。
[0068](改变例)
[0069]并且,也能够在半导体装置20中进一步设置在实施例1中所说明的氮化硅膜层143。通过由氮化硅膜143供给的氢原子,也会使界面态终结化,从而能够更加有效地减少界面态。
[0070]另外,如图18所示的半导体装置20a那样,表面电极也可以包含被设置于势皇金属层244a与Al基电极层221之间的接触插塞(contact plug)层254。接触插塞层254以被埋入势皇金属层244a的凹部中的方式,被形成于在IGBT区11内所设置的势皇金属层244a的表面侦U,该接触插塞层254的表面被Al基电极层221覆盖。作为接触插塞层254的材料,可以优选使用钨等。接触插塞层254被埋入至势皇金属层244的凹部中,并且势皇金属层244a、接触插塞层254、层间绝缘膜135的表面被平坦化,从而能够提高这些层与Al基电极层221之间的紧密性。
[0071]在通过与半导体装置20的制造工序中的形成势皇金属层224的工序相同的工序形成了势皇金属层224a之后,实施形成接触插塞层254的工序,接下来,实施半导体装置20的制造工序中的形成Al基电极层221的工序,从而能够制造出半导体装置20a。具体而目,在如图19所示那样形成了势皇金属层224a之后的原料晶片90b的表面上,通过溅射法等使成为接触插塞层254的材料的金属膜(例如,钨膜)成膜之后,进行图案形成,并去除被埋入至势皇金属层224a的表面的凹部中的部分以外的金属膜,从而形成接触插塞层254。接下来,在接触插塞层254被成膜于势皇金属层224a的表面上的状态下,与图14相同,通过溅射法等,在原料晶片90b的表面上形成Al基电极层221。此后,通过实施与利用图15至17而在实施例2中所说明的工序相同的工序,从而能够制造出半导体装置20a。
[0072]另外,上述的实施例以及改变例中所说明的IGBT区以及二极管区的结构只不过是例示,本申请所记载的技术能够应用于具有上述以外的IGBT区的结构、二极管的结构的半导体装置中。例如,可以如图20所示的半导体装置1b那样,与漂移层104相比靠表面侧的结构在IGBT区11和二极管区12中相同。半导体装置1b的二极管区12具备二极管发射层157和二极管体接触层159。在俯视观察半导体基板100时,二极管发射层157、二极管体接触层159分别与发射层107、体接触层109同样地被图案形成。半导体装置1b中的与漂移层104相比靠表面侧的结构在IGBT区11和二极管区12中以同样的方式被图案形成,因此简化了制造工序。而且,虽然在半导体装置1b中,氮化硅膜层143仅被形成于IGBT区11的上方,但是,也可以被形成于二极管区12的沟槽栅130的上方以及二极管发射层157的上方(未图示)。
[0073]另外,例如,也可以具备如图21至23所示的半导体装置1c那样被实施了图案形成的半导体基板100c。当俯视观察半导体基板10c时,如图22所示,IGBT区11的发射层167与体接触层169沿着沟槽栅130的长边方向而被交替配置。当与沟槽栅130的长边方向垂直地剖切半导体装置1c时,根据该剖面的位置的不同,存在如图21所示那样在IGBT区11的相邻的沟槽栅130之间仅出现发射层167的情况,和在IGBT区11的相邻的沟槽栅130之间仅出现体接触层169的情况(未图示)。
[0074]另外,在半导体装置1c中,如图23所示,氮化硅膜层143c被形成于IGBT区11内的表面电极121的表面上,并具有在相邻的沟槽栅130之间的中央位置附近开口的开口部145c。发射层167的一部以及体接触层169的一部分位于开口部145c的下方。如半导体装置1c那样,氮化硅膜层143c也可以未被形成于一部分发射层167的铅垂上方,另外,也可以被形成于一部分体接触层169的铅垂上方。
[0075]以上,对本发明的实施例进行了详细说明,但是,这些只不过为例示,并不对权利要求书进行限定。权利要求书所记载的技术包括对以上所例示的具体示例进行了各种各样的改变、变更的内容。
[0076]本说明书或附图中所说明的技术要素通过单独或各种组合的方式而发挥技术上的有用性,但并不被限定于申请时权利要求所述的组合。另外,本说明书或附图所例示的技术能够同时实现多个目的,并且实现其中一个目的本身便具有技术上的有用性。
【主权项】
1.一种半导体装置,具备: 半导体基板,其形成有绝缘栅双极性晶体管区和二极管区; 层间绝缘膜以及表面电极,其被形成于所述半导体基板的表面上; 背面电极,其被形成于所述半导体基板的背面上, 所述绝缘栅双极性晶体管区具备: 第一导电型的集电层; 第二导电型的第一漂移层,其相对于所述集电层而被设置于所述半导体基板的表面侧; 第一导电型的第一体层,其相对于所述第一漂移层而被设置于所述半导体基板的表面侧,且一部分露出于所述半导体基板的表面; 第二导电型的发射层,其被设置于所述第一体层的表面上,且露出于所述半导体基板的表面; 沟槽栅,其从所述半导体基板的表面侧起贯穿所述第一体层而到达所述第一漂移层, 所述二极管区具备: 第二导电型的阴极层; 第二导电型的第二漂移层,其相对于所述阴极层而被设置于所述半导体基板的表面侧,且与所述阴极层相比第二导电型的杂质浓度较低; 第一导电型的第二体层,其相对于所述第二漂移区而被设置于所述半导体基板的表面侧, 所述层间绝缘膜使所述沟槽栅与所述表面电极绝缘, 在位于所述沟槽栅的下端的深度与所述第一漂移层以及所述第二漂移层的表面之间的所述第一漂移层以及所述第二漂移层中,形成有包含结晶缺陷密度的峰值的寿命控制区, 在所述半导体基板的表面侧的所述沟槽栅的上方还设置有氮化硅膜层。2.如权利要求1所述的半导体装置,其中, 所述氮化硅膜层被设置于所述发射层的上方, 所述氮化硅膜层具备在所述第一体层的上方开口的开口部。3.—种半导体装置,具备: 半导体基板,其形成有绝缘栅双极性晶体管区和二极管区; 层间绝缘膜以及表面电极,其被形成于所述半导体基板的表面上; 背面电极,其被形成于所述半导体基板的背面上, 所述绝缘栅双极性晶体管区具备: 第一导电型的集电层; 第二导电型的第一漂移层,其相对于所述集电层而被设置于所述半导体基板的表面侧; 第一导电型的第一体层,其相对于所述第一漂移层而被设置于所述半导体基板的表面侧,且一部分露出于所述半导体基板的表面; 第二导电型的发射层,其被设置于所述第一体层的表面上,且露出于所述半导体基板的表面; 沟槽栅,其从所述半导体基板的表面侧起贯穿所述第一体层而到达所述第一漂移层, 所述二极管区具备: 第二导电型的阴极层; 第二导电型的第二漂移层,其相对于所述阴极层而被设置于所述半导体基板的表面侧,且与所述阴极层相比第二导电型的杂质浓度较低; 第一导电型的第二体层,其相对于所述第二漂移区而被设置于所述半导体基板的表面侧, 所述层间绝缘膜使所述沟槽栅与所述表面电极绝缘, 在位于所述沟槽栅的下端的深度与所述第一漂移层以及所述第二漂移层的表面之间的所述第一漂移层以及所述第二漂移层中,形成有包含结晶缺陷密度的峰值的寿命控制区, 所述表面电极包含Al基电极层和势皇金属层, 所述势皇金属层被设置于所述第一体层的露出于所述半导体基板的表面的部分与所述Al基电极层之间,且未被设置于所述沟槽栅与所述Al基电极层之间。4.一种半导体装置的制造方法,其中, 所述半导体装置具备: 半导体基板,其形成有绝缘栅双极性晶体管区和二极管区; 层间绝缘膜以及表面电极,其被形成于所述半导体基板的表面上; 背面电极,其被形成于所述半导体基板的背面上, 所述绝缘栅双极性晶体管区具备: 第一导电型的集电层; 第二导电型的第一漂移层,其相对于所述集电层而被设置于所述半导体基板的表面侧; 第一导电型的第一体层,其相对于所述第一漂移层而被设置于所述半导体基板的表面侧,且一部分露出于所述半导体基板的表面; 第二导电型的发射层,其被设置于所述第一体层的表面上,且露出于所述半导体基板的表面; 沟槽栅,其从所述半导体基板的表面侧起贯穿所述第一体层而到达所述第一漂移层, 所述二极管区具备: 第二导电型的阴极层; 第二导电型的第二漂移层,其相对于所述阴极层而被设置于所述半导体基板的表面侧,且与所述阴极层相比第二导电型的杂质浓度较低; 第一导电型的第二体层,其相对于所述第二漂移区而被设置于所述半导体基板的表面侧, 所述层间绝缘膜使所述沟槽栅与所述表面电极绝缘, 在位于所述沟槽栅的下端的深度与所述第一漂移层以及所述第二漂移层的表面之间的所述第一漂移层以及所述第二漂移层中,形成有包含结晶缺陷密度的峰值的寿命控制区, 在所述半导体装置的制造方法中,包括如下步骤: 在所述半导体基板上形成所述沟槽栅; 在所述沟槽栅的表面侧形成氮化硅膜层; 在存在所述氮化硅膜层的状态下,向位于所述沟槽栅的下端的深度与所述第一漂移层以及所述第二漂移层的表面之间的区域照射带电粒子; 在照射了所述带电粒子之后,在存在所述氮化硅膜层的状态下,对所述半导体基板进行退火。5.一种半导体装置的制造方法,其中, 所述半导体装置具备: 半导体基板,其形成有绝缘栅双极性晶体管区和二极管区; 层间绝缘膜以及表面电极,其被形成于所述半导体基板的表面上; 背面电极,其被形成于所述半导体基板的背面上, 所述绝缘栅双极性晶体管区具备: 第一导电型的集电层; 第二导电型的第一漂移层,其相对于所述集电层而被设置于所述半导体基板的表面侧; 第一导电型的第一体层,其相对于所述第一漂移层而被设置于所述半导体基板的表面侧,且一部分露出于所述半导体基板的表面; 第二导电型的发射层,其被设置于所述第一体层的表面上,且露出于所述半导体基板的表面; 沟槽栅,其从所述半导体基板的表面侧起贯穿所述第一体层而到达所述第一漂移层, 所述二极管区具备: 第二导电型的阴极层; 第二导电型的第二漂移层,其相对于所述阴极层而被设置于所述半导体基板的表面侧,且与所述阴极层相比第二导电型的杂质浓度较低; 第一导电型的第二体层,其相对于所述第二漂移区而被设置于所述半导体基板的表面侧, 所述层间绝缘膜使所述沟槽栅与所述表面电极绝缘, 在位于所述沟槽栅的下端的深度与所述第一漂移层以及所述第二漂移层的表面之间的所述第一漂移层以及所述第二漂移层中,形成有包含结晶缺陷密度的峰值的寿命控制区, 所述表面电极包含Al基电极层和势皇金属层, 在所述半导体装置的制造方法中,包括如下步骤: 在所述半导体基板上形成所述沟槽栅; 在所述半导体基板的表面侧形成势皇金属层,所述势皇金属层至少被设置于所述第一体层的露出于所述半导体基板的表面的部分上,且在所述沟槽栅的表面侧开口; 进一步在所述势皇金属层的表面侧形成Al基电极层; 在存在所述势皇金属层以及所述Al基电极层的状态下,向位于所述沟槽栅的下端的深度与所述第一漂移层以及所述第二漂移层的表面之间的区域照射带电粒子; 在照射了所述带电粒子之后,在存在所述势皇金属层以及所述Al基电极层的状态下,对所述半导体基板进行退火。
【文档编号】H01L21/263GK105849912SQ201480071047
【公开日】2016年8月10日
【申请日】2014年11月19日
【发明人】岩崎真也, 亀山悟
【申请人】丰田自动车株式会社