用于控制功率变换器的输出定时参数的系统和方法

文档序号:7275807阅读:119来源:国知局
专利名称:用于控制功率变换器的输出定时参数的系统和方法
技术领域
本发明涉及控制负载点(“POL”)调节器输出,或更具体地,涉及一种利用输出定时数据来控制POL调节器的至少一个输出定时参数的系统和方法。
背景技术
负载点(“POL”)调节器,也称为电压调节器或DC/DC变换器,一般与电子电路一起使用。这是因为电子电路的电压/电流要求通常与容易得到的电压或实际传输的电流不同。例如,一些电子器件只包括单一电压输入(如12v),但其中包含的电路要求不同的电压(如3v、5v、9v等)。一种常见的解决方案是在该器件中设计多个POL调节器,把单一输入电压变换为多种电压电平。
相似地,一些电子器件包括要求低电压(如1v)、高电流(如100A)电源的电路。这是成问题的在相对较长距离上以低电压传输高电流且仍然满足期望的调节性能是不切实际的。一种常见的解决方案是使用高电压低电流电源并在内电路附近设计POL调节器。这允许低电流流经整个器件,并在内电路附近设置低电压高电流电源(即,使用POL调节器)。
传统上,POL调节器与至少一个电源控制器一起操作,控制器(1)通过直接向POL调节器提供数据而对POL调节器进行激励和部分编程;(2)通过测量POL调节器外部的数据而监视POL调节器的输出;并且(3)通过控制外部开关而允许POL调节器的输出传送到外部负载电路。具体地,控制器向POL调节器提供输出电压设定点数据和启动数据。POL调节器为响应接收到的启动数据而产生具有根据输出电压设定点数据的电压电平的输出。接着,控制器测量POL调节器的输出。如果该输出是正确的,控制器就激励外部晶体管开关,允许该输出传送到外部负载电路。如果要求特定的输出转换速率,控制器就可切换或线性控制外部晶体管开关,以达到所需的转换速率。因而,电源控制器通过控制多个外部晶体管开关而控制每个POL调节器的输出定时参数(即如定序、转换速率等)。
此种控制系统的缺点是由于要求控制器与多个器件(如POL调节器和外部晶体管开关)通信以控制单个POL调节器的输出定时参数,因而增加控制系统的复杂性、费用和尺寸。从而,具有一种克服这些缺点的用于控制POL调节器的输出定时参数的系统和方法是有利的。

发明内容
本发明提供一种利用输出定时数据来控制负载点(“POL”)调节器的至少一个输出定时参数的系统和方法。本发明的实施例根据电源控制器(“控制器”)和至少一个POL调节器而操作。具体地,在本发明的一个实施例中,每个POL调节器包括输出生成器、控制单元和存储器件。在此实施例中,控制器适合通过总线向调节器传送输出定时数据,或更具体地,向位于POL调节器内的控制单元(如微处理器等)传送输出定时数据。接着,输出定时数据储存在存储器件中,并由控制单元和输出生成器(如电压产生器件等)使用,以产生输出。
具体地,POL调节器通常适合接收电压设定点数据,并产生具有根据电压设定点数据的电压电平的输出。在本发明的优选实施例中,POL调节器进一步适合接收输出定时数据,并利用输出定时数据来确定至少一个输出定时参数。输出定时参数的实例包括产生输出的时间(如定序数据、开启数据);停止产生输出的时间(如终止数据、关闭数据);输出的转换速率(转换速率数据);等等。例如,根据本发明一个实施例操作的POL调节器可利用输出定时数据或其一部分(如转换速率数据),以产生具有特定转换速率的输出。相似地,根据本发明一个实施例操作的POL调节器可利用输出定时数据或其一部分(如定序数据、开启数据),以确定(或计算)在产生输出之前的一段等待时间(如延迟时间)。换句话说,至少一部分输出定时数据可用于产生一系列特定次序或序列的输出。例如,第一POL调节器在发生事件(如已经接收激励数据等等)之后十毫秒产生一伏输出,第二POL调节器在事件发生之后可两毫秒产生五伏输出,等等。
通过以下优选实施例的详细描述,本领域中技术人员将对利用输出定时数据来控制POL调节器的至少一个输出定时参数的系统和方法有更完整的理解,并可实现本发明其它的优点和目的。首先,简要描述后面作为参考的附图。


图1示出现有技术的POL或DC/DC控制系统。
图2示出根据本发明一个实施例操作的POL控制系统。
图3示出根据本发明一个实施例操作的POL调节器。
图4示出一种在串行总线上与POL调节器通信的方法。
图5示出可向/从POL调节器传输的一个通信周期。
图6为示出一种根据本发明的利用输出定时数据的方法的流程图。
具体实施例方式
本发明提供一种利用输出定时数据来控制POL调节器的至少一个输出定时参数的系统和方法。在以下详细描述中,相同的元件编号用于描述在一个或多个附图中示出的相同元件。
图1示出现有技术的DC/DC控制系统10,其中,电源控制器(“控制器”)110,也称作电压调节器或POL调节器,通过多根六位并行总线(即112、114和116)与多个DC/DC变换器(即120、130和140)通信,并且,通过多个三线输出连接(即122-126、132-136和142-146)与多个外部电路(如R1/S1、R2/S2、R3/S3)通信。更具体地,每根六位并行总线包括启用/禁用位和五个VID码位,并且,每个三线输出连接包括电压监视线(即122、132和142)、电流监视线(即124、134和144)以及开关启用线(即126、136、146)。
如图1所示,控制器110经过六位并行总线,通过对变换器进行激励和部分编程而控制每个DC/DC变换器的输出电压,并且经过三线输出连接而监视变换器。例如,控制器110通过六位并行总线116的VID码部分向DC/DC变换器140提供输出电压设定点数据。接着,控制器110通过六位并行总线116的启用/禁用部分而激励DC/DC变换器140。一旦被激励,并且根据输出电压设定点数据,DC/DC变换器140就把通过电源100提供的电压(如48v)变换为输出电压VA。随后,控制器110通过用电压监视线142测量输出电压VA而核实该电压是否为期望电压。如果输出电压VA是可以接受的,就通过用开关启用线146激励晶体管开关S1而把它提供给负载(未示出)。接着,控制器110通过分别用电压监视线142测量电压并且测量检测电阻器R1上的电压降(即,在电流监视线144和电压监视线142之间的电压差),而可连续地监视输出电压和输出电流。如果需要特定的转换速率,控制器110就可用开关启用性146转换或线性控制晶体管开关S1而产生所需的转换速率。控制器110以相同方式与其余的DC/DC变换器120、130通信(即,对输出进行部分编程、激励、监视和控制)。
此控制系统10的问题是由于需要控制器110与多个器件通信以控制DC/DC变换器(如140)的输出,因而增加整个电子器件(未示出)的复杂性、费用和尺寸。例如,为了产生并向外部负载电路提供输出电压,控制器必须与DC/DC变换器(以产生特定的输出电压)和外部晶体管(允许输出电压提供给外部负载电路)通信。此种系统不仅需要几个外部电路(如外部晶体管开关),而且为了与外部电路通信还需要附加的导线(或迹线)。
图2示出根据本发明一个实施例操作的POL控制系统20。具体地,控制器210用于通过总线200与多个POL调节器(即220、230、240和250)通信。在本发明的一个实施例中,此通信包括向每个POL调节器提供电压设定点数据和启动数据。接着,该数据由每个POL调节器使用,以把通过电源总线260提供的输入电压(即VIN)变换为输出电压。具体地,在每个POL调节器被激励(即接收启动数据)之后,它产生具有根据电压设定点数据的电压电平的输出。例如,如果电压设定点数据对应于一伏,POL调节器就产生一伏输出。应该理解,在此描绘的POL调节器(如220等)包括但不限于本领域中技术人员一般都知道的负载点调节器、负载功率调节器、DC/DC变换器、电压调节器和所有其它的可编程电压或电流调节器件(包括所有的单一和多输出器件)。应该进一步理解,控制器(如210)以独立器件存在(如图2所示)或可集成到另一器件中,如前端变换器(未示出)或另一POL调节器。
在本发明的优选实施例中,控制器210进一步适合通过向POL调节器传送输出定时数据而识别POL调节器的至少一个输出定时参数。例如,为响应被激励(即接收启动数据),POL调节器可产生具有根据输出定时数据至少一部分(如转换速率数据)的特定转换速率的输出。相似地,在被激励之后,POL调节器在产生输出之前等待一段时间-这里,该段时间对应于输出定时数据的至少一部分(如定序数据)或用输出定时数据的至少一部分(如开启数据)来计算。换句话说,延迟时间可由控制器210提供(如定序数据)或用控制器210提供的数据(如开启数据)来计算。
例如,POL调节器如果接收分别与一伏和5毫秒对应的电压设定点数据和定序数据,就可在接收激励数据之后5毫秒产生一伏的输出。可替换地,POL调节器如果接收分别与两伏、一伏每毫秒和三毫秒对应的电压设定点数据、转换速率和开启数据,就可在接收激励数据之后一毫秒产生一伏的输出。这是因为在一伏每毫秒的转换速率下需要两毫秒来产生两伏的输出。换句话说,一毫秒的延迟时间加上两毫秒的电压上升时间等于三毫秒(如开启数据)。然而,应该理解,在此讨论的时间测量不局限于从接收启用或激励数据开始(或甚至与之一起使用)的测量。因而,从任何已知事件(如接收特定的传输周期或数据位、发生特定的条件等等)开始的时间测量都在本发明的精神和范围之内。应该进一步理解,在本文中所用的和产生的术语都用于指示POL(例如,向外部负载)提供输出时(近似)的时间点,而与该输出是在其峰值电压或正向其峰值电压上升无关。因而,在POL提供(或向外部传送)输出时产生或生成五伏的输出,与该输出在其最初提供时就为五伏或正向五伏上升无关。还应理解,与输出定时数据相关的输出定时参数、以及输出定时数据本身不局限于转换速度、定序或开启参数,而是进一步包括本领域中技术人员一般都知道的所有其它的输出定时参数。因而,例如,输出定时数据用于确定POL调节器关闭其输出的时间(如终止数据或关闭数据)。
在本发明的一个实施例中,如图3所示,每个POL调节器300都包括输出生成器310、负载点控制单元320(“POL控制单元”)和存储器件330。应该理解,输出生成器310包括但不局限于技术人员一般都知道的所有电压生成和变换电路,而是包括所有单级和多级电路(如包括数字-模拟变换器的电路、脉宽调制控制器、模拟电压基准电路等等)。还应进一步理解,POL控制单元320包括但不局限于本领域中技术人员一般都知道的特定用途集成电路(ASIC)、处理器、微处理器、可编程器件和所有其它的计算器件。还应理解,存储器件330可以是长期或短期存储器件,包括但不限于本领域中技术人员一般都知道的寄存器、RAM、ROM、EPROM、EEPROM、闪存和所有其它的数字数据存储器件。
参照图3,POL控制单元320适合接收输出定时数据并在存储器件330中储存输出定时数据。例如,如果存储器件330是多个寄存器,输出定时数据就可储存在至少一个输出定时寄存器(如定序寄存器、转换速率寄存器等)中。接着,控制单元320(或在某种程度上为输出生成器310)使用此数据来产生输出。具体地,输出生成器310适合根据控制单元320接收/储存的数据(如电压设定点数据、输出定时数据等)而产生输出。例如,根据本发明的一个实施例,输出生成器310和控制单元320适合产生包括特定转换速率的输出、或将在特定时间产生的输出等-这根据所接收/储存的输出定时数据的类型。应该理解,图3中所示元件的位置、类型和/或数量仅仅是示范本发明工作的环境,不应认为是对本发明的限制。例如,包括多于一个输出生成器的POL调节器、其具有不同位置上的元件(如POL控制单元内的存储器件、POL调节器外部的存储器件等)或具有附加(或更少的)元件都在本发明的精神和范围之内。
虽然输出定时数据可通过并行总线传输,但本发明的一个实施例包括在双向串行数据总线(同步或异步)(参见图2,总线200)上传输输出定时数据。换句话说,双向串行总线是允许异步传输数据的双线串行数据总线(如I2C)或允许同步(即与时钟信号同步)传输数据的单线串行数据总线。在本发明的另一实施例中,串行数据总线(或其一部分)叠加(或之与共存)在用于从前端变换器向POL调节器传送功率的电源总线上(例如,参见图2,电源总线260)。
图4示出在单线串行总线上通信的一种方法。具体地,通过在串行总线上传播时钟信号400而创建传输线40。时钟信号400可由控制器、特定的POL调节器(如,具有最低有效地址的POL调节器)或外部器件产生。时钟信号400使各种通信器件(即POL调节器和控制器)同步,并且创建一系列的时钟周期410,每一个周期都包括数据位420。这允许各种通信器件在每个时钟周期410传送单个数据。换句话说,每个通信器件通过保留/拉出数据位420为高或低(即二进制1或0)而传送数据。应该理解,如在本文所讨论地,图4不用于限制本发明,而是提供在单线串行总线上通信如何发生的实例。
图5示出一种在控制器和至少一个POL调节器之间传输信息的方法。具体地,42位通信周期50可用于传送输出定时数据、电压设定点数据和/或启动数据。如图5所示,42位传输周期50包括4位开始序列510、16位(具有奇偶校验位)地址组520、8位(具有奇偶校验位)命令组530、第一确认位540、8位(具有奇偶校验位)数据组560和第二确认位570。增加附加位550,以保证在提供数据组560之前执行命令组540。应该理解,图5所示通信周期50不是用于限制本发明,而是示出信息如何在串行总线上传输。从而,包含更多或更少信息和/或位的通信周期都在本发明的精神和范围之内。
第一和第二确认位540和570分别用于确认命令组530和数据组560的接收。应该理解,负责提供第一和第二确认位540和570的器件根据是否向或从POL调节器传输信息(即信息是被写、读或提供)而改变。
命令组530、数据组560和地址组520使控制器和POL调节器写、读和提供数据。具体地,(i)命令组530用于识别控制器是否写和写什么(如写输出定时寄存器),控制器是否读和读什么(如读状态寄存器),或者POL调节器是否提供和提供什么(如提供输出定时数据);(ii)地址组520用于识别正被写或读的POL调节器(一个或多个)、或正提供信息的POL调节器;以及(iii)数据组560用于识别正被写、读或提供的实际数据。
部分地使用开始序列510和地址组520来识别信息的发送者。例如,控制器使用与POL调节器不同的开始序列510。因而,控制器通过读取正被传输的通信周期50的开始序列510而确定POL调节器是否也试图同时发送传输周期50。相似地,每个POL调节器具有不同的地址组520。因而,POL调节器通过读取正被传输的通信周期50的开始序列510和地址组520而确定其它的POL调节器或控制器是否也试图同时发送通信周期50。如果多个器件试图发送通信周期50,总线仲裁数据就用于分配或仲裁总线使用。应该理解,总线仲裁数据可储存(或硬连线)为默认值或由电源控制器提供并储存在POL存储器件中。
一种利用输出定时数据来确定至少一个输出定时参数的方法在图6中示出。具体地,在步骤600中,POL控制单元接收包括转换速率数据、定序数据、终止数据等的输出定时数据。接着,在步骤620中,输出定时数据储存在POL存储器件中。例如,如果POL存储器件是多个寄存器,那么,输出定时数据(如转换速率数据、定序数据等)就可储存在多个寄存器(如转换速率寄存器、定序寄存器等)的至少一个中。在步骤640中,POL控制单元接收启动数据,该数据激励POL调节器产生输出。在步骤660中,POL控制单元使用储存在POL存储器件中的输出定时数据来确定至少一个输出定时参数。然而,应该理解,根据输出定时数据的性质,步骤660(至少部分)可更多地适用于某些时间段中。例如,如果输出定时数据与输出产生时间或输出的转换速率有关,步骤660就可更多地适用于产生输出。可替换地,例如,如果输出定时数据与输出终止时间有关,步骤660就更多地在产生输出之后应用。
因而,已经描述利用输出定时数据来控制负载点调节器的至少一个输出定时参数的系统和方法的优选实施例。本领域中技术人员应该清楚,已经实现本系统的一些优点。还应该明白,在本发明的范围和精神内,可对本发明作出各种变更、改变和替代实施例。本发明由以下权利要求进一步定义。
权利要求
1.一种功率控制系统,包括适合传输输出数据的电源控制器;连接到所述电源控制器的数据总线;以及连接到所述数据总线的至少一个负载点(“POL”)调节器,所述至少一个POL调节器包括适合储存所述输出数据的存储器件;适合产生输出的输出生成器;以及适合根据所述输出数据而确定所述输出的至少一个定时参数的控制单元。
2.如权利要求1所述的功率控制系统,其中,所述输出数据进一步包括开启数据、电压设定点数据、转换速率数据、关闭数据和定序数据中的至少一个,其中,开启数据提供开启相应POL调节器的命令,电压设定点数据提供相应POL调节器所需的输出电压,转换速率数据提供相应POL调节器的输出电压的变化率,关闭数据提供关闭相应POL调节器的命令,以及定序数据提供在开启或关闭命令与实际产生相应输出之间的延迟时间段。
3.如权利要求2所述的功率控制系统,其中,所述控制单元进一步适合根据所述开启数据、所述定序数据、所述转换速率数据和所述电压设定点数据中的至少一个来确定产生所需输出的开启时间段。
4.如权利要求2所述的功率控制系统,其中,所述控制单元进一步适合根据所述关闭数据、所述定序数据、所述转换速率数据和所述电压设定点数据中的至少一个来确定终止所选择输出的关闭时间段。
5.如权利要求3所述的功率控制系统,其中,所述开启时间段由所述电源控制器在所述定序数据中提供。
6.如权利要求3所述的功率控制系统,其中,所述开启时间段由所述控制单元使用所述定序数据、所述转换速率数据和所述电压设定点数据来计算。
7.如权利要求1所述的功率控制系统,其中,所述存储器件进一步包括至少一个寄存器。
8.如权利要求1所述的功率控制系统,其中,所述数据总线进一步包括双向串行总线。
9.一种确定至少一个负载点(“POL”)调节器的至少一个输出定时参数的方法,包括从控制器接收输出定时数据;在POL存储器件中储存所述输出定时数据;使用所述输出定时数据来确定所述输出的至少一个定时参数;以及产生所述至少一个POL调节器的输出。
10.如权利要求9所述的方法,其中,所述接收输出定时数据的步骤进一步包括接收定序数据,并且,所述使用所述输出定时数据的步骤进一步包括使用所述定序数据来确定产生所述输出的时间。
11.如权利要求9所述的方法,其中,所述接收输出定时数据的步骤进一步包括接收转换速率数据,并且,所述使用所述输出定时数据的步骤进一步包括使用所述转换速率数据来确定所述输出的转换速率。
12.如权利要求9所述的方法,其中,所述接收输出定时数据的步骤进一步包括接收关闭数据,并且,所述使用所述输出定时数据的步骤进一步包括使用所述关闭数据来计算与所述输出关闭时间相应的关闭延迟时间段。
13.如权利要求9所述的方法,其中,所述接收输出定时数据的步骤进一步包括接收开启数据,并且,所述使用所述输出定时数据的步骤进一步包括使用所述开启数据来计算与所述输出产生时间相应的开启延迟时间段。
14.如权利要求9所述的方法,进一步包括从所述控制器接收启动数据。
15.如权利要求14所述的方法,其中,所述接收输出定时数据的步骤进一步包括接收定序数据,并且,所述使用所述输出定时数据的步骤进一步包括使用所述定序数据和所述启动数据来确定产生所述输出的时间。
16.一种确定至少一个负载点(“POL”)调节器的至少一个输出定时参数的方法,包括从控制器接收转换速率数据;在POL存储器件中储存所述转换速率数据;从所述控制器接收启动数据;以及使用所述转换速率数据来确定所述至少一个POL调节器的输出的转换速率。
17.如权利要求16所述的方法,进一步包括从所述控制器接收定序数据;在所述POL存储器件中储存所述定序数据;以及使用所述定序数据来确定所述输出产生时间。
18.如权利要求17所述的方法,其中,所述使用所述定序数据来确定所述输出产生时间的步骤进一步包括在接收所述启动数据之后在产生所述输出之前等待一时间段,所述时间段由所述定序数据来确定。
19.如权利要求16所述的方法,进一步包括从所述控制器接收开启数据;在所述POL存储器件中储存所述开启数据;以及至少使用所述开启数据和所述转换速率数据来计算与所述输出产生时间相应的开启延迟时间段。
20.如权利要求16所述的方法,进一步包括从所述控制器接收关闭数据;在所述POL存储器件中储存所述关闭数据;以及使用所述关闭数据和所述转换速率数据来计算与所述输出终止时间相应的关闭延迟时间段。
21.一种负载点调节器,包括串行数据总线接口;适合储存通过所述串行数据总线接口从外部接收的输出数据的存储器件;适合基于所述输出数据来计算至少一个输出定时参数的控制单元;以及适合根据所述至少一个时间参数而产生输出电压的输出生成器。
22.如权利要求21所述的负载点调节器,其中,所述输出数据进一步包括定序数据,并且,所述控制单元进一步适合计算产生所述输出电压的时间,所述时间根据所述定序数据来确定。
23.如权利要求21所述的负载点调节器,其中,所述输出数据进一步包括转换速率数据,并且,所述控制单元进一步适合确定所述输出电压的转换速率,所述转换速率根据所述转换速率数据来确定。
24.如权利要求21所述的负载点调节器,其中,所述输出数据进一步包括关闭数据,并且,所述控制单元进一步适合计算在所述控制单元终止所述输出之前等待的关闭时间段,所述关闭数据用于计算所述关闭时间段。
25.如权利要求21所述的负载点调节器,其中,所述输出数据进一步包括开启数据,并且,所述控制单元进一步适合计算在所述控制单元产生所述输出电压之前等待的开启时间段,所述开启数据用于计算所述开启时间段。
26.如权利要求21所述的负载点调节器,其中,所述输出数据进一步包括开启数据、电压设定点数据、转换速率数据、定序数据和关闭数据中的至少一个,其中,开启数据提供开启相应POL调节器的命令,电压设定点数据提供相应POL调节器所需的输出电压,转换速率数据提供相应POL调节器的输出电压的变化率,定序数据提供在相应POL调节器执行其它功能之间的延迟时间段,以及关闭数据提供关闭相应POL调节器的命令。
27.如权利要求26所述的负载点调节器,其中,所述控制单元进一步适合根据所述开启数据、所述定序数据、所述转换速率数据和所述电压设定点数据中的至少一个来确定产生所需输出的开启时间段。
28.如权利要求27所述的负载点调节器,其中,在所述定序数据中提供所述开启时间段。
29.如权利要求27所述的负载点调节器,其中,所述控制单元使用所述定序数据、所述转换速率数据和所述电压设定点数据来计算所述开启时间段。
30.如权利要求26所述的负载点调节器,其中,所述控制单元进一步适合根据所述关闭数据、所述定序数据、所述转换速率数据和所述电压设定点数据中的至少一个来确定终止所选择输出的关闭时间段。
31.如权利要求30所述的负载点调节器,其中,在所述定序数据中提供所述开启时间段。
32.如权利要求30所述的负载点调节器,其中,所述控制单元使用所述定序数据、所述转换速率数据和所述电压设定点数据来计算所述关闭时间段。
33.如权利要求21所述的负载点调节器,其中,所述存储器件进一步包括至少一个寄存器。
34.如权利要求4所述的功率控制系统,其中,在所述定序数据中提供所述关闭时间段。
35.如权利要求4所述的功率控制系统,其中,所述控制单元使用所述定序数据、所述转换速率数据和所述电压设定点数据来计算所述关闭时间段。
全文摘要
本发明涉及用于控制功率变换器的输出定时参数的系统和方法,其利用输出定时数据来控制负载点(“POL”)调节器的至少一个输出定时参数。具体地,电源控制器(“控制器”)向至少一个POL调节器传送输出定时数据。在本发明的一个实施例中,每个POL调节器包括输出生成器、控制单元和存储器件。控制单元在存储器件中储存输出定时数据。接着,控制单元和输出生成器根据输出定时数据而产生具有至少一个输出定时参数的输出。输出定时数据的实例包括定序数据、开启数据、关闭数据、终止数据、转换速率数据等。例如,POL调节器适合利用输出定时数据或其一部分(如转换速率数据)来产生具有特定转换速率的输出。相似地,POL调节器适合利用输出定时数据或其一部分(如定序数据、开启数据等)来确定(或计算)在产生输出之前的一段等待时间(如延迟时间)。换句话说,输出定时数据可用于产生一系列特定次序或序列的输出。
文档编号H02J1/08GK1698023SQ200480000009
公开日2005年11月16日 申请日期2004年3月5日 优先权日2003年3月14日
发明者阿兰·沙皮伊 申请人:大动力有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1