顶部发光装置和有机发光二极管显示装置的制造方法
【专利摘要】公开了一种有机发光二极管显示装置和顶部发光装置。有机发光二极管显示装置包括第一衬底、设置在第一衬底上的第一电极、与第一电极相对的第二电极、设置在第一电极和第二电极之间的有机发光层、以及设置在第一衬底的后表面上并与显示区域重叠的至少一个光检测构件,第一衬底包括具有多个像素的显示区域和在显示区域的周边中的非显示区域。
【专利说明】顶部发光装置和有机发光二极管显示装置
[0001]相关申请的交叉引用
[0002]本申请要求在韩国知识产权局于2015年2月9日提交的第10-2015-0019251号韩国专利申请以及于2015年2月9日提交的第10-2015-0019247号韩国专利申请的优先权及权益,韩国专利申请的内容通过弓I用整体并入本文中。
技术领域
[0003]本公开的实施方式涉及顶部发光装置和有机发光二极管显示装置,更具体地涉及主要将光发射至其前表面的顶部发光装置和顶部发射型有机发光二极管显示装置。
【背景技术】
[0004]发光装置是提供光的装置并用于照明或显示领域中。例如,有机发光二极管显示装置可以包括多个有机发光装置,并且可以控制从相应的有机发光装置发射的光量以显示图像。有机发光装置的发光层通过其两个表面发光,并且如果在一个方向中观看屏幕,装置可以具有反射电极或反射层以在屏幕显示方向中反射从其发射的光。
[0005]有机发光装置设置在衬底前面并且在朝向衬底的方向中发射光的情况通常称为“底部发射”,而在与朝向衬底的方向相反的前向中发射光的情况通常称为“顶部发射”。底部发射型有机发光二极管显示装置可以使用有机发光装置的顶部电极作为反射电极,以将光发射至其后表面。另一方面,顶部发射型有机发光二极管显示装置可以在有机发光装置的下部电极中包括反射电极或反射层。
[0006]此外,有机发光二极管显示装置中的退化度可以根据每个像素中积累了多少电流而变化。如果已经检测到退化使得可以补偿提供至相应像素的电流,那么可以阻止因为退化而导致的图像质量退化。为此,应当确定发射的光的亮度。
[0007]对于底部发射型显示设备,由于侧向泄漏的光可能从显示面板的内部反射并且可能通过显示面板侧向传播,所以当显示面板的侧表面上设置有光传感器时可以检测从像素发出的光。基于此,可以估计像素发光强度。但是,对于顶部发射型显示设备,因为透明电极或半透明电极被用作顶部电极,所以侧向传播的光的强度可能较低。因此,即使光传感器安装在显示面板的侧表面上,其也可能不能精确地检测和估计从像素发出的光强度。
【发明内容】
[0008]本公开的实施方式可以提供可容易地检测从像素发出的光的亮度的有机发光二极管显示装置。
[0009]本公开的实施方式还可以提供可容易地检测发射的光的亮度的顶部发光装置。
[0010]根据本发明构思的实施方式,提供了一种有机发光二极管显示装置,其包括:第一衬底,包括具有多个像素的显示区域和在显示区域的周边中的非显示区域;第一电极,设置在第一衬底上;第二电极,与第一电极相对;有机发光层,设置在第一电极和第二电极之间;以及至少一个光检测构件,设置在第一衬底的后表面上并与显示区域重叠。
[0011]光检测构件可以包括光传感器和光收集构件,光收集构件将从第一衬底接收的光传输到光传感器。
[0012]光收集构件可以包括光收集体和设置在光收集体中的光调制结构。
[0013]光传感器可以设置成与光收集体的一侧相邻。
[0014]光调制结构可以包括与多个像素对应的多个棱镜图案。
[0015]棱镜图案可以沿与其对应的每列像素或每行像素以一一对应的方式设置。
[0016]光调制结构可以具有单个连续的倾斜表面。
[0017]倾斜表面的倾斜角可以随着与光传感器的距离的减小而减小。
[0018]光调制结构可以包括具有不同倾斜角的交替的第一表面和第二表面。
[0019]第一表面和第二表面的重复单元的宽度可以与对应于重复单元的像素的节距相同。
[0020]光收集体的顶表面可以是光输入表面,光收集体的与光传感器相邻的侧表面可以是光输出表面,以及光收集构件还可以包括设置在光收集体的除了光输入表面和光输出表面之外的那些表面上的反射构件。
[0021]光传感器可以设置在与光收集体的一侧相邻的后表面上。
[0022]光调制结构可以包括第一光路径改变结构和第二光路径改变结构,第一光路径改变结构将光路径改变至水平方向,第二光路径改变结构将光路径改变至垂直方向。
[0023]多个光检测构件可以设置成彼此间隔开。
[0024]显示区域可以包括中心部分和围绕中心部分的周边部分,以及光检测构件可以设置在显示区域的周边部分中。
[0025]周边部分可以包括退化预期区域,并且光检测构件可以至少部分地与退化预期区域重叠。
[0026]显示区域还可以包括与退化预期区域相邻的比较区域,光收集构件可以与退化预期区域重叠,以及光传感器可以与比较区域重叠。
[0027]有机发光二极管显示装置还可以包括设置在第一衬底的后表面上的散热构件。
[0028]散热构件可以包括孔,以及光检测构件可以插入孔中并且设置成与第一衬底的后表面相邻。
[0029]有机发光二极管显示装置还可以包括设置在第一衬底和光检测构件之间的粘合构件。
[0030]根据本发明构思的另一实施方式,提供了一种顶部发光装置,其包括:底部装置单元;顶部装置单元,与底部装置单元相对;发光装置单元,插置在底部装置单元和顶部装置单元之间;以及至少一个光检测构件,设置在底部装置单元的后方中并且与顶部装置单元的光传输区域重叠。
[0031]光检测构件可以包括光传感器和光收集构件,光收集构件将从底部装置单元接收的光传输到光传感器。
[0032]光收集构件可以包括光收集体和设置在光收集体中的光调制结构。
[0033]多个光检测构件可以设置成彼此间隔开。
[0034]光检测构件可以至少部分地与发光装置单元中的退化预期区域重叠。
[0035]顶部发光装置还可以包括设置在第一衬底的后表面上的并且包括孔的散热构件,其中,光检测构件插入孔中并且设置成与第一衬底的后表面相邻。
[0036]根据本发明构思的另一实施方式,提供了一种有机发光二极管显示装置,其包括:包括具有多个像素的显示区域和在显示区域的周边中的非显示区域的第一衬底;以及至少一个光检测构件,设置在第一衬底的后表面上并与显示区域重叠。光检测构件包括光传感器和将从第一衬底接收的光传输到光传感器的光收集构件,以及光收集构件包括光收集体和设置在光收集体中的光调制结构。
[0037]有机发光二极管显示装置还可以包括设置在第一衬底上的第一电极、与第一电极相对的第二电极、以及设置在第一电极和第二电极之间的有机发光层。
【附图说明】
[0038]图1是根据本公开的示例性实施方式的顶部发光装置的示意图。
[0039]图2是根据本公开的示例性实施方式的有机发光二极管显示装置的平面图。
[0040]图3是根据本公开的示例性实施方式的有机发光二极管显示装置的后视图。
[0041]图4是根据本公开的另一示例性实施方式的有机发光二极管显示装置的平面图。
[0042]图5是根据本公开的另一示例性实施方式的有机发光二极管显示装置的后视图。
[0043]图6是根据本公开的示例性实施方式的有机发光二极管显示装置的示意剖视图。
[0044]图7是根据本公开的示例性实施方式的有机发光二极管显示装置的像素结构的剖视图。
[0045]图8是根据本公开的示例性实施方式的有机发光二极管显示装置的光检测构件的平面图。
[0046]图9是根据本公开的示例性实施方式的有机发光二极管显示装置的光检测构件的剖视图。
[0047]图10是根据本公开的另一示例性实施方式的有机发光二极管显示装置的光检测构件的剖视图。
[0048]图11是根据本公开的另一示例性实施方式的有机发光二极管显示装置的光检测构件的剖视图。
[0049]图12是根据本公开的另一示例性实施方式的有机发光二极管显示装置的光检测构件的剖视图。
[0050]图13是根据本公开的另一示例性实施方式的有机发光二极管显示装置的光检测构件的剖视图。
[0051]图14是根据本公开的另一示例性实施方式的有机发光二极管显示装置的光检测构件的剖视图。
[0052]图15是根据本公开的另一示例性实施方式的有机发光二极管显示装置的光检测构件的剖视图。
[0053]图16是根据本公开的另一示例性实施方式的有机发光二极管显示装置的光检测构件的剖视图。
[0054]图17是根据本公开的另一示例性实施方式的有机发光二极管显示装置的后视图。
[0055]图18是根据本公开的另一示例性实施方式的有机发光二极管显示装置的剖视图。
[0056]图19是根据本公开的另一示例性实施方式的有机发光二极管显示装置的剖视图。
[0057]图20是根据本公开的另一示例性实施方式的有机发光二极管显示装置的剖视图。
【具体实施方式】
[0058]通过参考示例性实施方式的以下详细描述和附图,可以更容易地理解本公开的实施方式的特征和实现本公开的方法。但是,本公开的实施方式可以被体现为许多不同的形式,并且不应被理解为限于本文中阐述的实施方式。
[0059]应当理解,当元件或层被称为在另一元件或层“上”时,它可以直接地在另一元件或层上,或者可以存在介入元件或层。在整个说明书中,相同的参考标号可以表示相同的元件。
[0060]在说明书中,发光装置是指提供光的装置,并且例如可以包括使用光显示图像的发光装置或显示设备,诸如有机发光二极管显示装置、无机发光二极管显示装置、等离子体显示装置等。
[0061 ]以下,将参考附图来描述本公开的示例性实施方式。
[0062]图1是根据本公开的示例性实施方式的顶部发光装置的示意图。参照图1,顶部发光装置10包括底部装置单元11、发光装置单元12、顶部装置单元13、和光检测构件300。
[0063]在说明书中,术语“单侧发光”是指主要至装置的两个表面中的一个表面的光发射。此外,术语“顶部发射”是指主要至前表面和后表面中的前表面的光发射。这里,主要至前表面的光发射是指发射至前表面的光量大于发射至后表面的光量,并且例如对应于总发光量的70%或大于70%或90%或大于90%被发射至前表面的情况。
[0064]发光装置单元12可以包括至少一个发光装置12a。发光装置12a例如可以是有机发光装置,但是本公开不限于此。
[0065]对于顶部发射,单侧发光装置可以用作发光装置12a。单侧发光装置的情况包括:虽然装置可以将光发射至两个表面但是通过适当地包括光学构件而将光发射至单个表面的装置、以及自身将光发射至单个表面的装置。例如,顶部发射型有机发光装置可以将光发射至其两个表面,但是通过调整电极特性和透射率、反射率等主要将光发射至其前表面。因此,顶部发射型有机发光装置可以解释为与单侧发光装置对应。
[0066]根据实施方式,底部装置单元11设置在发光装置单元12的后面,并且顶部装置单元13设置在发光装置单元12的前面。为了保护,发光装置单元12被插置于底部装置单元11和顶部装置单元13之间。
[0067]根据实施方式,光传输路径Ila通过底部装置单元11将光提供至光检测构件300,底部装置单元11没有处于光的主发射方向中。如果发光装置12a的光发射方向是双侧的或者是后向的,底部装置单元11可以包括反射构件。
[0068]根据实施方式,底部装置单元11包括用于驱动发光装置12a、电极、绝缘层等的布线。
[0069]因为顶部装置单元13设置在光LI的初次发射方向中,顶部装置单元13包括能够至少部分地传输光的区域,例如显示区域。顶部装置单元13可以包括颜色过滤器以实现特定的颜色,但是实施方式不限于此。此外,根据实施方式,顶部装置单元13包括修改从顶部装置单元13发射的光LI的光特性的光调制构件,例如棱镜膜、漫射膜、微透镜膜等。
[0070]根据实施方式,至少一个光检测构件300设置在底部装置单元11的后方。光检测构件300直接地接收从发光装置单元12通过底部装置单元11传播的泄漏的光L2,并且从光中获取发光亮度值。光检测构件300与顶部装置单元13的传输光LI的区域重叠。
[0071]以下,将参考作为顶部发光装置的有机发光二极管显示装置进行更详细的描述。
[0072]图2是根据本公开的示例性实施方式的有机发光二极管显示装置的平面图。
[0073]参照图2,有机发光二极管显示装置500可以分成显示区域PA和围绕显示区域PA的非显示区域NPA。
[0074]根据实施方式,显示区域PA包括多个像素PX。相应像素PX布置成矩阵形式。相应像素PX被分配以显示特定颜色。例如,多个像素PX可以包括显示红色的R像素、显示绿色的G像素和显示蓝色的B像素。R像素、G像素和B像素被交替布置以显示各种颜色。
[0075]显示区域PA可以具有矩形形状,但是不限于此。显示区域PA可以具有正方形形状、圆形形状、椭圆形状等。
[0076]根据实施方式,非显示区域NPA位于显示区域PA的周边。非显示区域NPA不显示图像,并且诸如黑色矩阵的光屏蔽构件设置在非显示区域NPA中。非显示区域NPA形成有机发光二极管显示装置500的遮光部分。驱动像素PX的各种驱动装置可以设置在非显示区域NPA中。像素PX也可以设置在非显示区域NPA内,但是在该情况下,设置在非显示区域NPA内的那些像素PX是外部不可见的虚设像素。
[0077]图3是根据本公开的示例性实施方式的有机发光二极管显示装置的后视图。
[0078]参照图3,至少一个光检测构件300设置在有机发光二极管显示装置500的后方。当设置有多个光检测构件300时,相应的光检测构件300彼此间隔开。可替代地,两个或更多个光检测构件300可以彼此相邻以形成单个光检测构件组,并且多个光检测构件组彼此间隔开。根据实施方式,光检测构件300设置在与显示区域PA重叠的区域中。
[0079]根据实施方式,每个光检测构件300与多个像素PX重叠。例如,光检测构件300在一个方向中延伸,并且可以在长度(I)方向中与两个或更多个像素PX重叠。光检测构件300可以在宽度(w)方向中与一个像素PX或两个或更多个像素PX重叠。当光检测构件300与宽度(w)方向中的两个或更多个像素PX重叠时,在宽度(w)方向中重叠的像素PX的数量可以少于在长度(I)方向中重叠的像素PX的数量。图3示出光检测构件300的长度(I)方向对应于像素PX的列方向的情况。但是,可替代地,光检测构件300的长度(I)方向可以对应于像素PX的行方向。此外,光检测构件300的长度(I)方向可以是与像素PX的列方向和像素PX的行方向斜交的方向。
[0080]根据实施方式,相应光检测构件300均匀地、广泛地遍布在显示区域PA之上。例如,如图3所示,光检测构件300设置在显示区域PA的四个角,即左上部分、右上部分、左下部分和右下部分附近,以及中心部分中。
[0081]根据实施方式,相对于设置在显示区域PA的中心部分中的光检测构件300,设置在左上部分和右下部分中的光检测构件300关于彼此对称。相对于设置在显示区域PA的中心部分中的光检测构件300,设置在右上部分和左下部分中的光检测构件300关于彼此对称。通过该方式,当光检测构件300均匀地遍布整个显示区域PA之上时,可以使用通过光检测构件300获取的亮度信息来容易地估计总体显示区域PA的亮度值。
[0082]可替代地,光检测构件300可以选择性地设置在具有高退化可能性的像素PX区域中,并且可用于确定相应像素PX区域中的退化度。将参考图4和图5进行更详细的描述。
[0083]图4是根据本公开的另一示例性实施方式的有机发光二极管显示装置的平面图。
[0084]图5是根据本公开的另一示例性实施方式的有机发光二极管显示装置的后视图。在图4和图5的示例性实施方式中,与之前的图2和图3的示例性实施方式中相同的部件使用相同的附图标记来指示,并且省略或简化重复说明。
[0085]参照图4和图5,根据示例性实施方式的有机发光二极管显示装置501包括显示区域PA和围绕显示区域PA的非显示区域NPA。根据示例性实施方式的有机发光二极管显示装置501的显示区域PA包括中心部分和围绕中心部分的周边部分。在一个方向中的中心部分的宽度可以等于或大于在宽度方向中与中心部分相邻的周边部分的宽度。如果在与显示区域PA的一侧平行的方向中显示区域PA被分成三个相等部分,例如一个周边部分、中心部分和另一周边部分,那么中心部分的宽度和周边部分之一的宽度彼此相等。
[0086]根据实施方式,显示区域PA的周边部分包括退化预期区域,例如,残像预期区域AIR。残像预期区域AIR是具有高退化(例如产生残像)可能性的区域。
[0087]例如,从广播系统接收的视频图像可包括位于屏幕的右上部分中的广播者图标。示例性广播者图标“SDC"显示在图4的AIR中。即使在视频图像变化时,广播者图标也在相应位置中保持相同图像。因此,当在长时间内在相应位置中的像素PX显示用于相同图像的相同亮度和颜色时,像素PX退化的可能性高,并且可能发生残像现象。实际残像发生的位置可以根据所显示的图像而变化。具有频繁发生残像的高可能性的区域可以设置为残像预期区域 AIR ο
[0088]在示例性实施方式中,残像预期区域AIR设置在显示区域PA的周边部分的边缘处。例如,残像预期区域AIR可以设置在显示区域PA的右上部分中。可替代地,残像预期区域AIR也可以设置在显示区域PA的左上部分、左下部分和/或右下部分中。
[0089]残像预期区域AIR可以提供为多个,并且在该情况下,多个相应残像预期区域可以彼此间隔开。
[0090]根据实施方式,残像预期区域AIR包括多个像素PX。例如,残像预期区域AIR在一个方向中延伸并且在长度(I)方向中包括两个或更多个像素PX。残像预期区域AIR可以在宽度(w)方向中包括一个像素PX或两个或更多个像素PX。当残像预期区域AIR在宽度(w)方向中包括两个或更多个像素PX时,在宽度(w)方向中包括的像素PX的数量可以少于在长度(I)方向中所包括的像素PX的数量。图4和图5示出残像预期区域AIR的长度(I)方向对应于像素PX的列方向的情况。但是,可替代地,残像预期区域AIR的长度(I)方向可以对应于像素PX的行方向。此外,残像预期区域AIR的长度(I)方向可以是与像素PX的列方向和像素PX的行方向斜交的方向。
[0091]根据实施方式,光检测构件300与显示区域PA重叠。光检测构件300设置在显示区域PA的周边部分中。而且,光检测构件300可以与残像预期区域AIR至少部分地重叠。当残像预期区域AIR提供为多个时,光检测构件300也可以被提供为多个,并且多个光检测构件300可以与相应残像预期区域AIR至少部分地重叠。光检测构件300可以具有与残像预期区域AIR的形状类似的形状,例如,在一个方向中延伸的形状。
[0092]根据实施方式,与残像预期区域AIR重叠的光检测构件300可以直接地接收来自残像预期区域AIR的漏光。通过该方式确定的亮度信息可以用于确定相应区域中的退化度。
[0093]详细地,当通过将数据信号施加到残像预期区域AIR来发射光时,光检测构件300接收从残像预期区域AIR泄漏的光。光检测构件300将相应亮度信息提供至控制器。控制器可以使用从光检测构件300接收的亮度信息来估计从相应区域实际发射的亮度。估计实际发射亮度值的一个方法包括从存储器中存储的查找表读取估计亮度值。但是,本公开的实施方式不限于此,并且可以通过本领域中公知的各种方法来估计实际亮度值。此外,可以仅使用提供的亮度信息来确认退化是否发生,而不估计实际亮度值。
[0094]根据实施方式,被提供至控制器的亮度值或估计亮度值与输入数据信号进行比较,并且可以确定亮度值是否是适当的亮度值。如果亮度值小于数据信号,则可以产生补偿信号,并且如果从残像预期区域AIR发射光,则施加通过将补偿信号添加至数据信号而形成的校正数据信号,使得残像预期区域AIR的亮度可以被补偿到适当等级。
[0095]根据实施方式,可以在有机发光二极管显示装置500上显示图像的情况下连续地执行亮度值的测量和补偿信号的生成,并且也可以周期地执行。此外,如果预期引起残像的图像被接收到,则可以执行亮度值的测量和补偿信号的生成。可替代地,可以在打开或关闭有机发光二极管显示装置501之后立即执行亮度值的测量和补偿信号的生成。
[0096]在上文中,在图2和图3的实施方式中示出有机发光二极管显示装置,但是显然该有机发光二极管显示装置可以由图4和图5的实施例替代。
[0097]参照图6,描述在图2中示出的有机发光二极管显示装置500的截面结构。图6是根据本公开的示例性实施方式的有机发光二极管显示装置的示意剖视图。
[0098]参照图6,第一衬底100和第二衬底200彼此相对,并且有机发光装置OLED设置在第一衬底100和第二衬底200之间的显示区域PA中。第一衬底100可以是薄膜晶体管衬底,并且第二衬底200可以是密封衬底。有机发光装置OLED被分开且被设置在相应像素中。在非显示区域NPA中,密封材料250插置于第一衬底100和第二衬底200之间。密封材料250可以耦接第一衬底100和第二衬底200,同时保护内部的有机发光装置0LED。光检测构件300可以附接于第一衬底100的后表面。
[0099]可替代地,与图6中示出的示例性实施方式不同,可以使用由绝缘材料形成的密封层,而代替第二衬底200。在该情况下,可以省略密封材料250,并且密封层可以直接地形成在第一衬底100上且耦接至第一衬底100。
[0100]以下,将更详细地解释有机发光二极管显示装置500的像素结构。
[0101]图7是根据本公开的示例性实施方式的有机发光二极管显示装置的像素结构的剖视图。
[0102]参照图7,有机发光二极管显示装置500包括第一衬底100、设置在第一衬底100上的有机发光装置、和设置在有机发光装置之上的第二衬底200。有机发光装置包括第一电极110、与第一电极110相对的第二电极120、以及插置于第一电极110和第二电极120之间的有机发光层130。第一电荷转移区域140设置在第一电极110和有机发光层130之间。此外,第二电荷转移区域150设置在有机发光层130和第二电极120之间。
[0103]其间插置有机发光层130的、相对的第一电极110和第二电极120中的一个可以是阳电极,而另一个可以是阴电极。此外,第一电荷转移区域140和第二电荷转移区域150中的一个可以转移空穴,而另一个可以转移电子。
[0104]图7的示例性实施方式示出第一电极110是阳电极且第二电极120是阴电极的情况。因此,与阳电极相邻的第一电荷转移区域140是空穴转移区域,以及与阴电极相邻的第二电荷转移区域150是电子转移区域。
[0105]根据实施方式,第一衬底100包括绝缘衬底。绝缘衬底可以由诸如玻璃、石英、聚合物树脂等的材料形成。聚合物树脂的实施例包括:聚醚砜(PES)、聚丙烯酸酯(PA)、多芳基化合物(PAR)、聚醚酰亚胺(PEI)、聚萘二甲酸乙二醇酯(PEN)、聚对苯二甲酸乙二醇酯(PET)、聚苯硫醚(PPS)、聚烯丙基化物、聚酰亚胺(PI)、聚碳酸酯(PC)、三醋酸纤维素(CAT或TAC)、醋酸丙酸纤维素(CAP)或它们的组合。在某些示例性实施方式中,绝缘衬底是由诸如聚酰亚胺(PI)的柔性材料形成的柔性衬底。
[0106]此外,根据实施方式,第一衬底100包括在绝缘衬底上设置的其他结构。其他结构的实施例包括用于驱动有机发光装置、电极、绝缘层等的布线。在某些示例性实施方式中,第一衬底100包括在绝缘衬底上设置的多个薄膜晶体管。多个薄膜晶体管的漏电极与第一电极110电连接。薄膜晶体管包括由非晶硅、多晶硅、单晶硅等形成的有源区域。在另一示例性实施方式中,薄膜晶体管包括由氧化物半导体形成的有源区域。
[0107]根据实施方式,第一电极110设置在第一衬底100上。第一电极110设置在有机发光二极管显示装置500的每个像素中。与第二电极120相比,第一电极110包含具有相对高的功函数的导电材料。例如,第一电极110可以包括铟锡氧化物(I TO )、铟锌氧化物(I ZO )、氧化锌(ZnO)、氧化铟(In2O3)等。除导电材料之外,第一电极110还可以包含反射材料,诸如银(Ag)、镁(Mg)、铝(Al)、铂(Pt)、钯(Pd)、金(Au)、镍(Ni)、钕(Nd)、铱(Ir)、铬(Cr)、锂(Li)、钙(Ca)或它们的组合。因此,第一电极110可以具有由导电材料和反射材料形成的单层结构或者其中导电材料和反射材料堆叠的多层结构。在多层结构的情况下,与第一电荷转移区域140相邻的顶层可以由具有高功函数的导电材料形成。例如,第一电极110可以具有ITO/Mg、ITO/MgF、IT0/Ag、或IT0/Ag/IT0的多层结构,但是不限于此。
[0108]根据实施方式,像素限定层160设置在第一衬底100上。像素限定层160沿像素的边界布置成晶格形式,并且将相应像素物理地分开。像素限定层160可以至少部分地暴露第一电极110。例如,像素限定层160可以设置成与第一电极110的边缘部分重叠。像素限定层160限定像素划分,以及有机发光层130设置在由像素限定层160限定的每个空间中。此外,间隔部可以设置在像素限定层160上。在该情况下,间隔部的端部可以与第二衬底200相邻或者可以接触第二衬底200。
[0109]根据实施方式,第一电荷转移区域140设置在第一电极110上。第一电荷转移区域140可以具有由单一材料形成的单层结构,可以由多种不同材料形成,或者可以具有包括由多种不同材料形成的多个层的多层结构。此外,第一电荷转移区域140还可以包括缓冲层和第一电荷阻挡层。虽然图7示出第一电荷转移区域140包括第一电荷注入层141和第一电荷运送层142的情况,但是第一电荷注入层141和第一电荷运送层142中的一个可以被省略或者这些层可被配置为单层。
[0110]根据实施方式,第一电荷注入层141设置在第一电极110上,并且增加将空穴从第一电极110注入有机发光层130中的效率。具体地,第一电荷注入层141降低能量位皇以允许更有效地注入空穴。
[0111]根据实施方式,第一电荷注入层141包含诸如铜酞菁(CuPc)的酞菁化合物、m-MTDATA(4,4',4”_三(N-3-甲基苯基-N-苯基氨基)三苯胺)、TDATA(4,4’,4”_三(二苯基氨基)三苯胺)、2_TNATA(4,4’,4”_三[N_2_萘基(苯基)-氨基]-三苯基-胺)、Pani/DBSA(聚苯胺/十二烷基苯磺酸)、PEDOT/PSS(聚(3,4-乙烯二氧噻吩)/聚苯乙烯磺酸酯)、?六1?/^5六(聚苯胺/樟脑磺酸)、或者PANI/PSS(聚苯胺/聚磺苯乙烯)。
[0112]根据实施方式,第一电荷运送层142设置在第一电荷注入层141上,并且将注入到第一电荷注入层141中的空穴传送至有机发光层130。当第一电荷运送层142的最高占据分子轨道(HOMO)的能级大体小于第一电极110的材料的功函数并且大体高于有机发光层130的最高占据分子轨道(HOMO)的能级时,空穴转移效率可以优化。第一电荷运送层142例如可以包含:NPD(4,4’_双[N-(l-萘基)-N-苯基-氨基]二苯基)、TPD(N,N’_二苯基-N,N’_双[3-甲基苯基]联苯-4,4’_二胺)、s-TAD(2,2’,7,7’-四-(叱1二苯基氨基)_9,9’-螺二芴)、m-MTDATA(4,4 ’,4” -三(N_3_甲基苯基-N-苯基氨基)三苯胺)等,但是不限于此。
[0113]根据实施方式,除了上述提到的材料之外,第一电荷转移区域140还包括电荷产生材料以改进导电性。电荷产生材料可以均匀地或非均匀地分散在第一电荷转移区域140内。电荷产生材料例如可以是P-掺杂剂。P-掺杂剂可以是醌衍生物、金属氧化物、或具有氰基的化合物中的一种,但是不限于此。P-掺杂剂的非限制性实施例包括诸如四氰基苯醌二甲烷(TCNQ)和2,3,5,6-四氟-四氰基-1,4-苯醌二甲烷(F4-TCNQ)的醌衍生物;诸如氧化钨和氧化钼的金属氧化物等。
[0114]此外,根据实施方式,第一电荷转移区域140包括缓冲层和第一电荷阻挡层中的至少一个。缓冲层补偿作为从有机发光层130发射的光的波长函数的光的谐振距离,因此可以增加光发射效率。缓冲层可以包括与第一电荷转移区域140中所包括的材料相同的材料。第一电荷阻挡层可以阻止电荷从第二电荷转移区域150注入到第一电荷转移区域140中。
[0115]根据实施方式,有机发光层130设置在第一电荷转移区域140上。有机发光层130的材料没有特别限定,只要其是发光材料即可,并且有机发光层130例如可以由发射红光、绿光和蓝光的材料形成。有机发光层130可以包含焚光物质或磷光物质。
[0116]在示例性实施方式中,有机发光层130包括主体和掺杂剂。
[0117]主体的实施例包括:4193(三-(8-羟基喹啉)铝(111))丄8?(4,4’-^-二咔唑-联苯)、PVK(聚(N-乙烯基咔唑))、ADN(9,10-双(2-萘基)蒽)、TCTA(4,4’,4”_三(N咔唑)三苯胺)、了?8丨(1,3,5-三0-苯基苯并咪唑-2-基)苯)、了8八0~(2-(叔丁基)-9,10-双(20-萘基)蒽)、DSA(二苯乙烯基亚芳基)、CDBP(4,4’_双(9-咔唑基)-2,2’_二甲基-联苯)、MADN(2-甲基-9,10-双(蔡-2-基)蒽)等。
[0118]作为掺杂剂,可以使用本领域公知的荧光掺杂剂和磷光掺杂剂。掺杂剂的类型可以根据有机发光层130的发光颜色而变化。
[0119]红色掺杂剂可以是荧光物质,包括例如:PBD(Eu(DBM)3(Phen)(2-联苯-4-基-5-(4-叔丁基苯基)-1,3,4_噁二唑(三(二苯甲酰甲烷)单(I,10-邻二氮菲)铕(111))或二萘嵌苯。可替代地,红色掺杂剂可选自包括以下的磷光物质:金属络合物,例如PIQIHacac)(双(1-苯基异喹啉)乙酰丙酮铱)、PQIr(acac)(双(1-苯基喹啉)乙酰丙酮铱)、PQIr (三(1-苯基喹啉)铱)和PtOEP(八乙基卟啉铂)、或有机金属络合物。
[0120]绿色掺杂剂可以是例如包括Alq3(三-(8-羟基喹啉)铝(III))的荧光物质。可替代地,绿色掺杂剂可以为磷光物质,例如,11(??7)3(面式三(2-苯基吡啶)铱)、&(??7)2(acac)(双(2-苯基吡啶)(乙酰丙酮)铱(III))、Ir(mpyp)3(2-苯基-4-甲基-吡啶铱)等。
[0121]蓝色掺杂剂可以是荧光物质,包括螺-DPVBi(螺-4’,-双(2,2’_二苯基乙烯基)_1,Γ-联苯)、螺-6P(螺-六苯基)、DSB(二苯乙烯基苯)、DSA(二苯乙烯基亚芳基)、PFO(聚芴)基聚合物和PPV(聚P-苯撑乙烯)基聚合物。可替代地,蓝色掺杂剂可以是磷光物质,例如,F2Irpic(双(4,6_二氟苯基)吡啶-N,C2’)铱吡啶甲酸酯)、(F2ppy)2Ir(tmd)(双[2(4,6_二氟苯基)吡啶州,02’)铱2,2,6,6-四甲基庚烷-3,5-二酮)、1^(^??2)3(三[1-(4,6-二氟苯基)P比挫特-N,C2’]铱)等。
[0122]根据实施方式,第二电荷转移区域150设置在有机发光层130上。第二电荷转移区域150可以具有由单一材料形成的或由多种不同材料形成的单层结构,或者可以具有包括由多种不同材料形成的多个层的多层结构。另外,第二电荷转移区域150还可以包括第二电荷阻挡层。虽然图7示出第二电荷转移区域150包括第二电荷注入层151和第二电荷运送层152的情况,但是第二电荷注入层151和第二电荷运送层152中的一个可以被省略或者这些层可配置为单层。
[0123]根据实施方式,第二电荷运送层152设置在有机发光层130上,并且运送从第二电荷注入层151注入到有机发光层130中的空穴。
[0124]第二电荷运送层152可以包括Alq3(三-(8-羟基喹啉)铝(III))、ITBi(l,3,5-三(N-苯基苯并咪唑-2-基)苯)、BCP(2,9-二甲基-4,7-二苯基-l,10-邻二氮菲)、Bphen(4,7-二苯基-l,10-邻二氮菲)、TAZ(3-(联苯-4-基)-5-(4-叔丁基苯基)-4-苯基-4H-l,2,4-三唑)、NTAZ (4-(萘-1 -基)-3,5-二苯基-4H-1,2,4-三唑)、tBu-PK) (2~( 4-联苯基)-5-( 4-叔丁基-苯基)-1,3,4_噁二唑)、BAlq(双(2-甲基-8-羟基喹啉-NI ,08)-( I,1’_联苯-4-羟基)铝)、Bebq2(双(10-羟基苯并[h]羟基喹啉)铍)、ADN(9,10_ 二 (2-萘基)蒽)和它们的组合,但是不限于此。
[0125]根据实施方式,第二电荷注入层151设置在第二电荷运送层152上,并且可增加电子从第二电极120注入到有机发光层130中的效率。
[0126]第二电荷注入层151可以是诸如1^?、1^0(喹啉锂)、1^20、8&0、恥(:1工8?或¥13的镧金属,诸如RbCl或RbI的金属卤化物等,但是不限于此。第二电荷注入层151还可以由所述材料和绝缘有机金属盐的混合物形成。有机金属盐应该具有约4eV或更大的能带间隙。具体地,有机金属盐可以包含:例如金属醋酸盐、金属苯甲酸盐、金属乙酰乙酸盐、金属乙酰丙酮化物或金属硬脂酸盐。
[0127]此外,根据实施方式,第二电荷转移区域150包括第二电荷阻挡层。第二电荷阻挡层可以包括:例如BCP(2,9-二甲基-4,7-二苯基-1,10-邻二氮菲)和8?1^11(4,7-二苯基-1,10-邻二氮菲)的至少一个,但是不限于此。
[0128]根据实施方式,第二电极120设置在第二电荷转移区域150上。第二电极120是以使得像素不分开的方式而形成的顶部电极或公共电极。与第一电极110相比,第二电极120包含具有相对低的功函数的导电材料。
[0129]例如,第二电极120可以包含1^工3、1^卩/^3、1^卩/^1、厶1、]\^^8、?伙?(1、祖^11、制、Ir、Cr、BaF、Ba或其化合物或混合物,例如Ag和Mg的混合物等。根据实施方式,第二电极120被提供为薄膜,并且在第二电极120上堆叠有诸如铟锡氧化物(ΙΤ0)、铟锌氧化物(ΙΖ0)、氧化锌(ZnO)、铟锡锌氧化物等的透明金属氧化物。
[0130]根据实施方式,第二衬底200设置在第二电极120上。第二衬底200包括绝缘衬底。第二衬底200可以由与第一衬底100相同的材料形成。在某些示例性实施方式中,黑色矩阵、颜色过滤器等设置在第二衬底200上。
[0131]根据实施方式,在第一衬底100和第二衬底200上形成的有机发光装置彼此间隔开。介于第二衬底200和第二电极120之间的空间SPC可以是空的,或者可以通过由有机材料等形成的填充剂填充。
[0132]当第一电压施加于第一电极110并且小于第一电压的第二电压被施加于第二电极120时,电流在从第一电极110到第二电极120的方向中流动,由此有机发光层130发光。具体地,空穴从第一电极110被注入到第一电荷注入层141中,并且经由第一电荷运送层142被运送到有机发光层130。此外,电子从第二电极120注入到第二电荷注入层151中,并且经由第二电荷运送层152被运送到有机发光层130。当在有机发光层130中空穴和电子相遇以彼此结合时,有机发光层130的发光材料被通过结合产生的能量激活。当发光材料从激发态回到基态时,光被发射。发光量可以根据流经有机发光层130的电流量而变化。
[0133]此外,从有机发光层130发射的光的传播方向被随机地分布。根本上,光可以朝向第一衬底100朝后发射,朝向第二衬底200朝前发射,侧向发射等。
[0134]朝后引导的光(为底部发射型)可以从第一电极110被反射并且朝前传播。在某些情况下,光的一部分可以穿过第一电极110并且可以进入第一衬底100。
[0135]朝前引导的光(为顶部发射型)可以穿过第二电极120。第二电极120的导电材料具有低功函数,并且自身可以不传输光,但是如果导电材料是薄膜,则充分的入射光可以穿过导电材料。光的不穿过第二电极120的一部分被反射。
[0136]光的另一部分侧向传播通过像素限定层160。光的另一部分从像素限定层160被反射以被朝前引导,并且可以穿过第二电极120,如上所述。光的另一部分从像素限定层160被反射以被朝后引导,并且光的另一部分被折射到像素限定层160中。
[0137]从像素限定层160在向后方向中被反射的一部分光或者进入像素限定层160内部的光可以通过像素限定层160的其上没有形成第一电极110的下部分而发射到第一衬底100。通过该方式发射至第一衬底100的光是不用于显示图像的泄漏光。该泄漏光可以进入设置在第一衬底100的后表面上的光检测构件300,并且可用于确定光发射亮度或像素退化的程度。
[0138]此外,在从像素限定层160的朝后方向中反射的其他部分的光或者进入像素限定层160内部的光可以沿有机发光二极管显示装置500的侧表面连续地传播。该光可以从顶部电极和底部电极、布线等反射,并且可以侧向传播相当大的距离。但是,与底部发射型装置相比,对于顶部发射型有机发光二极管显示装置500,其沿侧表面的传播距离可能更小。对于底部发射型,因为反射电极可以设置在装置的前面,并且因为即使第一电极是透明电极、其他布线也可以设置在朝后方向,所以因反射而导致的侧向传播距离可以相当大。另一方面,对于顶部发射型,因为位于前部中的第二电极120是透明电极,所以被反射的光量减小,并且因此通过侧表面传输的光量减小。因此,对于底部发射型,大量的光被传输到有机发光二极管显示装置的非显示区域,但是对于顶部发射型,被传输到有机发光二极管显示装置的非显示区域的光量是微不足道的。因为该区别,光检测构件300的适当配置在顶部发光装置和底部发光装置之间是不同的。如在示例性实施方式中,当光检测构件300设置在显示区域PA内时,因为光检测构件300可以直接地接收泄漏光,所以即使在顶部发光装置中也能够启动有效的光检测,而不会损失泄漏光。
[0139]以下,更详细地描述光检测构件。
[0140]图8是根据本公开的示例性实施方式的有机发光二极管显示装置的光检测构件的平面图。图9是根据本公开的示例性实施方式的有机发光二极管显示装置的光检测构件的剖视图。
[0141]参照图8和图9,光检测构件300包括光传感器310和光收集构件320。
[0142]根据实施方式,光传感器310设置在光收集构件320的一侧处。光传感器310接收通过光收集构件320收集的泄漏光L2,并且测量泄露光L2的亮度。光传感器310可以包括光电二极管、光电晶体管等,但是不限于此。本领域中公知的各种装置可以用作检测光的传感器。
[0143]根据实施方式,光收集构件320包括光收集体321。光收集体321包括光输入表面LSl和光输出表面LS2。光输入表面LSl和光输出表面LS2相对于彼此设置成预定角度,例如直角。如果光收集构件320具有矩形形状,则光输入表面LSl是光收集体321的顶表面并且光输出表面LS2是光收集体321的侧表面。
[0144]根据实施方式,光收集构件320还包括反射构件323。反射构件323设置在除了光收集体321的光输入表面LSl和光输出表面LS2之外的表面上。反射构件323可以被涂覆为反射层,可以被附接成反射片的形式,或者可以提供成反射粘合带的形式。可以省略反射构件323。
[0145]根据实施方式,光收集体321的内部可以是空的或者可以使用其他材料填充。例如,光收集体321的内部可以是真空或可以使用空气或其他气体填充。
[0146]根据实施方式,诸如折射图案或反射图案的光调制结构322设置在光收集体321中。例如,棱镜图案可以设置在光收集体321中作为光调制结构322。棱镜图案的倾斜表面相对于光收集体321的光输入表面LSl倾斜。倾斜角例如可以是45°,但是本公开的实施方式不限于此。棱镜图案可以由与光收集体321相同的材料形成,或者由不同的材料形成。棱镜图案可以由透明材料形成。
[0147]根据实施方式,除了光调制结构322之外,光收集体321的内部具有与光收集体321和光调制结构322的折射率不同的折射率。例如,除了光调制结构322之外,光收集体321的内部可以是具有小于光收集体321本身和光调制结构322的折射率的低折射介质。
[0148]因为光调制结构322的至少一个表面接触低折射介质,根据Snell定律在表面上发生光透射、反射或折射。当光调制结构322的棱镜图案的倾斜表面被调节以将垂直入射到其上的光全部反射时,入射到光收集体321的入射表面上的泄漏光L2从棱镜图案的倾斜表面全部反射,使得光传播路径变化为相对于泄漏光L2的入射方向大体垂直的方向。因此,光可以被传输到处于光收集构件320的一侧上的光传感器310。
[0149]根据实施方式,光调制结构322的棱镜图案沿着与其对应的每列或每排像素以一一对应的方式设置。通过将光调制结构322的棱镜图案设置成这种图案,从相应像素泄漏的光可以被传输到光传感器310。
[0150]此外,根据实施方式,从一个光调制结构322全部反射的光可以被入射到相邻的光调制结构322上。此后,当光传播路径因为Snel I定律而改变时,光可以进入光收集体321的底表面,并且如果反射构件323设置在光收集体321的底表面上,光可以从反射构件323反射到光传感器310。[0151 ]根据本公开的修改实施方式,光收集体321的内部被填充与形成光收集体321的材料相同的材料。在该情况下,光收集体321内部的光调制结构322的折射率可以被调节,以实现与上述那些类似的光收集效果。
[0152]图10是根据本公开的另一示例性实施方式的有机发光二极管显示装置的光检测构件的剖视图。
[0153]参照图10,根据示例性实施方式的光检测构件301与图9的实施方式的区别在于,光收集构件320_1的光调制结构322j具有单个连续倾斜表面,而与像素划分无关。倾斜表面可以反射或全部反射垂直入射的光L2。倾斜角(Θ)可以是锐角。理论上,当倾斜角(Θ)是45°时,垂直入射的泄漏光L2的传播方向改变成水平方向,使得光被传输到光传感器310。但是,本公开的实施方式不限于此,并且对于其他倾斜角(Θ),被传输到光传感器310的光量可以通过水平地倾斜光L2的传播方向而增加。而且,即使反射光L2被再次引导朝向光收集体321的光输入表面LSl,由于相对于光输入表面LSl的法线的入射角已经增加,所以全部反射的可能性增加。因此,可以朝向光传感器310引导泄漏光L2。
[0154]此外,根据实施方式,当从远离光传感器310设置的像素反射的光传播到光传感器310时,光没有再次通过光调制结构322_1。因此,与图9的实施方式不同,没有必要形成透明材料的光调制结构。而且,反射构件可以设置在倾斜表面上。
[0155]图11是根据本公开的另一示例性实施方式的有机发光二极管显示装置的光检测构件的剖视图。
[0156]参照图11,根据示例性实施方式的光检测构件302与图10的实施方式在光收集构件320_2的光调制结构322_2与像素划分无关地具有单个连续倾斜表面这一点上大体相同,但是与图10的实施方式不同的是,随着到光传感器310的距离的减少,倾斜表面的倾斜角减小。根据实施方式,光调制结构322_2的倾斜表面是凹的曲线表面。
[0157]图12是根据本公开的另一示例性实施方式的有机发光二极管显示装置的光检测构件的剖视图。
[0158]参照图12,根据示例性实施方式的光检测构件303与图10的实施方式在光收集构件320_3的光调制结构322_3具有单个连续倾斜表面这一点上大体相同,但是与图10的实施方式不同的是,倾斜表面包括交替地设置的具有不同倾斜角的第一表面322_3a和第二表面322_3bo
[0159]根据实施方式,第一表面322_3a的倾斜角被优化成将垂直入射的泄漏光L2的传播方向改变为水平方向。例如,第一表面322_3a的倾斜角是45°。
[0160]第二表面322_3b的倾斜角可以设置在不阻挡光L2从相邻的第一表面322_3a水平传播的范围内。例如,第二表面322_3b的倾斜角可以在约0°至约10°的范围内。如果第二表面322_3b的倾斜角是0°,第二表面322_3b在严格意义上是水平面。
[0161]根据实施方式,第一表面322_3a和第二表面322_3b的重复单元的宽度与对应于该重复单元的像素的节距相同。第二表面322_3b可以与有机发光装置的第一电极110重叠,并且第一表面322_3a可以与像素限定层160重叠。但是,本公开的实施方式不限于此。第二表面322_3b和第一表面322_3a的相对位置可以相反,或者可以分别与第一电极110和像素限定层160部分地重叠。
[0162]图10的实施方式示出:当倾斜表面的倾斜角接近45°时,光被有效地收集。但是,当倾斜表面的倾斜角接近45°时,光调制结构的厚度接近于光调制结构的长度。但是,根据图12的实施方式,如果第一表面322_3a具有45°或接近45°的倾斜角并且被设置在接收大量泄漏光L2的区域中,而第二表面322_3b具有0°或接近0°的倾斜角并且被设置在不接收泄漏光L2的区域中,那么光检测构件303可以有效地收集光并且光调制结构322_3的厚度可以减小。
[0163]图13是根据本公开的另一示例性实施方式的有机发光二极管显示装置的光检测构件的剖视图。
[0164]参照图13,根据示例性实施方式的光检测构件304与图9的实施方式的不同在于,存在具有使用光散射构件的光调制结构322_4的光收集构件320_4。光散射构件散射垂直入射光L2,从而改变光传播路径。改变后的光L2的传播路径可以直接引导至光传感器310,或者可以从光收集体321的内部反射或全部反射以由此传播到光传感器310。
[0165]根据实施方式,光散射构件包括光散射颗粒。光散射颗粒可以是有机珠粒或无机珠粒。光散射颗粒由具有与光收集体321的内部部分的折射率不同的折射率的材料形成。光散射构件设置为与光收集体321的后部相邻。
[0166]图14是根据本公开的另一示例性实施方式的有机发光二极管显示装置的光检测构件的剖视图。
[0167]参照图14,根据示例性实施方式的光检测构件305与图9的实施方式的不同在于,光传感器310设置在光收集构件320_5的后方。也就是说,例如,光收集构件320_5和光传感器310顺序地设置在第一衬底100的后表面上。光传感器310可以设置在与光收集构件320_5的一侧相邻的后表面上。
[0168]根据实施方式,在光收集体321的内部存在光调制结构322_5,光调制结构322_5包括第一光路径改变结构322_5a和第二光路径改变结构322_5b,第一光路径改变结构322_5a例如是图9的棱镜图案并且将光路径改变至水平方向,第二光路径改变结构322_5b将光路径改变至垂直方向。第一光路径改变结构322_5a朝着光收集体321的一侧反射泄漏光L2,如在图9的实施方式中那样。第二光路径改变结构322_5b设置在光收集体321的内部中,并且朝着光收集体321的底表面来改变反射光L2的传播方向。光L2的传播方向被改变以引导至光收集构件320_5后方的光传感器310,光传感器310可以测量亮度。
[0169]在示例性实施方式中,光收集体321的光输入表面LSl是顶表面,并且光收集体321的光输出表面LS2是底表面的一部分。因此,如果光收集构件320_5还包括反射构件323_1,反射构件323_1可以设置在光收集体321的所有侧表面以及底表面中除了光输出表面LS2的那些部分上。
[0170]图15是根据本公开的另一示例性实施方式的有机发光二极管显示装置的光检测构件的剖视图。
[0171]参照图15,根据示例性实施方式的光检测构件306与图9的实施方式的不同在于,在光收集体321的内部存在光调制结构322_6,光调制结构322_6还包括光路径改变结构322_6a和光聚集结构322_6b,光路径改变结构322_6a诸如是图9的棱镜图案并且将光路径改变至水平方向。如同图9的实施方式,光路径改变结构322_6a朝着光收集体321的一侧反射泄漏光L2。光聚集结构322_6b设置在光传感器310和光路径改变结构322_6a之间。光聚集结构322_6b可以将从光路径改变结构322_6a接收的光L2朝向一点聚集,由此将光提供给光传感器310。通过该方式,聚集光改进了光收集并且减小了光传感器310的有源区域的面积。
[0172]光聚集结构322_6b可以是微透镜、柱状透镜、凹透镜、凸透镜等。
[0173]图16是根据本公开的另一示例性实施方式的有机发光二极管显示装置的光检测构件的剖视图。
[0174]根据图16的实施方式,光检测构件307的光传感器311具有两个或更多个光接收表面。
[0175]参照图16,光检测构件307的光收集构件320通过诸如图4的残像预期区域AIR的检测对象重叠。此外,光传感器311设置成与光收集构件320的一侧相邻,并且通过比较区域NIR(正常图像区域)被重叠。
[0176]根据实施方式,通过与图4的实施方式相同的方式,由光收集构件320将从残像预期区域AIR接收的泄漏光L21传输到光传感器311。但是,从比较区域NIR接收的泄漏光L22不经过光收集构件320,并且被直接提供给光传感器311。光传感器311具有两个或更多个光接收表面,并且因此可以检测两种类型的泄漏光L21和L22。
[0177]根据实施方式,比较区域NIR包括用于确定残像预期区域AIR中的退化程度的参考像素。当从参考像素和残像预期区域AIR中的像素顺序地发射光时,可以更准确地比较和分析退化程度。
[0178]例如,首先,数据信号施加于比较区域NIR的参考像素,并且光被发射和被检测。然后,数据信号施加于残像预期区域AIR中的像素,并且光被发射和被检测。此后,对在比较区域NIR和残像预期区域AIR中检测到的相对光强进行比较,以分析残像预期区域AIR的退化程度,从而产生补偿信号。
[0179]图17是根据本公开的另一示例性实施方式的有机发光二极管显示装置的后视图。
[0180]参照图17,根据示例性实施方式的有机发光二极管显示装置502与图3的实施方式的不同在于,存在多个设置成覆盖显示区域PA整体的光检测构件308。
[0181 ]根据实施方式,光检测构件308的相邻光收集构件320_8彼此没有间隔开。光传感器310设置在光收集构件320_8的一侧中。光传感器310设置在非显示区域NPA中。而且,光传感器310从第一衬底100的一侧向外突出。
[0182]在实施方式中,光收集构件320_8设置在第一衬底100的整个显示区域PA之上,以测量从所有像素区域泄漏的光。
[0183]图18是根据本公开的另一示例性实施方式的有机发光二极管显示装置的剖视图。
[0184]参照图18,根据示例性实施方式的有机发光二极管显示装置503包括设置在第一衬底100的后表面上的散热构件400。散热构件400可以将从有机发光装置(OLED)或驱动芯片产生的热发射到外部环境。
[0185]根据实施方式,散热构件400包含高热导材料。例如,散热构件400可包含诸如铝、铜、银等的金属或者诸如石墨、石墨烯等的材料。
[0186]根据实施方式,散热构件400可以是散热面板、散热片、散热膜、散热层等。此外,散热构件400可以包括若干堆叠的散热材料片。
[0187]根据实施方式,散热构件400粘附至第一衬底100的后表面。散热构件400附接于第一衬底100的后表面。散热构件400可以覆盖第一衬底100的后表面的整体或者可以设置在后表面的发射光的部分中。
[0188]根据实施方式,如果散热构件400与光检测构件300重叠,散热构件400则包括允许光检测构件300插入其中的孔400h。光检测构件300可以插入散热构件400的孔400h中,并且可以粘附至第一衬底100的后表面。
[0189]图19是根据本公开的另一示例性实施方式的有机发光二极管显示装置的剖视图。
[0190]根据图19的实施方式,有机发光二极管显示装置504的光检测构件300通过粘合构件420附接至第一衬底100的后表面。在示例性实施方式中,为了使得发射至第一衬底100的后表面的泄漏光可以经过粘合构件420到达光检测构件300,粘合构件420由透明材料形成。粘合构件420可以包含粘合材料或粘接材料,并且可以提供为粘合层、双侧粘合带等。
[0191]图19示出粘合构件420的厚度与散热构件400的厚度相同并且光检测构件300进一步从散热构件400突出至后面的情况;但是,实施方式不限于此,并且在构件的后方向中的厚度和相对位置可以进行各种修改。
[0192]图20是根据本公开的另一示例性实施方式的有机发光二极管显示装置的剖视图。
[0193]参照图20,根据示例性实施方式的有机发光二极管显示装置505与图18的实施方式的不同在于,散热构件401包括凹槽401r以使得光检测构件300可以插入凹槽401r中。通过第一衬底100的后表面和散热构件401来包围光检测构件300。
[0194]根据修改的实施方式,通过粘合构件将光检测构件附接至第一衬底的后表面,如在图19的实施方式中那样。
[0195]如上所述,即使对于顶部发射型有机发光二极管显示装置,根据本公开示例性实施方式的有机发光二极管显示装置的光检测构件也可以直接地接收泄漏光,以有效地检测光,而不会损失泄漏光。
[0196]虽然上面示出和描述了示例性实施方式,但是显而易见的是,在不脱离如所附权利要求所限定的本公开的实施方式的精神和范围的情况下,本领域技术人员可以进行变形和改变。
【主权项】
1.一种有机发光二极管显示装置,包括: 第一衬底,包括具有多个像素的显示区域和所述显示区域的周边中的非显示区域; 第一电极,设置在所述第一衬底上; 第二电极,与所述第一电极相对; 有机发光层,设置在所述第一电极和所述第二电极之间;以及 至少一个光检测构件,设置在所述第一衬底的后表面上并与所述显示区域重叠, 其中,所述光检测构件包括光传感器和光收集构件,所述光收集构件将从所述第一衬底接收的光传输到所述光传感器。2.如权利要求1所述的有机发光二极管显示装置,其中,所述光收集构件包括光收集体和光调制结构,所述光调制结构设置在所述光收集体中。3.如权利要求2所述的有机发光二极管显示装置,其中,所述光传感器设置成与所述光收集体的一侧相邻。4.如权利要求3所述的有机发光二极管显示装置,其中,所述光调制结构包括与所述多个像素对应的多个棱镜图案。5.如权利要求4所述的有机发光二极管显示装置,其中,所述棱镜图案沿与其对应的每列像素或每行像素以一一对应的方式设置。6.如权利要求3所述的有机发光二极管显示装置,其中,所述光调制结构具有单个连续的倾斜表面。7.如权利要求6所述的有机发光二极管显示装置,其中,所述倾斜表面的倾斜角随着与所述光传感器的距离的减小而减小。8.如权利要求3所述的有机发光二极管显示装置,其中,所述光调制结构包括具有不同倾斜角的交替的第一表面和第二表面。9.如权利要求8所述的有机发光二极管显示装置,其中,所述第一表面和所述第二表面的重复单元的宽度与对应于所述重复单元的像素的节距相同。10.如权利要求3所述的有机发光二极管显示装置,其中,所述光收集体的顶表面是光输入表面, 所述光收集体的与所述光传感器相邻的侧表面是光输出表面,以及 所述光收集构件还包括反射构件,所述反射构件设置在所述光收集体的、除了所述光输入表面和所述光输出表面之外的那些表面上。11.如权利要求2所述的有机发光二极管显示装置,其中,所述光传感器设置在与所述光收集体的一侧相邻的后表面上。12.如权利要求11所述的有机发光二极管显示装置,其中,所述光调制结构包括第一光路径改变结构和第二光路径改变结构,所述第一光路径改变结构将光路径改变至水平方向,所述第二光路径改变结构将光路径改变至垂直方向。13.如权利要求1所述的有机发光二极管显示装置,还包括彼此间隔开的多个光检测构件。14.如权利要求1所述的有机发光二极管显示装置,其中,所述显示区域包括中心部分和围绕所述中心部分的周边部分,以及 所述光检测构件设置在所述显示区域的所述周边部分中。15.如权利要求14所述的有机发光二极管显示装置,其中,所述周边部分包括退化预期区域,以及所述光检测构件至少部分地与所述退化预期区域重叠。16.如权利要求15所述的有机发光二极管显示装置,其中,所述显示区域还包括与所述退化预期区域相邻的比较区域, 所述光收集构件与所述退化预期区域重叠,以及 所述光传感器与所述比较区域重叠。17.如权利要求1所述的有机发光二极管显示装置,还包括设置在所述第一衬底的所述后表面上的散热构件。18.如权利要求17所述的有机发光二极管显示装置,其中,所述散热构件包括孔,以及 所述光检测构件插入所述孔中并且设置成与所述第一衬底的所述后表面相邻。19.如权利要求18所述的有机发光二极管显示装置,还包括设置在所述第一衬底和所述光检测构件之间的粘合构件。20.—种顶部发光装置,包括: 底部装置单元; 顶部装置单元,与所述底部装置单元相对; 发光装置单元,插置在所述底部装置单元和所述顶部装置单元之间;以及 至少一个光检测构件,设置在所述底部装置单元的后方中并且与所述顶部装置单元的光传输区域重叠, 其中,所述光检测构件包括光传感器和光收集构件,所述光收集构件将从所述底部装置单元接收的光传输到所述光传感器。21.如权利要求20所述的顶部发光装置,其中,所述光收集构件包括光收集体和设置在所述光收集体中的光调制结构。22.如权利要求20所述的顶部发光装置,还包括多个光检测构件,所述多个光检测构件被提供为彼此间隔开的多个光检测构件。23.如权利要求20所述的顶部发光装置,其中,所述光检测构件至少部分地与所述发光装置单元中的退化预期区域重叠。24.如权利要求20所述的顶部发光装置,还包括散热构件,所述散热构件设置在所述第一衬底的所述后表面上并且包括孔, 其中,所述光检测构件插入所述孔中并且设置成与所述第一衬底的所述后表面相邻。
【文档编号】H01L27/32GK105870150SQ201610079869
【公开日】2016年8月17日
【申请日】2016年2月4日
【发明人】金熙京, 郑胤谟, 金炳箕, 申荣俊, 朴秀兰, 申光燮
【申请人】三星显示有限公司