一种用于光转化储能的石墨烯复合材料及制备方法

文档序号:10689476阅读:408来源:国知局
一种用于光转化储能的石墨烯复合材料及制备方法
【专利摘要】本发明公开了一种用于光转化储能的石墨烯复合材料及制备方法,采用石墨作为原料,先将苯基铵盐阳离子渗入到石墨层间,通过石墨层间的π键亲电子作用,在石墨层间引入正电性杂质,再与金属阳离子盐共混,在苯基铵盐与金属阳离子发生离子交换反应,在惰性气体的保护下,加温使盐分解获得纳米金属氧化物颗粒。本发明克服了现有技术中石墨烯和氧化物颗粒易团聚、两者分散不均匀及制备工艺复杂、设备要求高等问题,将机械剥离和纳米材料复合两个过程合二为一,大幅降低成本,简化工艺,适合于连续化工业生产工艺,兼容了机械剥离石墨烯的工艺,适合部分已有基础的公司直接投产。
【专利说明】
一种用于光转化储能的石墨烯复合材料及制备方法
技术领域
[0001]本发明涉及复合材料制备技术领域,特别涉及一种用于光转化储能的石墨烯复合材料及制备方法。
【背景技术】
[0002]石墨烯以其较大比表面积,优良的导电导热性能和较低的热膨胀系数而被认为是一种理想的材料,尤其是其导电性能好和比表面大的特点,在光转化储能材料中也有重要用途。石墨烯与氧化物粉体共混掺杂高分子材料在功能高分子材料领域已越来越成为研究热点,而石墨烯与氧化物粉体则是其重要的功能性添加剂。
[0003]中国专利公开号103804877A提供了一种具有导电和光转换储能功能的聚合物材料的制备方法,该方法将石墨烯和二氧化钛掺杂体系粉体与树脂粉体通过预混机混合均匀得到预混物,再向双螺杆共混挤出机的喂料口喂入预混物,再添加磷酸二氢钠和聚乙烯蜡,得到所述具有导电和光转换储能功能的聚合物材料。该方法赋予了材料导电、防微波辐射和光转化储能功能的同时,增强强度和耐磨性。但是,在该方法中,石墨烯和二氧化钛掺杂体系粉体在预混机的机械搅拌下混合,会导致二氧化钛和石墨烯分布不均匀,形成石墨烯纳米团聚或二氧化钛纳米团聚区域,而非预想的石墨烯和二氧化钛复合体系,降低材料的导电性和光转换储能功能性。
[0004]中国专利公开号103936065A提供了一种二氧化钛与石墨烯复合纳米材料的制备方法。该方法包括:取石墨烯氧化物水溶液和叔丁胺混合得到混合液,再与钛酸正丙酯溶液混合,在微波辅助加热至120°C?200°C的条件下磁力搅拌,进行反应生成有机相溶液,再从该有机相溶液中分离出二氧化钛与石墨烯复合纳米材料。制备的纳米粒子结晶性好、粒径分布窄、尺寸可控,纳米粒子在复合材料中可均匀地分散于石墨烯基表面,不脱落、不团聚、稳定性好。但是,使用的钛酸正丙酯对环境要求高,空气中的水蒸气会使之分解,而且价格曰虫印贝ο
[0005]中国专利公开号104099062A提供了一种石墨烯/四针氧化锌晶须复合吸波材料及制备方法。该方法以天然鳞片石墨为原料,先制备还原氧化石墨烯;将得到的还原氧化石墨烯分散到酒精溶液,超声得到还原氧化石墨烯的分散液,向还原氧化石墨烯的分散液中加入四针状氧化锌晶须,再进行磁力搅拌均匀,将混合溶液置于烘箱干燥得到复合吸波材料。本发明制备过程简单,制得的吸波材料吸波性能优异,吸波强,吸波频段宽,可调控性强,调节厚度能实现不同频率下的高吸收。但是,石墨烯包裹在氧化锌晶须上形成各个独立的单元,各个单元之间的接触为点点接触,不一定能形成导电网络,使得吸波功能性不均匀。
[0006]综上所述,工业化生产需要一种原料成本低廉,来源广泛,并且获得的石墨烯复合氧化物粉体材料分散均匀、工艺简单、成本低廉的技术手段,满足工业化大规模生产需要。

【发明内容】

[0007]本发明针对现有技术的不足,直接采用石墨作为原料,先将苯基铵盐阳离子渗入到石墨层间,通过石墨层间的:π键亲电子作用,在石墨层间引入正电性杂质,再与金属阳离子盐共混,在苯基铵盐与金属阳离子发生离子交换反应,在惰性气体的保护下,加温使盐分解获得纳米金属氧化物颗粒。该方法将机械剥离和纳米材料复合两个过程合二为一,大幅降低成本,简化工艺,适合于连续化工业生产工艺,兼容了机械剥离石墨烯的工艺,而且还解决了石墨烯和氧化物颗粒易团聚、两者分散不均匀及制备工艺复杂、设备要求高等问题,适合部分已有基础的公司直接投产。
[0008]本发明提供一种用于光转化储能的石墨烯复合材料及制备方法,所述方法包括以下步骤:
a.将石墨材料投放入电解质溶液中,静置I?5天,使所述电解质溶液中的阳离子渗入所述石墨材料层间,形成插层石墨,分离取出所述插层石墨,其中,所述石墨材料与所述电解质溶液质量比为1:2?5,所述电解质溶液的浓度为20?60 mg/L;
b.将所述插层石墨和金属阳离子盐共混放入连续螺杆反应挤出机,获得挤出固体产物,采用筛孔筛选出粒径为10?10nm的石墨烯和金属阳离子盐体系粉体;
c.在惰性气体保护下,将所述石墨烯和金属阳离子盐体系粉体加入连续螺杆反应挤出机,设置所述连续螺杆反应挤出机温度至300?600°C,挤出压力20?50 MPa,获得具有导电和光转换储能功能的石墨烯与金属氧化物体系粉体。
[0009]可选的,所述石墨材料为致密结晶状石墨,鳞片石墨、膨胀石墨或可膨胀石墨中的一种或几种。
[0010]可选的,所述电解质溶液中的阳离子来自于苯胺盐、苯基叔铵盐、苯基季铵盐中的一种或几种。
[0011]可选的,所述电解质溶液中的阴离子来自于硼酸盐、氯酸盐和磷酸盐中的一种或几种。
[0012]可选的,所述金属阳离子盐为碳酸镁、硝酸镁、乙酸镁、硝酸铝、乙酸铝、氯化锌、碳酸锌、硝酸锌、乙酸锌、乙酸钛、乙酸铌、硝酸钛的至少一种,所述金属阳离子盐与所述插层石墨的质量比为1:20?100。
[0013]可选的,所述惰性气体为氮气、氩气、氦气、氖气中的一种。
[0014]本申请实施例中的上述一个或多个技术方案,至少具有如下一种或多种技术效果:
1、本发明将机械剥离和纳米材料复合两个过程合二为一,大幅降低成本,简化工艺,适合于连续化工业生产工艺。
[0015]2、本发明主要利用苯基铵盐作为插层剂,经过高温分解不引入杂质元素,而金属阳离子盐通过与苯基铵盐离子交换,使得金属离子在石墨层间均匀分散,加热后形成的氧化物在石墨烯表面也分散均匀,颗粒尺寸均匀。
[0016]3、本发明采用石墨作为原料,成本低廉适合大规模生产。
【具体实施方式】
[0017]通过【具体实施方式】对本发明作进一步的详细说明,但不应将此理解为本发明的范围仅限于以下的实例。在不脱离本发明上述方法思想的情况下,根据本领域普通技术知识和惯用手段做出的各种替换或变更,均应包含在本发明的范围内。
[0018]实施例一
将500g鳞片石墨投放入100g浓度为20 mg/L的苯胺氯酸盐电解质溶液中,静置I天,让电解质溶液中的阳离子渗入所述石墨材料层间,形成插层石墨,过滤分离取出所述插层石墨,将250g插层石墨和2.5g碳酸镁共混放入连续螺杆反应挤出机,获得挤出固体产物,采用筛孔筛选出粒径为10?20nm的石墨烯和碳酸镁粉体。接下来,在氮气气体保护下,将所述石墨烯和碳酸镁体粉体加入连续螺杆反应挤出机,设置所述连续螺杆反应挤出机温度至300°C,挤出压力20 MPa,苯胺氯酸盐和碳酸镁受热分解,分解的二氧化碳与氨气气体释放,获得具有导电和光转换储能功能的石墨烯与氧化镁复合粉体。
[0019]实施例二
将500g鳞片石墨投放入100g浓度为20 mg/L的苯胺氯酸盐电解质溶液中,静置I天,让电解质溶液中的阳离子渗入所述石墨材料层间,形成插层石墨,过滤分离取出所述插层石墨,将250g插层石墨和2.5g碳酸镁共混放入连续螺杆反应挤出机,获得挤出固体产物,采用筛孔筛选出粒径为10?20nm的石墨烯和碳酸镁粉体。接下来,在氮气气体保护下,将所述石墨烯和碳酸镁体粉体加入连续螺杆反应挤出机,设置所述连续螺杆反应挤出机温度至300°C,挤出压力20 MPa,苯胺氯酸盐和碳酸镁受热分解,分解的二氧化碳与氨气气体释放,获得具有导电和光转换储能功能的石墨烯与氧化镁复合粉体。
[0020]实施例三
将500g膨胀石墨投放入100g浓度为20 mg/L的苯基季铵氯酸盐电解质溶液中,静置I天,让电解质溶液中的阳离子渗入所述石墨材料层间,形成插层石墨,过滤分离取出所述插层石墨,将250g插层石墨和2.5g碳酸镁共混放入连续螺杆反应挤出机,获得挤出固体产物,采用筛孔筛选出粒径为50?60nm的石墨烯和碳酸镁粉体。接下来,在氮气气体保护下,将石墨烯和碳酸镁体粉体加入连续螺杆反应挤出机,设置所述连续螺杆反应挤出机温度至300°C,挤出压力20 MPa,苯基季铵氯酸盐和碳酸镁受热分解,分解的二氧化碳与氨气气体释放,获得具有导电和光转换储能功能的石墨烯与氧化镁复合粉体。
[0021]实施例四
将500g膨胀石墨投放入3000g浓度为50 mg/L的苯基季铵氯酸盐电解质溶液中,静置5天,让电解质溶液中的阳离子渗入所述石墨材料层间,形成插层石墨,过滤分离取出所述插层石墨,将250g插层石墨和2.5g硝酸镁共混放入连续螺杆反应挤出机,获得挤出固体产物,采用筛孔筛选出粒径为80?90nm的石墨烯和硝酸镁粉体。接下来,在氮气气体保护下,将石墨烯和碳酸镁体粉体加入连续螺杆反应挤出机,设置所述连续螺杆反应挤出机温度至300°C,挤出压力20 MPa,苯基季铵氯酸盐和硝酸镁受热分解,分解的氮氧化物与氨气气体释放,获得具有导电和光转换储能功能的石墨烯与氧化镁复合粉体。
[0022]实施例五
将500g膨胀石墨投放入3000g浓度为50 mg/L的苯基季铵氯酸盐电解质溶液中,静置5天,让电解质溶液中的阳离子渗入所述石墨材料层间,形成插层石墨,过滤分离取出所述插层石墨,将250g插层石墨和2.5g乙酸钛共混放入连续螺杆反应挤出机,获得挤出固体产物,采用筛孔筛选出粒径为80?90nm的石墨烯和硝酸镁粉体。接下来,在氮气气体保护下,将石墨烯和乙酸钛粉体加入连续螺杆反应挤出机,设置所述连续螺杆反应挤出机温度至600°C,挤出压力50 MPa,苯基季铵氯酸盐和乙酸钛受热分解,分解的碳氧化物与氨气气体释放,获得具有导电和光转换储能功能的石墨烯与氧化钛复合粉体。
[0023]实施例六
将500g膨胀石墨投放入3000g浓度为60 mg/L的苯基季钱氯酸盐电解质溶液中,静置5天,让电解质溶液中的阳离子渗入所述石墨材料层间,形成插层石墨,过滤分离取出所述插层石墨,将250g插层石墨和5g硝酸镁和碳酸镁粉末共混放入连续螺杆反应挤出机,获得挤出固体产物,采用筛孔筛选出粒径为80?90nm的石墨烯和硝酸镁、碳酸镁粉体。接下来,在氮气气体保护下,将石墨烯和碳酸镁体粉体加入连续螺杆反应挤出机,设置所述连续螺杆反应挤出机温度至600°C,挤出压力50 MPa,苯基季铵氯酸盐和硝酸镁、碳酸镁受热分解,分解的氮氧化物、碳氧化物与氨气气体释放,获得具有导电和光转换储能功能的石墨烯与氧化镁复合粉体。
[0024]尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
[0025]显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
【主权项】
1.一种用于光转化储能的石墨稀复合材料及制备方法,其特征在于,所述方法包括以下步骤: a.将石墨材料投放入电解质溶液中,静置I?5天,使所述电解质溶液中的阳离子渗入所述石墨材料层间,形成插层石墨,分离取出所述插层石墨,其中,所述石墨材料与所述电解质溶液质量比为1:2?5,所述电解质溶液的浓度为20?60 mg/L; b.将所述插层石墨和金属阳离子盐共混放入连续螺杆反应挤出机,获得挤出固体产物,采用筛孔筛选出粒径为10?10nm的石墨烯和金属阳离子盐体系粉体; c.在惰性气体保护下,将所述石墨烯和金属阳离子盐体系粉体加入连续螺杆反应挤出机,设置所述连续螺杆反应挤出机温度至300?600°C,挤出压力20?50 MPa,获得具有导电和光转换储能功能的石墨烯与金属氧化物体系粉体。2.根据权利要求1所述的一种用于光转化储能的石墨烯复合材料及制备方法,其特征在于,所述石墨材料为致密结晶状石墨,鳞片石墨、膨胀石墨或可膨胀石墨中的一种或几种。3.根据权利要求1所述的一种用于光转化储能的石墨烯复合材料及制备方法,其特征在于,所述电解质溶液中的阳离子来自于苯铵盐、苯基叔铵盐、苯基季铵盐中的一种或几种。4.根据权利要求1所述的一种用于光转化储能的石墨烯复合材料及制备方法,其特征在于,所述电解质溶液中的阴离子来自于硼酸盐、氯酸盐和磷酸盐中的一种或几种。5.根据权利要求1所述的一种用于光转化储能的石墨烯复合材料及制备方法,其特征在于,所述金属阳离子盐为碳酸镁、硝酸镁、乙酸镁、硝酸铝、乙酸铝、氯化锌、碳酸锌、硝酸锌、乙酸锌、乙酸钛、乙酸铌、硝酸钛的至少一种,所述金属阳离子盐与所述插层石墨的质量比为1:20?100。6.根据权利要求1所述的一种用于光转化储能的石墨烯复合材料及制备方法,其特征在于,所述惰性气体为氮气、氩气、氦气、氖气中的一种。
【文档编号】B82Y30/00GK106058253SQ201610372270
【公开日】2016年10月26日
【申请日】2016年5月31日
【发明人】陈庆, 曾军堂, 叶任海, 陈兵
【申请人】成都新柯力化工科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1