电力转换装置的制作方法

文档序号:7456663阅读:170来源:国知局
专利名称:电力转换装置的制作方法
技术领域
本发明涉及一种将直流电转换为交流电的电力转换装置或者将交流 电转换为交流电的电力转换装置。
背景技术
在利用旋转电机的输出来驱动车轮并使车辆行驶的方式中,有基于发 动机或者旋转电机这两者的输出来驱动车轮的混合动力方式和只利用旋 转电机来驱动车轮的方式。无论哪一种方式,都是利用电力转换装置将直 流电转换为交流电,再将上述交流电提供给车辆驱动用的旋转电机。根据 所供给的电力,上述旋转电机产生旋转转矩,利用该旋转转矩驱动车轮使 车辆行驶。
车辆驱动用的旋转电机要求有大的转矩输出,因此,电力转换装置提 供给上述旋转电机的电力大,从而往往使电力转换装置内部的发热量也增 大。
在专利文献1中公开了一例车辆用电力转换装置的冷却构造。
专利文献l:日本专利特开2001—45601号公报。
要求旋转电机的输出变大,随之有使提供给旋转电机的电力增大的趋 势。控制上述供给电力的电力转换装置的内部的发热量还有进一步变大的 趋势。需要应对伴随发热量增大的电力转换装置内部的温度上升。另一方 面,车辆用的电力转换装置必须收纳于车辆的有限空间内,因而不能使电 力转换装置的体积不合理地增大。从而需要进行使电力转换装置小型化的 研究。

发明内容
本发明的目的在于提供一种能够尽量抑制体积增大的电力转换装置。 在本发明中,制冷剂流路形成体形成使制冷剂通过的制冷剂流路,将
连接于直流电路部侧的电容器配置在上述制冷剂流路形成体的一侧,将具 有用于将直流电转换为交流电的功率半导体芯片的功率半导体电路部设 置于上述制冷剂流路形成体的另一侧。利用该构造,能够提高电力转换装 置的冷却能力,且能够抑制电力转换装置的体积增大。
另外,在下述说明的实施方式中,将上述电容器和上述功率半导体电 路部电连接的连接线贯通上述制冷剂流路形成体而配置。利用该构造能够 使装置的体积变得比较小。
根据本发明,能够抑制电力转换装置体积的增大。


图1是混合动力型电动汽车的系统图2是说明电力转换装置100的电路的图3是说明电力转换装置100的构造的截面图4是说明电力转换装置100的构造的截面图5是电力转换装置100的右视图6是电力转换装置100的主视图7是电力转换装置100的左视图8是表示电力转换装置100的结构的分解立体图9是半导体模块的立体图IO是表示电容器及直流侧的连接导体的构造的立体图11是表示电容器和半导体模块的连接状态的立体图12是表示电力转换装置100的内部构造的分解立体图13是表示电力转换装置100的内部构造的分解立体图14是表示有关电力转换装置100的其它实施方式的截面图15是表示有关电力转换装置100的另外其它实施方式的截面图16是表示有关电力转换装置100的另外其它实施方式的截面图17是表示有关半导体模块的其它实施方式的立体图18是表示其它实施方式的半导体模块的局部放大的立体图19是半导体模块的直流侧端子部的截面图20是表示半导体模块的直流侧端子的构造的立体图。
符号说明
10:上部壳体
11:第一底座
12:第二底座
13:下部壳体
14:安装管脚
15:入口配管
16:出口配管
20、 30:半导体模块
21: IGBT
22:绝缘基板
23:传热片
24:模块外壳
25:连接器
26:直流负极侧模块端子
27:交流模块端子
28:制冷剂流路
33:直流正极侧模块端子
38: 二极管
40:直流侧的连接导体
44:直流负极侧的母线
45:直流正极侧的母线
46:负极侧电容器端子
47:正极侧电容器端子
50:电容器
55:绝缘部件
60:交流母线
63:端子保持架
70、 71:驱动电路基板
74:控制电路基板80:直流端子
100:电力转换装置
104:发动机
106:蓄电池
110、 120:逆变器装置
130、 140:电动发电机
150:电力分配机构
具体实施例方式
在下述说明的实施方式中,不仅具有提高电力转换装置的冷却能力的效果,还具有如下所述的效果。
(1) 实施方式的构造具有能够缩小电力转换装置的体积的效果。例 如能够将功率半导体电路部、电容器及制冷剂流路形成体的配置收纳为比 较小的体积,因而可缩小电力转换装置的整体体积。
(2) 能够减小电力转换装置的内部电感。特别是能够减小连接功率 半导体电路部和电容器的直流电路的电感。基于功率半导体电路部的导通及断开工作的电压上升与上述电感或者电流的变化成比例关系。由于在下 述的实施方式中能够减小电力转换装置的内部电感,所以即使提高功率半 导体电路部的导通及断开的工作速度,也能够将由电感引起的电压上升抑 制地比较低。能够消除因高电压引起的电机部件的损伤。
(3) 如上述(2)所说明的,通过提高功率半导体电路部的导通及断开的动作速度,能够降低功率半导体电路部的发热量。特别是由于功率半导体电路部的断开动作时的发热量大,所以通过加快功率半导体电路部的 断开动作,能够抑制断开动作的发热量,其结果就是能够将功率半导体电 路部的温度上升抑制地比较低。
(4) 提高用于生产电力转换装置的操作性。例如,由于将功率半导体电路部及控制电路基板配置于制冷剂流路形成体的一侧的空间内,故即使假设上述基板的固定部件或者配线部件在操作中从生产工具脱落,也能够防止上述脱落的部件掉在上述制冷剂流路形成体的另一侧空间,从而操作性提高。另外,即使高压大电流配线的表面没有绝缘而是露出来,也能够取出上述部件,或者能够防止其进入其它空间,因而可保持安全性。
(5)下述说明的实施方式在上述效果之外还有效果,这些将在下述 的说明中叙述。
图1是使用了应用本发明的电力转换装置的混合动力型电动汽车的系 统图。就电动汽车而言,具有装备了发动机的混合动力型和没有装备发动 机的类型,虽然下述的实施例不论哪种类型都可适用,但在此是以混合动 力型的电动汽车为例来进行说明的,如上所述,本发明的电力转换装置也 可应用于没有装备发动机的纯粹的电动汽车。
混合动力电动汽车(下文表述为"HEV")为了使车辆行驶而具备电 动驱动和机械驱动这两套驱动系统。 一个是以内燃发动机104为动力源的 发动机驱动系统,另一个是基于旋转电机的驱动系统。在下述实施方式中, 旋转电机具有电动机和发电机这两者的功能,或者根据行驶状态作为电动 机运转,或者作为发电机运转。下面将作为电动机或者发电机起作用的旋 转电机记述为电动发电机。本系统具备两个电动发电机130和140。
前轮车轴102被可旋转地轴支承在车身(未图示)的前部,在前轮车 轴102的两端设置有一对车轮101。省略了车身后部的后轮的图示。虽然 本实施例的HEV采用了所谓的前轮驱动方式,但也可以是后轮驱动方式。
利用电动发电机130或者140或者发动机104所产生的转矩使车辆行 驶。通过动力分配机构150将发动机104的输出侧及电动发电机140的输 出侧机械式连接在电动发电机130的输入侧。电动发电机130的输出侧机 械式连接在变速器(T/M) 105的输入侧。上述电动发电机130或者140 或者发动机104所产生的转矩被施加在上述变速器(T/M) 105的输入侧。 所施加的转矩经变速器105变速再传递,传递到将旋转驱动力分配给左右 前轮车轴102的差动式动力分配机构DEF103。由DEF103分配的旋转转 矩通过前轮车轴102传递给上述车轮101,使车辆行驶。
动力分配机构150是由齿轮151 158构成的差动机构。在此,齿轮 153 156为锥齿轮,齿轮151、 152、 157、 158是正齿轮。电动发电机130 的动力被传递给动力分配机构150。电动发电机130的轴与齿轮157同轴。 由此,在不向电动发电机130提供驱动电力的情况下,传递到齿轮157的 动力就会原封不动传递到动力分配机构150的输入侧。若利用发动机104的工作来驱动齿轮151,则发动机104的动力分别从齿轮151传递到齿轮 152,然后从齿轮152传递到齿轮154及齿轮156,然后从齿轮154及齿轮 156传递到齿轮158,最终传递到齿轮157。若利用电动发电机140的工作 来驱动齿轮153,则电动发电机140的旋转分别从齿轮153传递到齿轮154 及齿轮156,然后从齿轮154及齿轮156传递到齿轮158,最终传递到齿 轮157。再者,作为动力分配机构150,也可以使用行星齿轮机构等其它 机构。
电动发电机130是转子具备磁场用的永久磁铁的同步机,通过利用逆 变器装置UO控制提供给定子的电枢绕组的交流电来控制其输出转矩。电 动发电机140也是和电动发电机130 —样的同步机,利用逆变器装置120 控制供给的交流电流来控制其产生的转矩。蓄电池106电连接于逆变器装 置110、 120,在旋转电机作为电动机运转的情况下,从蓄电池106向逆变 器装置110、 120提供直流电,将该直流电转换为交流电,将交流电提供 给作为旋转电机的电动发电机130和140。另一方面,在作为发电机使旋 转电机、即电动发电机130和140运转的情况下,将由旋转电机产生的交 流电用逆变器装置110或120转换为直流电,将转换成的直流电从逆变器 装置110或者120提供给蓄电池106。
本实施例中,具备两套电动发电组件,即由电动发电机130及逆变器装置110构成的第一电动发电组件、和由电动发电机140及逆变器装置120 构成的第二电动发电组件,根据运转状态来分别使用它们。即,在以发动 机104产生的旋转转矩为主使车辆行驶的状态下,在用旋转电机的输出辅 助性地帮助车辆行驶时,使第二电动发电组件发电运转,利用发动机104 产生的转矩的一部分将旋转转矩施加于电动发电机140,产生三相交流电。 利用由该发电得到的电力,使第一电动发电组件作为电动组件工作。即, 使电动发电机130作为电动机运转。在同样的情况下,当使车辆加速时, 使第一电动发电组件作为发电组件运转,利用发动机104产生的转矩使电 动发电机130作为发电机运转。利用由该发电运转得到的电力使第二电动 发电组件作为电动组件运转,作为电动机来运转。
在本实施例中,将蓄电池106的电力提供给第一电动发电组件的电动发电机130,使第一电动发电组件作为电动组件运转,由此能够不使用发动机104的转矩而只用电动发电机130的输出转矩使车辆行驶。
另外,在本系统中,在使第一电动发电组件或者第二电动发电组件作
为同时发电运转的发电组件工作的情况下,能够利用发动机104的动力或 者从车轮101传递回来的旋转转矩,使电动发电机130及电动发电机140 作为发电机运转,将其发电电力转换为直流电,用第一或者第二电动发电 组件的各逆变器装置IIO或者120将交流电转换为直流电,并对蓄电池106充电。
在图1所示的系统中,逆变器装置110和120及电容器50构成电力 转换装置IOO。将两个逆变器装置IIO和120容纳于一个壳体内,并进而 容纳电容器50,从而使电力转换装置100被收纳于小体积空间。在本实施 方式中,具有使必要的容纳空间变得比较小的效果。但是,不一定必须容 纳两个逆变器装置110或者120,也可以容纳一个逆变器装置。
下面,使用图2来说明电力转换装置100的电路。龟力转换装置IOO 具备上述逆变器装置110及120的功能。本实施例的电力转换装置100担 当汇集了逆变器装置110及120的功能的工作。在电力转换装置100上设 置有逆变器装置110用的半导体模块20、逆变器装置120用的半导体模 块30、电容器50、安装在驱动电路基板70上的用于逆变器装置110的驱 动电路92、安装在驱动电路基板71上的用于逆变器装置120的驱动电路 94、安装在控制电路基板74上的控制逆变器装置110及120这两者的控 制电路93、安装在连接器基板72上的连接器73及驱动电容器50的放电 电路(未图示)的放电驱动电路91、电流传感器95和96。
半导体模块20和30构成对应的逆变器装置110及120的电力转换用 主电路,具备开关用的多个功率半导体元件。作为功率半导体元件使用电 阻小的IGBT (绝缘栅极型双极晶体管),也可以是MOS晶体管(金属氧 化物半导体型场效应晶体管)。只是MOS晶体管与IGBT相比,在导通状 态下的电阻稍大。半导体模块20和30分别接受从对应的驱动电路92和 94输出的驱动信号后工作,将由高压蓄电池106供给的直流电转换为三相 交流电,将该电力提供给对应的电动发电机130或者140的电枢绕组。半 导体模块20和30的主电路是三相桥式电路,三相的串联电路是通过在蓄 电池106的正极侧和负极侧之间电并联而构成。
在半导体模块20或者30中,三组由两个IGBT21构成的串联电路串 联在直流电路的正极和负极之间。上述各串联电路是支路,通过将上支路 侧的开关用功率半导体元件和下支路侧的开关用功率半导体元件串联电 连接,如上所述构成上述串联电路。就本实施例而言,作为幵关用功率半 导体元件使用了 IGBT21,各IGBT21具备集电极、发射极和栅极三个电 极。在各IGBT21的集电极和发射极之间电连接二极管38。 二极管38具 备阴极电极和阳极电极两个电极,以从IGBT21的发射极朝集电极的方向 为正向,将阴极电极电连接于IGBT21的集电极、将阳极电极电连接于 IGBT21的发射极。
如上所述,作为开关用功率半导体元件也可以使用MOSFET。 MOSFET具备漏电极、源电极、栅电极这三个电极。再者,MOSFET由 于在源电极和漏电极之间具备以从漏电极朝源电极的方向为正向的寄生 二极管,所以不必像IGBT那样另外设置二极管。
如上所述,上述各相的支路中,上支路IGBT21的源电极和下支路 IGBT21的漏电极串联电连接。再者,在本实施例中,各相的各上下支路 由一个IGBT构成,而在提供给旋转电机的电流大时,也可以使多个IGBT 并联电连接构成上下各支路。就本实施例而言,如下所述,各相的各上下 支路分别由三个IGBT构成。在提供给旋转电机的电流量小的情况下,不 用上述并联连接的数目,若电流电容小,则能够分别用一个半导体元件构 成上下各支路。相反,在电流大的情况下,使构成上下各支路的半导体元 件的并联连接数目增加,而并联的半导体元件的开关动作的偏差与电流分 配的偏差有关,有电流集中在部分半导体元件上的危险性。考虑到电流的 偏差,以三个到四个的并联为上限,优选数目在此以下。
分别将各相的各上支路的IGBT21的漏电极电连接于蓄电池106的正 极侧,将各相的各下支路的IGBT21的源电极电连接于蓄电池106的负极 侧。使各相的各支路的中点(上支路侧的IGBT的源电极和下支路侧的 IGBT的漏电极的连接部分)电连接于对应的电动发电机130或者140的 电枢绕组。
驱动电路92和94是用于使对应的逆变器装置110或120作开关动作 即用于导通或断开的驱动电路,其根据从用于控制逆变器装置的控制电路
93输出的控制信号(控制值),产生用于驱动对应的IGBT21的驱动信号。 在各个电路产生的驱动信号被输出到对应的半导体模块20、 30。驱动电路 92、94是将与各相的上下支路对应的多个电路集成为一个电路的即所谓的 6inl类型的集成电路构成。作为与各相的各上下支路对应的电路,其具备 接口电路、门电路、异常检测电路等。
上述控制电路93具备微型电子计算机,接收来自上一级控制装置的 转矩指令信号及来自设置于电流传感器95或者96及各电动发电机130及 140的旋转传感器的检测信号(传感器值),对用于产生提供给各电动发电 机130及140的三相交流电流的半导体元件、即上述各IGBT21的开关动 作定时进行运算,并输出到驱动电路92及94。
连接器73是用于电连接电力转换装置100的内部和外部的控制装置 之间的通信电路的连接器。另外,电容器50构成用于起到控制由IGBT21 的工作而产生的直流电压的变动的作用的平滑电路,电并联连接于半导体 模块20及30的直流端子。放电驱动电路91用于驱动为了使存放在电容 器50中的电荷释放而设置的放电电路(未图示)。当放电电路91工作时, 存放于电容器50的电荷经由未图示的电阻而释放。
在本实施例中,共用控制两种旋转电机即电动发电机130及140的半 导体模块20或者30的电容器50,同时配置于一个装置中。因此,整体上 能够使系统所需的体积减小,能够搭载于车辆的比较小的空间内。使生产 性也得以改善。
下面使用图3 图8来说明电力转换装置100的结构。电力转换装置 100具备下部壳体13、配置于下部壳体13上的第二底座12、配置于第 二底座12上的第一底座11、设置于第一底座11上的上部壳体10。电力 转换装置100的大致轮廓为角部带圆角的长方体状的容器。壳体用铝材做 成,热传导性优良。
第一底座11和第二底座12构成内部形成有制冷剂流路的制冷剂流路 形成体。壳体的内部在上下方向上由片状的第一底座11和派(兀)状的第 二底座12划分为至少两部分,并进而划分为若干个腔室。被分开的腔室 通过用热传导性优良的部件例如铝材包围而形成冷却性优良的室。作为制 冷剂的冷却液在由上述第一底座11及第二底座12形成的制冷剂流路28
中流动。
在该实施方式中,作为制冷剂的冷却液虽然也可以是电力转换装置专 用的冷却液,但考虑到车辆整体的简约化及降低两者的负载而使用发动机 冷却液。因此,虽然因发动机致使冷却水升温达到较高温度,使冷却能力 因此而降低,但是,做成适于提高冷却效率的构造可用发动机冷却液得到 充分的冷却效果。
由上述第一底座11及第二底座12将电力转换装置划分为两部分,并
由上述第一底座11和第二底座12形成制冷剂流路28,由此在由上述第一 底座11及第二底座12分开的两个冷却室间无热影响。若将半导体模块20 及30配置于上述制冷剂流路28的一方,将电容器50配置于另一方,则 能够防止彼此之间的热影响,同时,能够得到可将这些部件全部收纳到小 的体积内的收纳效率优良的装置。
在本实施方式中,在由第一底座11及第二底座12形成的制冷剂流路 形成体的一侧,沿制冷剂流路的长度方向并排设置有半导体模块20及30。 由此,可利用制冷剂流路28的冷却液来冷却半导体模块20及30。由半导 体元件,在本实施例中是由IGBT21所产生的热被作为制冷剂的发动机冷 却液冷却。由此提高了冷却效率。
制冷剂流路28沿着壳体的长度方向配置,在壳体的横向方向的侧面 一侧设置有用于将冷却液导入并排设置的制冷剂流路28的一侧的入口配 管15、以及从并排设置的制冷剂流路28的另一侧将冷却液排出的出口配 管16。在本实施方式中,并排设置有两条制冷剂流路28,每条制冷剂流 路28分别沿壳体的长度方向平行设置,在上述入口配管15或者出口配管 16的相反侧彼此连通,即,制冷剂流路28形成U字状连通,流过一条制 冷剂流路28的制冷剂从端部流入另一条制冷剂流路28,流过另一条制冷 剂流路28之后,从出口配管16排出,将其输送给未图示的车辆散热器。
在上述第一底座ll上,沿着制冷剂流路28分别形成有开口,各开口 形成由半导体模块20和30的传热片23堵塞开口的构造。上述传热片23 沿制冷剂流路28形成从壳体的长度方向的一侧向另一侧延伸的长方形形 状,是堵塞制冷剂流路28的开口的片状部件。在上述传热片23的制冷剂 流路侧的面上设置有散热风扇,在用传热片23堵塞上述开口的状态下,该散热风扇做成向制冷剂流路28的内部突出的构造。由此,可用流过制
冷剂流路28的发动机冷却液高效率地冷却传热片23。传热片23由铜制的 热传导性部件构成,通过在铜内掺入杂质使材质变硬。虽然也可以是高纯 度的铜板,但高纯度的铜板在具有优良的热传导性的同时,有可能因柔软、 翅片钎焊等损伤平整度,使得难以固定IGBT21的芯片。因此,在传热片 23大的情况下,在高纯度的铜板中加入杂质使其变硬的方法操作性优良。
图4表示两半导体模块20或30,表示为看到一个半导体模块20的内 部而取下半导体模块20的外盖的状态。在传热片23的一个面(未在图4 表示的面)上设置有散热风扇,在传热片23的另一个面上即在传热片23 的上面设置有模块外壳24,该模块外壳24具备沿传热片23的外周边缘竖 起的壁。传热片23近似长方形,模块外壳24沿该长方形的长度方向延伸。 传热片23具有8个螺栓孔,通过该螺栓孔,以密封开口的方式用螺栓将 传热片固定于制冷剂流路形成体的一部分即第一底座11上。传热片23在 长方形的长度方向上被分割成3个区域,在这些区域上分别形成有如图4 所示的收纳室,在各收纳室中分别收纳有构成逆变器电路的上支路和下支 路的二极管和IGBT芯片。在图4中,示出了半导体模块20的以可看到芯 片收纳状态的方式取下半导体模块的上盖的状态。另外,在半导体模块20 的中央区域以可看到芯片配置的方式示出芯片的配置及配线部件39。其它 区域省略了芯片的配置及配线部件39的图示。
在沿设置于半导体模块20及30上的模块外壳24的长度方向延伸的 一个侧壁上固定有直流模块端子,在另一个侧壁上固定有交流模块端子。 上述直流模块端子由直流负极侧模块端子26及直流正极侧模块端子33构 成,与收纳室分别对应地设置它们。上述直流正极侧模块端子33及上述 直流负极侧模块端子26从如图所示的模块外壳24的侧壁向上突出。上述 直流正极侧模块端子33及直流负极侧模块端子26的突出侧的相反侧的直 流端子的端部,穿通树脂制的模块外壳24直达如图4所示的半导体模块 收纳室的内部,使其表面露出模块外壳24的表面。由此,在各收纳室的 内部形成正极侧的内部电极36及负极侧的内部电极37。
在图4中,在半导体模块的各收纳室中设置有配线部件39,在该配线 部件39间并排配置并固定有构成上下各支路的三个半导体芯片。在图4内侧即中央侧配置有直流负极侧及正极侧模块端子26和33,在外侧配置 有交流模块端子27。
如图4所示,并排设置的半导体模块20及30分别以相对于一个半导 体模块使另一个半导体模块旋转180°的状态固定,使得一个交流模块端 子27处在离开的一侧,使直流负极侧及正极侧模块端子26和33彼此接 近。在沿模块外壳24的长度方向延伸的侧壁上,即在位于半导体模块20 及30的相对侧的相反侧的侧壁上与各收纳室对应地设置交流模块端子 27。交流模块端子27从模块外壳24的侧壁向上突出。交流模块端子27 的突出侧的相反侧的端部直达半导体模块的各收纳室的内部,其表面露出 模块外壳24的表面。由此,在各收纳室的内部形成交流侧的内部电极35, 以连接上支路用的半导体芯片和下支路用的半导体芯片。
通过在如上所述的并排配置的半导体模块20及30靠近的一侧配置各 直流模块端子,能够縮短直流配线降低电阻。由于电阻的降低,能够抑制 发热,从而能够减少导体模块20和30以及连接电容器的直流电路的发热, 抑制温度上升。
通过在如上所述的并排配置的半导体模块20及30靠近的一侧配置各 个直流端子,能够降低直流电路的电感,即使提高逆变器的工作速度也会 利用电感的降低来减小因电感引起的电压上升。通过抑制电压上升,可加 快逆变器的工作速度,通过提高该工作速度,可縮短开关工作时的发热时 间,其结果就是可降低发热量。特别是半导体元件在从导通状态切换到断 开状态时的发热量大,通过縮短这种切换时间能够縮短大量产生热的工作 状态的时间,能够抑制运转过程中单位时间的发热量。其结果就是具有抑 制电力转换装置内部的温度上升的效果。
在图4中,在以可看见内部的方式特别表示的半导体模块20中,在 各收纳室的传热片23的上面沿壳体的长度方向并排设置有三组由两个绝 缘基板22构成的绝缘基板。但是,为了说明芯片配置而详细叙述中央的 一组,为了避免其它两组叙述的繁杂,省略对包括半导体芯片及配线部件 39在内的内部电路的叙述。在各绝缘基板22的上面沿壳体的长度方向并 排设置有两个片状的配线部件39。设置于各收纳室的两个绝缘基板22的 一侧的配线部件39的一侧与正极侧的内部电极36电连接。设置于各收纳室的两个绝缘基板22的另一侧的配线部件39的另一侧与负极侧的内部电 极37电连接。设置于各收纳室的两个绝缘基板22上的配线部件39的另 一侧分别与交流侧的内部电极35电连接。这些电连接通过导电性导线29 来进行。也可以用导线之外的方法连接。上述说明是针对半导体模块20 来进行的,半导体模块30也是同样的构造。
在设于各收纳室的两个绝缘基板22上的配线部件39的一侧的上面, 沿壳体的横向方向并排设置并安装有三个在壳体的长度方向上排列的 IGBT21和二极管38。即,各相的上下支路形成为三组IGBT21和二极管 38分别并联连接。IGBT21和二极管38电连接于与交流侧的内部电极35 电连接的配线部件39。 IGBT21的栅电极与连接器25电连接。这些电连接 用如图4所示的导电性导线29进行。连接器25分别设置于形成模块外壳 24的传热片23的上面的三个区域的四个侧壁上。
在模块外壳24的上部设置有片状的模块外壳盖34。模块外壳盖34 覆盖模块外壳24的上部开口部并构成堵塞收纳室的顶棚壁,由与模块外 壳24相同的绝缘树脂成形。在模块外壳盖34的上面设置有配线片31和与配线片31电连接的配线连接器32。配线片31与从设置于模块盖34的 贯通孔向上方凸起的连接器25电连接。配线连接器32利用未图示的配线 与驱动电路基板70、 71的驱动电路92、 94电连接。
在壳体下部的冷却室内收纳有电容器50、驱动电路基板70及71、控 制电路基板74、连接器基板72。
电容器50以靠近半导体模块20及30的直流侧配置的方式,配置于第二底座12的中央部(由π的两只管脚所包围的区域)的下方侧。电容器50由在壳体高度方向上的截面形状为长圆形状的四个电解电容器构成。 四个电解电容器以其长度方向朝着与壳体的长度方向相同的方向的方式, 在壳体的长度方向和横向方向上各并排设置两个,通过保持带52被收纳于电容器外壳51的内部。电容器外壳51是一种上部开放的由热传导性良好的材料制成的容器,制作成第二底座12的π字型的两支管脚的下端部与外壳上部的凸缘部接触。由此,能够将电容器50和制冷剂流路28之间 做成热传导性优良的构造,能够用制冷剂高效地冷却电容器50。
各电解电容器被分别保持在外壳53内,具备有贯通堵塞其上部开口
部的电容器盖54的正极侧电容器端子57及负极侧电容器端子56。正极侧 电容器端子57及负极侧电容器端子56为片状,以面对横向方向的方式对置,从横向方向夹持与电容器盖54形成一体的片状绝缘部件55。电容器 端子被如下设置,当将四个电解电容器收纳在电容器外壳51中时,使在 横向方向上相邻的电解电容器在长度方向上的位置彼此不同。
驱动电路基板70在半导体模块20侧的第二底座12的下方侧被配置 在由兀字状管脚的其中一支和第二底座12的凸缘部包围的区域中。驱动 电路基板71在半导体模块30侧的第二底座12的下方侧被配置在由兀字 状管脚的另一支和第二底座12的凸缘部包围的区域中。驱动电路基板70 及71与第二底座12热连接。由此,能够用热传导性良好的构造来连接制 冷剂流路28和驱动电路基板70及71,从而能够用作为制冷剂的发动机冷 却液来冷却驱动电路基板70及71。
控制电路基板74以与电容器外壳51的横向方向的一侧(半导体模块 30侧)的侧面对置的方式来设置。控制电路基板74与第二底座12热连接。 由此,能够用热传导性良好的构造连接制冷剂流路28和控制电路基板74, 从而能够用作为制冷剂的发动机冷却液来冷却控制电路基板74。
连接器基板72以与电容器外壳51的横向方向的另一侧(半导体模块 20侧)的侧面对置的方式来设置。连接器电路基板72与第二底座12热连接。由此,能够用热传导性良好的构造连接制冷剂流路28和连接器电路 基板72,从而能够用制冷剂来冷却连接器电路基板72。连接器73从壳体 的长度方向的另一侧的侧端面向外突出。
电容器50和半导体模块20及30通过直流侧的连接导体40电连接。 直流侧的连接导体40配置在分别形成于第一底座11的中央部及第二底座12的中央部的孔1212及1112的内部,通过这些孔来连接电容器50的端子和半导体模块20及30的直流端子。
直流侧的连接导体40做成下述这样的构造,即,使沿壳体的长度方向延伸的片状的直流正极侧的母线45和沿壳体的长度方向延伸的片状的直流负极侧的母线44隔着绝缘片43叠层在壳体的横向方向上。直流正极侧的母线45的模块侧端子42与半导体模块20及30的直流正极侧模块端子33电连接,直流负极侧的母线45的正极侧电容器端子47与电容器50
的正极侧电容器端子57连接。由此,利用形成叠层构造的直流侧的连接
导体40的正极侧的母线45,使半导体模块20及30的直流正极侧模块端 子33和电容器50的正极侧电容器端子57电连接。形成叠层构造的连接 导体40的直流负极侧的母线44的模块侧端子41与半导体模块20及30 的直流负极侧模块端子26连接,直流负极侧的母线44的负极电容器端子 46连接于电容器50的负极侧电容器端子56。由此,通过形成叠层构造的 直流侧的连接导体40的直流负极侧的母线44来连接半导体模块20及30 的直流负极侧模块端子26和电容器50的负极侧电容器端子56。
由于将上述直流负极侧的母线44和上述直流正极侧的母线45做成隔 着上述绝缘片43的叠层构造,因而能够减小半导体模块20及30和电容 器50之间的直流电路的电感。电感的减小具有使因电流变化而引起的电 压上升减小的效果。在考虑到电路及电子部件的耐压性来抑制规定电压以 下的电压上升的情况下,通过降低电感能够加快构成上述上下各支路的半 导体元件即IGBT21的开关速度。通过加快构成上述上下各支路的半导体 元件即IGBT21的开关速度,能够缩短发热量大的工作状态的时间,其结 果是能够抑制逆变器工作过程中的每单位时间的发热量。由此,随着对半 导体模块20及30的温度上升的抑制,能够抑制对其他电气部件的热影响。 另外,上述所谓的发热量大的工作状态是指在半导体元件、即IGBT21从 导通状态变化到断开状态的情况或者从断开状态变化到导通状态的情况, 尤其在将要断开电流的状态下的发热量大。
在上述结构中,在作为制冷剂流路形成体的第一底座11及第二底座 上形成有贯通壳体的高度方向的贯通孔1212及1112,通过穿过这些孔将 电容器50的直流端子和半导体模块20及30的直流端子电连接,能够使 直流电路的配线变短,降低电感。
另外,将穿过设置于上述制冷剂流路形成体上的孔1212及1112并用 于连接电容器50的直流端子和半导体模块20及30的直流端子的直流侧 的连接导体40,做成正极侧及负极侧的导体形状为平板并在其间隔着绝缘 体的叠层构造。通过做成这样的构造能够降低电感。
另外,上述叠层构造在安装容易、操作性强的这一点上也有效果。
因为本实施例的电力转换装置安装在汽车上,因而必须传递剧烈的振
动并经得起剧烈振动。另外,假如以与车辆的动力传递系统及发动机机械 连接的方式来配置上述电力转换装置,则会施加更强的振动。用于连接上
述电容器50的直流端子和半导体模块20及30的直流端子的导体是将绝
缘体夹在中间的叠层构造,有强的抗振性。另外,穿过设置于制冷剂流路
形成体上的孔1212及1112来进行连接的构造,是连接线距离短、共振等 影响小的构造。这样,就本实施方式而言,是在降低电感及提高操作性基 础上提高了抗振性的构造。
图IO所示的实施方式中,直流侧的连接导体40的直流正极侧的母线 45的模块侧端子42在图9所示的直流正极侧模块端子33从模块外壳24 向上突出的位置处,从直流正极侧的母线45的上部向上延伸,成为分别 对置的配置关系。通过在对置的状态下使面与面接触,用螺栓等固定装置 来固定,使直流正极侧的母线45的模块侧端子43与直流正极侧模块端子 33电连接。
另外,直流侧的连接导体40的直流负极侧的母线44的模块侧端子41 , 在直流负极侧模块端子26从模块外壳24向上方突出的位置处,从直流负 极侧的母线44的上部向上方延伸,形成分别对置的配置关系。直流负极 侧的母线44的模块侧端子41与直流负极侧模块端子26对置,通过用螺 栓等固定装置固定,使面与面相互接触而电连接。
负极侧电容器端子46及正极侧电容器端子47在电容器端子突出的位 置处从直流负极侧的母线44及直流正极侧的母线45的下部向下方延伸, 以面向壳体的横向方向的方式从壳体的横向方向夹持电容器端子,与同极 的电容器端子对置并用螺栓等固定装置固定于同极的电容器端子上,由此 与同极的电容器端子电连接。根据这样的配线构造,使从直流正极侧的母 线45及直流负极侧的母线44到达各电容器端子的配线部分也能够在正极 侧和负极侧之间隔着绝缘材料对置。通过做成这样的叠层构造,能够降低 该电路部的电感。由此,能够加快IGBT21的开关工作,进而能够抑制开 关时的电力损失引起的发热。
在壳体的长度方向的另一侧端部,即在作为与入口配管15及出口配 管16的设置侧不同的一侧的对置一侧设置有直流端子80。直流端子80 具备直流正极侧外部端子82、直流负极侧外部端子81、直流正极侧连接端子86、直流负极侧连接端子85、连接直流正极侧外部段子82与直流 正极侧连接端子86的直流正极侧母线84、连接直流负极侧外部端子81 与直流负极侧连接端子85的直流负极侧母线83。
直流正极侧外部端子82及直流负极侧外部端子81通过安装在贯通孔 17上的连接器与延伸的外部电缆电连接,贯通孔17设置在如图5所示的 壳体长度方向的另一侧的侧端面上。直流正极侧母线84与直流负极侧母 线83在壳体横向方向上形成面面对置的配置。利用这样的对置配置,向 半导体模块20及30 —侧延伸。直流正极侧连接端子86电连接于半导体 模块20及30的直流正极侧模块端子33以及直流侧的连接导体40的模块 侧端子42,直流负极侧连接端子85电连接于半导体模块20及30的直流 负极侧模块端子26以及直流侧的连接导体40的模块侧端子41 。设置于如 图8所示的上部壳体10的上表面的孔18是用于进行直流正极侧外部端子 82以及直流负极侧外部端子81与外部电缆的连接操作的开口,除操作之 外被盖堵塞着。
利用这样的构造,具有可降低直流电路侧的电感的效果。另外,以贯 通第一底座11及第二底座12的孔1212及1112的长度方向固定通过强电 流的直流负极侧及正极侧的母线44及45,具有抑制振动等的振幅的效果。 另外,由于将连接于直流负极侧及正极侧的母线44及45的直流端子80 固定在形成制冷剂流路形成体的第一底座11上,因而具有可高效冷却因 流过这些母线的强电流引起的发热的效果。
沿着壳体的水路配置有流过三相交流电的交流母线60。交流母线60 从第一底座11及第二底座12的水路向外侧的金属部分沿水路方向设置。 如图12及图13所示,流过各相交流电的交流母线60,从端子保持架63 经由设置于第二底座12上的贯通第二底座12的孔1222,或者经由设置于 第一底座11上的贯通第一底座11的孔1122,向半导体模块20及30的交 流模块端子27 —侧延伸。
在位于上部冷却室的交流母线60的一端侧形成有交流侧模块端子 61,其以面对壳体横向方向的方式与交流模块端子27对置,并利用螺栓 等固定装置固定于交流模块端子27上,与交流模块端子27电连接。在位 于下部冷却室的交流母线60的另一端侧形成有用于与向电动发电机130
或140供电的外部电缆连接的外部连接端子62,该外部连接端子62由端 子保持架63保持。外部连接端子62作为交流电端子发挥作用。
另外,在电力转换装置100上设置有用于固定在变速器105的壳体或 者发动机104及变速器105的壳体上的安装管脚14,该安装管脚14使用 SUS等刚体以确保强度。并作成弯曲形状使其具有弹性以抑制来自变速器 105及发动机104的振动。
图9表示半导体模块20或30的外观图。如上述说明,半导体模块的 内部被划分为三个收纳室,在各收纳室中安装有构成三相的各相上下支路 的IGBT21和二极管38。即,三相的各相上下支路分别具有三组并联连接 的IGBT21及二极管38。上下支路做成串联连接的串联电路,各上下支路 的连接点分别连接于交流模块端子27。上述串联电路与三相的各相对应, 向上述各串联电路提供直流电流。
在图9中,半导体模块20或者30的传热片23做成大致的长方形, 在其一个面上即在图9所示的那一面上设置有散热风扇,在另一面上设置 有收纳构成上述各支路的IGBT21及二极管38的芯片的模块外壳24。在 传热片23的大致长方形的一个长边上设置有上述交流模块端子27,在上 述大致长方形的另一长边上配置有三组用于向上述各串联电路提供直流 电的直流正极侧模块端子33和直流负极侧模块端子26。各组的直流正极 侧模块端子33和直流负极侧模块端子26分别向上述串联电路提供直流 电。从连接器25供给使构成上述各个上下支路的IGBT21进行开关工作的 控制信号。
在上述传热片23上形成有用于通过螺栓将传热片23固定于制冷剂流 路形成体即第一底座上的螺栓孔2022。在螺栓孔2022的部分,模块外壳 24做成凹坑形状。设置于传热片23的一个面上的散热风扇向制冷剂流路 内突出,需要用传热片23的一个面来堵塞用于该突出的冷却水路的开口。 必须做到使作为制冷剂的发动机冷却液不能从上述开口泄漏,必须在传热 片23和第一底座的开口周围之间夹持密封部件,用传热片23和第一底座 牢牢压紧上述密封部件。作为密封部件可考虑铜等较柔软的金属或者O型
环、树脂材料、橡胶材料等。由于模块外壳24不适合用树脂制牢牢压紧, 所以优选的构造为,在模块外壳24上设置凹坑,在传热片23上设置螺栓
孔,直接用螺栓紧固传热片23。
图10是图3及图8所示的电容器50及直流侧连接导体40的示意图。 在本实施例中,四个单位电容器502用电容器外壳51固定,电容器外壳 51的上部凸缘以与第二底座的下表面相接触的方式固定于壳体内。在各单 位电容器502上分别设置有绝缘部件55,在绝缘部件55的一个面上设置 有负极侧电容器端子56,在绝缘部件55的另一面上设置有正极侧电容器 端子57。由于上述负极侧电容器端子56及正极侧电容器端子57比绝缘部 件55的面小,所以未在图10上表示。
直流侧的连接导体40形成隔着绝缘片具有直流负极侧的母线44和直 流正极侧的母线45的叠层构造。直流负极侧的母线44具备负极侧电容器端子46,在图10中,在该负极侧电容器端子46和绝缘部件55之间分别 配置有电容器的负极侧电容器端子56。另外,直流正极侧的母线45具备 正极侧电容器端子47,在直流正极侧的母线45的该正极侧电容器端子47和绝缘部件55之间分别配置有电容器的正极侧电容器端子57。直流负极 侧的母线44还具有多个模块侧端子41,这些模块侧端子41分别连接于半 导体模块20及30的直流负极侧模块端子26。直流正极侧的母线45具有 多个模块侧端子42,这些模块侧端子42分别连接于半导体模块20及30 的直流正极侧模块端子33。就图10而言,为了避免附图的繁杂而将负极 侧电容器端子46和正极侧电容器端子47的符号只标在一个地方,其他省略。
如图4及图8所示,半导体模块20及30由于以使直流负极侧及正极 侧模块端子26及33相互靠近的方式来分别设置,因而可用上述叠层构造 的直流侧的连接导体40来连接两半导体模块20及30和电容器50的端子,使配线构造简单。
由于上述层叠构造成为简单的构造,因而通过在如图3及图8所示的 形成有制冷剂流路的制冷剂流路形成体、即第一底座和第二底座上设置贯 通孔,并在该贯通孔中配置上述叠层构造的连接导体,能够使半导体模块 20及30和电容器50之间的配线距离变短,减小了电路的电阻。另外,使 整个配线构造简单化,提高了生产时的操作性。由于形成了可縮短配线距 离的叠层构造,因此使电路的电感变小。
图10中,在电容器外壳51上设置有凸缘部,电容器外壳51及凸缘
部都是热传导性良好的金属,并且该凸缘部与作为制冷剂流路形成体的第
二底座的表面相接触,由此,提高了电容器外壳51的冷却效果。通过使 电容器外壳51与各单位电容器502的机体部接触,将热量从面积大的机 体部散到制冷剂流路形成体,从而增强了冷却效果。
通过用铝等金属材料制作的电容器外壳51来固定各单位电容器502 的机体部,形成在冷却的基础上也具有强抗振能力的构造。
在本实施例中,电力转换装置被由热传导性优良的部件制成的壳体全 部包围,在上述壳体内形成多个腔室,由于将半导体模块20及30配置于 一个腔室,故能够高效冷却半导体模块20及30。从而得到可将半导体模 块20及30小型化的效果。另外,由于在冷却液中配置翅片,进一步提高 了散热效果。由此,可以不使用专用的冷却液而是使用发动机冷却液,使 车辆的混合动力系统整体小型化、轻量化。
由于将半导体模块20及30配置于多个腔室中的一个,将电容器配置 于另外的腔室中,因而使上述电容器不易受IGBT21的发热的影响,提高 了电力转换装置的可靠性。
图11是使用直流侧连接导体连接电容器50和半导体模块20及30的 状态示意图、以及交流母线60的配置示意图。实际上,在电容器50和半 导体模块20及30之间,存在构成制冷剂流路形成体的第一底座11和第 二底座12。本图表示的是为了易于理解直流侧连接导体的连接关系而去掉 了构成上述制冷剂流路形成体的第一底座11和第二底座12的状态。上述 直流侧连接导体形成在直流负极侧的母线44和直流正极侧的母线45之间 隔着绝缘片的叠层构造。利用该叠层构造使直流负极侧及正极侧的母线44 和45的磁通量相互抵消,降低了电路的电感。形成上述叠层构造的直流 侧连接导体位于装置的中央,在中央部连接电容器50和半导体模块20及 30。另外,在半导体模块20及30产生的交流电流从装置的侧部输出,与 三相交流的其它仪器连接的连接部表示为外部连接端子62。
从外部向直流端子80提供100伏特以上的例如300伏特的直流电流, 通过直流负极侧母线83及直流正极侧母线84供给半导体模块20及30的 直流侧端子。在该装置中,从装置的上部提供直流电,用配置于上部的半
导体模块20及30将其转换为交流电。被转换的交流电从位于装置的侧部 侧的半导体模块20及30的交流端子输出,交流电通过三组交流母线60 被导入外部连接端子62。各交流母线60与交流电的三相之一相对应。三 组交流母线60分别配置于装置的两侧,能够同时向两个旋转电机提供交 流电。
在上述构造中,在上下方向的一个方向上配置有收发直流电的直流端 子80,在另一方向上配置有收发交流电的外部连接端子62。这样,由于 将直流端子80和收发交流电的外部连接端子62配置于不同的位置,故装 置内部的配线整齐有序,具有提高可靠性的效果。
在上述说明中,以将两个旋转电机的任意一个作为电动机使用为例进 行了说明,但在将旋转电机作为电动机运转之外,也可作为发电机使用。 在作为发电机运转的情况下,由旋转电机产生的交流电从外部端子62导 入装置内,通过交流母线60再导入半导体模块20及30的交流端子,用 半导体模块20及30转换为直流电后,从半导体模块20及30的直流侧端 子提供给直流端子80,并从装置输出。所输出的直流电被提供给如图1 所示的蓄电池106。
多个单位电容器、在本实施例是四个单位电容器被保持在电容器外壳 51的内部,在电容器外壳51的外侧设置有连接器基板72和控制电路基板 74。如上所述,负极侧电容器端子及正极侧电容器端子分别从各单位电容 器突出,上述各负极侧电容器端子56及正极侧电容器端子57分别连接于 直流负极侧的母线44及直流正极侧的母线45,直流负极侧的母线44的模 块侧端子41和直流正极侧的母线45的模块侧端子42分别连接于半导体 模块20、 40的直流负极侧模块端子26和直流正极侧模块端子33。
如上所述,半导体模块20及30在交流端子的相反侧分别具有U相、 V相及W相的交流模块端子27,在这些端子上分别连接有由截面呈长方 形的铜金属构成的交流母线60的交流侧模块端子61 。该交流母线60的相 反侧的端部被用作外部连接端子62。外部连接端子62形成为贯通端子保 持架63并突出的构造,并用端子保持架63进行固定。外部连接端子62 具有螺栓固定用的孔,与向旋转电机的定子提供交流电的电力供给线连 接。另外,就图11而言,如上所述,虽然将构成制冷剂流路形成体的第一底座11和第二底座12从图11上省略,但在第一底座11和第二底座12 上,设置有如图12及图13所示的用于使交流母线60穿过的孔。
如图4及图ll所示,由于交流母线60穿过平行配置的半导体模块20 及30的外侧, 一方直流负极侧的母线44及直流正极侧的母线45穿过半 导体模块20及30的内侧,因而能够将半导体模块、电容器、交流母线60、 直流负极侧的母线44以及直流正极侧的母线45收纳于比较小的体积内, 由此,可将电力转换装置做得比较小。
另外,如上所述,由于交流母线60穿过平行配置的半导体模块20及 30的外侧, 一方直流负极侧的母线44及直流正极侧的母线45穿过半导体 模块20及30的内侧,因而通过分离配置在电力转换装置的内部的各部件 的直流侧端子及配线、和各部件的交流侧端子来进行配置而具有易设计的 效果。另外,直流侧的端子和交流侧的端子沿着冷却液的流向以对置的方 式并排,可将用于从直流转换为交流的电路有规律地配置在这些对置的端 子之间,其结果是具有将电力转换装置小型化的效果。另外,通过能够将 用于从直流转换为交流的电路进行有规律地配置,提高了散热效果。还易 于得到良好的电特性,提高可靠性。
在本实施方式中,交流母线60其一端固定于半导体模块的交流模块 端子27,另一端固定于端子保持架63,可将从端子61至端子62的交流 母线60做成一体形状。因此,交流母线60的构造简单,易于生产。另外, 当将电力转换装置配置在振动多的环境中时,相对于来自外部的振动,固 定有交流母线60的构造表现出强的抗振性。端子62被用作交流电端子。
半导体模块20及30的附近有直流端子80,直流端子80配置于电 力转换装置的上部壳体10附近, 一个外部连接端子62配置于下部附近。 若将向旋转电机提供三相交流电的外部连接端子62配置于旋转电机附近, 则直流端子80处于远离旋转电机的位置,从而能够分开配置直流电路及 与直流电路有关的部件、和交流电路。由此,能够使电力转换装置的内部 配置有规律,使装置小型化,且提高了可靠性。如图11所示,装置的上 下关系以及中央和两侧部的关系整齐有序。该配置使装置整体小型化,提 高了可靠性。
图12表示构成制冷剂流路形成体的第二底座12,图13表示构成制冷
剂流路形成体的第一底座11。在图12中,从入口配管15将冷却液导入第
二底座12。本实施方式中,从入口配管15供给发动机冷却液。上述冷却 液流进入口腔室1532,穿过被制作在第一底座11中的水路而被导入连接 腔室1542。冷却液从连接腔室1542经过连接槽1544导入相邻的连接腔室 1542,冷却液再从连接腔室1542穿过制作于第一底座11中的水路被导入 出口腔室1632。出口腔室1632的冷却液从出口配管16排出。
在第二底座12上设置有密封槽1552及1554、 1556,在这些密封槽中 嵌入由铜等柔软的金属或者树脂等构成的密封部件。通过在密封槽1552
及1554、 1556中嵌入密封部件,对第一底座11和第二底座12的面施加 压力使其彼此压紧,从而能够防止冷却液的泄漏。
在第二底座12的中央设置有孔1212,其间夹着绝缘片的由直流负极 侧的母线44和直流正极侧的母线45构成的叠层构造的直流侧的连接导体 40从该孔突出。直流侧的连接导体被密封槽1552包围,形成可防止冷却 液泄漏的构造。另外,在第二底座12的侧部一侧分别设置有用于穿过交 流母线60的孔1222,交流母线60从各个孔1222突出。交流母线60的贯 通孔1222被密封槽1554和密封槽1556夹持,免受水的侵入。利用密封 槽1554来防止来自外部的水的侵入,利用密封槽1556来防止来自内部水 路的水的侵入。
图13是说明构成制冷剂流路形成体的第一底座11的图,用螺栓等固 定装置隔着密封部件将第一底座11压接在如图12所示的第二底座12的 上表面上。在第一底座11的中央形成有孔1112,其间隔着绝缘片的由直 流负极侧的母线44和直流正极侧的母线45构成的叠层构造的直流侧的连 接导体40通过该孔1112后突出。另外,在上述孔1112的两侧形成有开 口 1134和开口 1136。
从第二底座12的入口配管15导入的冷却液流入第二开口 12的入口 腔室1532,穿过制作于第一底座11中的水路即开口 1134而被导入第二底 座12的连接腔室1542。第二底座12的连接腔室1542的冷却液被导入第 二底座12的连接腔室1542,从连接腔室1542穿过制作于第一底座11中 的水路即开口 1136,被导入第二底座12的出口腔室1632。出口腔室1632 的冷却液从出口配管16排出。
在被制作于第一底座11中的开口 1134上固定有半导体模块20,在开口 1136上固定有半导体模块30。半导体模块20及30的散热风扇分别从上述开口向冷却水路内突出,每个开口利用半导体模块20及30的散热片 关闭。在开口 1134的周围设置有密封槽1157,在开口 1136的周围设置有 密封槽1156。在这些密封槽1157及1156中嵌有用铜等柔软金属制作的密 封材料及用树脂或橡胶材料等制作的密封材料,如上所述,压紧半导体模 块20及30的传热片使上述开口封闭。使用螺栓来紧固半导体模块20及 30的传热片。在上述开口 1134及1136的外侧设置有孔1122,交流母线 60通过第二底座12的孔1222和第一底座11的孔1122突出。突出的交流 母线60的顶端连接于半导体模块20及30的交流模块端子27。
在交流母线60所贯通的第一底座11的孔1122的外侧设置有密封槽 1154,在密封槽1154中嵌有用铜等柔软的金属制作的密封材料及用树脂 或橡胶材料制作的密封材料,通过上部壳体10的压紧,能够防止水分等 从外部漏进第一底座11的孔1122中。
在与冷却液的出入口不同的一方,在本实施方式中为相反的一方配置 有直流端子80,由于电力的供给和冷却液的供给被有规律地分开,所以可 靠性得以提高。另外,由于交流电的连接是在高度不同的位置处进行,冷 却液、直流电及交流电配置于各不相同的位置,因而提高了可靠性。另外 也使电力转换装置的安装作业变得容易。另外,将用于连接收发数据及指 令的信号线的连接器73设置在与用来收发交流电的外部连接端子相同的 壳体下面,例如具有使进行从设置于旋转电机的传感器等接收旋转电机的 状态的配线等的安装作业变得容易等效果。另外,还具有与旋转电机之间的配线变得不那么繁杂而易于进行的效果。另外,由于关系到冷却液的供给及排出的器具方向不同,因而在搭载于车辆的状态下空间利用率优良, 还具有提高可靠性的效果。
上述构造具有生产性或者保养优良的效果。即,用第一底座11或者第二底座12隔断壳体的中央空间,将半导体模块20及30配置在第一底座11或者第二底座12的上部。与半导体模块20及30有关的电子部件及用于固定部件的螺栓等小型零部件在生产过程中,或者在保养作业过程中,即使落下也不会从第一底座11或者第二底座12落在下面的空间,易
于捡起。由于与现有的发动机控制装置等车载机器相比,与电力转换装置 有关的电压高达数百伏特,且车辆振动剧烈,因此,假若螺栓等金属片落 在电力转换装置内势必引发大的事故。就上述构造而言, 一旦将第一底座
11或者第二底座12固定在壳体上,与第一底座11或者第二底座12下方 的腔室连接的空间只有孔1112及1122、 1212、 1222,在这些孔中配置有 直流侧的连接导体40及交流母线60,没有螺栓等小部件落下的空间。因 此,具有无需因螺栓等小部件掉落而卸下固定部件以取出掉落部件的麻烦 的效果。
图14所示的电力转换装置是将上述的第一底座11的形状作了少许变 更的实施例,相同的符号具有与上述相同的构造及功能。在本实施方式中, 在收纳半导体模块20及30的腔室的上部,形成有被上部壳体10和第二 上部壳体19完全包围的第三冷却室,其中收纳有将驱动电路基板、控制 电路基板及连接器基板形成为一体的基板97。配置于半导体模块20及30 的上表面的配线片31和基板97通过信号用电缆98而电连接。
由多个单位电容器构成的电容器50如上所述,隔着制冷剂流路配置 于半导体模块20及30的相反的位置处,不具有电容器外壳。第二底座12 具有7U字状的管脚,通过收纳于该管脚之间来形成不使用热传导性优良的 电容器外壳的构造。就该实施例而言,第二底座12的7t字状管脚具有延 伸到下部壳体13的底部的构造。
在图14中,縮短第一底座11的侧部,形成在上述侧部和下部壳体13 的内面之间产生间隙的形状。交流母线60穿过上述间隙配置,不需要上 述实施例的孔1122。在交流母线60上配置有检测电流的传感器95及96, 这些传感器被保持在热传导性优良的下部壳体13上。
将电力转换装置的安装管脚14做成中空构造,使得与交流外部端子 62电连接的电力电缆64穿过其中,被被导入变速器105的壳体内。由于 做成这样的构造,因而易于将电力电缆64引入变速器105的壳体内,能 够使电力电缆64与电动发电机130及140连接。在可防止配线繁杂的同 时,能够降低因长时间承受振动等而对配线的损伤。
就本实施例而言,与前例一样,能够将IGBT21的发热对电容器50 的影响抑制地比较低。
基于图15来说明对在上述实施例作了说明的电容器50的配置进行了
变更的实施例。另外,与上述相同的符号表示同样的部件或者相同的构造
及功能。与上述实施例不同的部分在于,在收纳有半导体模块20及30的 冷却室内,还收纳有驱动电路基板70及71、交流母线60、端子保持架63。 另外,在收纳半导体模块20及30的冷却室的下方,利用第二底座12形 成第二冷却室,再在其下方利用第二底座12形成两个第三冷却室。在第 二冷却室中配置有电容器50,在第三冷却室的其中一个中配置有控制电路 基板74,在第三冷却室的另一个中配置有连接器基板72。
使电容器50横置、分为两部分收纳于壳体的横向。由此,也使直流 侧连接导体40分为半导体模块20侧和半导体模块30侧来构成。另外, 直流侧连接导体40的结构与第一实施例一样,只是部分改变了各端子的 弯曲。另外,在直流侧连接导体40上,将直流正极侧外部端子82和直流 负极侧外部端子81形成一体。另外,符号99是电连接驱动电路基板70、 71和配线片31的连接器配线。
在该结构中,缩短了高度方向的长度,形成对车辆振动等有强抵抗能 力的构造。如上所述,由于交流母线60配置于装置的外侧附近,直流电 路配置于两个冷却通路之间即装置的中央附近,因而配线及部件排列规 则,具有能够将装置的尺寸做得比较小的效果。另外,由于将交流电相关 的配线和直流电相关的配线分开配置,因而提高了可靠性。
与前实施例一样,能够将IGBT21的发热对电容器50等其他部件的热 影响抑制地比较低。
使用图16来说明本发明的其它实施例。与上述的实施例中的符号相 同的符号表示相同的部件及相同的结构,省略了说明。本实施例和上述实 施例的不同之处在于,上述的电力转换装置具有驱动两个旋转电机的能 力,而本实施例是驱动一个旋转电机的电力转换装置。
电力转换装置100的结构与在图15所示的装置中在壳体的横向方向 的中央进行切断所得到的左半部分侧的结构相近。在收纳半导体模块30 的冷却室的上部形成有冷却室,在其内部配置有将驱动电路基板、控制电 路基板及连接器基板形成为一体的基板97。如图14所作的说明,电力电 缆64穿过中空构造的安装管脚14并被导入变速器105的壳体内。
另外,作为与一个旋转电机对应的电力转换装置的结构,也可以使用
将图2 图13所述的电力转换装置在壳体的横向方向的中央进行切断所 得到的左半部分侧的结构。另外,也可以使用将图14及图15、图16所述 的电力转换装置在壳体的横向方向的中央处进行切断所得到的左半部分 侧或者右半部分侧的结构。
在本实施例中,也能够将来自半导体模块20及30的散热对电容器50 等其它结构部件的热影响抑制地比较低。
在左右任意半部分结构的实施例中,也具有在图2 图13所示的电力 转换装置或者图14及图15、图16所示的电力转换装置中所述的效果。
另外,将图9所示的半导体模块20或者30的替代方案示于图17。图 17的符号中与图9相同的符号的作用效果可能有少许不同,但其目的相 同。图17所示的替代方案以可说明半导体模块的内部构造的方式示出了 去掉树脂盖的状态,为了更有助于理解,图18示出了去掉模块外壳24的 状态的局部放大图。
在传热片23的一侧以半导体芯片的状态固定有IGBT21及二极管38, 并用树脂制的模块外壳24进行密封。本实施方式与图4所示的实施方式 稍有不同,是两组由IGBT21及二极管38构成的电路并联连接。而为了增 加控制对象的电流而构成并联电路这一点上与上述的实施方式是相同的。
半导体模块20或者30与上述实施方式一样,形成大致的长方形,在 长边的一边固定有三组支流正极侧模块端子33及直流负极侧模块子端子 26。另外,在半导体模块20或者30的长边的另一边设置有三个交流模块 端子27。使这些交流模块端子27分别作为三相交流的U相、V相、W相 的端子发挥作用。就图17所示的实施方式而言,配置于模块外壳24内的 左侧的并联的芯片构成U相的上支路,配置于其右侧的并联的芯片构成U 相的下支路。位于其右侧的并联的芯片构成V相的上支路,位于其更右侧 的并联的芯片构成V相的下支路。位于其更右侧的并联的芯片构成W相 的上支路,位于其更右侧的并联的芯片构成W相的下支路。
在图17及图18中,直流正极侧模块端子33和直流负极侧模块端子 26分别是宽幅形状的导体,形成在其间夹着绝缘物的叠层构造。由于该构 造的缘故,能够将电路的电感抑制地比较低。
在图17及图18中,端子GT1U、 GT1V、 GT1W是用于施加对逆变 器电路的U相、V相、W相的各个上支路进行控制的IGBT的栅极信号的 栅极端子。另外,端子GT2U、 GT2V、 GT2W是用于施加对逆变器电路 的U相、V相、W相的各个下支路进行控制的IGBT的栅极信号的栅极端 子。
各IGBT21的芯片952及各二极管38的芯片954搭载于氮化铝(A1N) 等的绝缘基板956上。氮化铝(A1N) 956具有良好的热传导性。另外, 也可以使用氮化硅(SiN)来替代氮化铝(A1N),由于氮化硅(SiN)韧性 高,因而可形成薄绝缘基板956。
在传热片23上固定有绝缘基板956,在绝缘基板956的传热片23侧 用镀了镍的铜等形成整面图案,在芯片952侧用镀了镍的铜等形成配线图 案。通过在绝缘基板956的两面粘贴金属,使芯片952和传热片23的软 钎焊成为可能,同时,将绝缘基板956做成用金属夹着的叠层构造。利用 这样的结构,防止了因温度变化时的热膨胀系数的差异而引起的变形。采 用这种叠层构造的结果是,若使绝缘基板956变薄,则与开关时通过芯片 952侧的配线图案的电流变化相对应地,在金属底座944侧的整面图案上 所感应的涡电流增多。其结果是,能够降低绝缘基板956上的配线图案的 寄生电感,有助于功率模块的低电感化。
图19示出了图17所示的直流正极侧模块端子33及直流负极侧模块 端子26的截面,图20示出了直流正极侧模块端子33及直流负极侧模块 端子26的配置关系及形状。在这些图中,如上所述,直流正极侧模块端 子33及上述直流负极侧模块端子26是宽幅形状的导体,彼此隔着绝缘体 对置配置。直流正极侧模块端子33及上述直流负极侧模块端子26的从模 块外壳24突出的一侧的端部弯曲成彼此相反的方向,设置于模块外壳24 内部的相反侧的端部1034和1032弯曲成彼此相同的方向。1022和1032 是直流正极侧模块端子33和直流负极侧模块端子26的连接部,埋设于树 脂内。之所以上述连接部1032和1034的长度彼此不同,是由于与电连接 半导体芯片的导体是并排连接的缘故。在图18所示的实施方式中,利用 引线键合法来并排配置,降低了电感。
在图19中,为了使直流正极侧的母线45的模块侧端子42和直流负极侧的母线44的模块侧端子41与直流正极侧模块端子33和直流负极侧 模块端子26连接的作业变得容易,而在模块外壳24上埋设螺母1112和 1114,如图17 图20所示,在导体侧连接部设置有穿过螺栓的孔,形成 用螺栓拧紧的构造。
在图19及图20中,参考符号1032和1034是直流正极侧模块端子33 及直流负极侧模块端子26的芯片侧连接部,如上所述彼此向同一方向弯 曲。由此,通过将隔着绝缘物叠层的平板状的正极、负极端子导体的芯片 侧连接部向同一方向弯曲,使得用两个面构成叠层平板导体、在最靠近端 子的绝缘基板的端边平行设置配线图案成为可能。因此,可使绝缘基板没 有多余的空间,能够使绝缘基板小型化。就图19而言,引线键合是并排 配置的,使通过连接在正极、负极端子上的引线键合的电流形成反方向。 其结果就是由电流产生的磁场相互抵消,结果就是降低了电路的电感。
在图19中,直流侧的连接导体40由直流正极侧的母线45和直流负 极侧的母线44构成,并形成其间夹着绝缘片1289的叠层构造。绝缘片1289 在功率模块的外壳成型时进行内置的情况下,优选使用在高温下持久性优 良的聚酰胺亚胺等高耐热片,使得在成型时的30(TC左右的温度下不融化。 另外,当在功率模块成型后在端子间插入绝缘片时,可使用比较廉价且可 承受半导体最大PN结温度15(TC以上的中位系芳香族聚酰胺纤维( 260 。C)。
另外,当通过将上述绝缘片1289形成为50pm以下,使端子在内部形 成弯曲构造时,能够提高绝缘片在弯曲部对端子的粘接性。
根据以上说明的结构,可降低模块及直流侧的连接导体的整体电感, 例如可使其降低到300nH以下。另外,若使用氮化硅等薄绝缘基板,例如 还可以使电感降低到20nH以下。因此,例如在将逆变器的半导体芯片的 开关时间(从导通状态切换到断开状态所需要的切换时间)做到2ps以下、 进而至1.2p以下,甚至缩短到lps以下也能够将电压的上升抑制在允许 范围。另外,此时一般的直流电压为300V 600V。其结果是,将最大电 流变化率(di/dt)做成2kA/ps,优选在4kA^is以上也能工作。
这样,通过加速半导体芯片的开关、縮短开关时间,就能够减少开关 时的半导体芯片的发热,进而能够减小半导体芯片的硅的面积,实现低价 格的逆变器。
在上述图3中,作为与交流电相关的外部连接的连接部的端子保持架 63被固定在热传导性优良的壳体上,能够高效冷却与上述交流电相关的外部连接的连接部。作为构成端子保持架63的树脂,若使用热传导性优良 的树脂,则能够更高效地冷却连接部。图14及图16也一样,树脂制的端 子保持架63被固定在热传导性优良的壳体上,能够高效冷却与交流电相 关的外部连接的连接部。因此,能够防止连接部保持在高温,提高与外部 连接器连接的连接部等连接器部的可靠性。如果是热传导性优良的树脂, 则可进一步提高可靠性。在汽车中,有可能长年累月在严酷状况下使用, 通过冷却上述连接部,可提高与长时间使用有关的可靠性。另外,穿过上 述连接部的交流电的电压高电压化,通过的电流也有变大的趋势。通过用 热传导性优良的壳体对连接部的热量进行散热,能够保护上述连接部免受 高温影响,提高了可靠性。
权利要求
1、一种电力转换装置,其特征在于,具有壳体;制冷剂流路形成体,其设置于所述壳体内,形成通过制冷剂的制冷剂流路;电容器,其配置在所述壳体内的所述制冷剂流路形成体的一侧,且具有直流端子;功率半导体电路部,其配置在所述壳体内的所述制冷剂流路形成体的另一侧,具有直流端子、交流端子及功率半导体芯片,该功率半导体电路部利用所述功率半导体芯片的动作,将由所述直流端子供给的直流转换成交流并从所述交流端子输出;以及第一连接线,在所述制冷剂流路形成体上形成孔,该第一连接线贯通所述孔,将配置在所述制冷剂流路形成体的一侧的电容器的直流端子和配置在所述制冷剂流路形成体的另一侧的功率半导体电路部的直流端子电连接,其中,供给到所述壳体内的直流电被提供给所述电容器的直流端子及所述功率半导体电路部的直流端子,通过所述功率半导体芯片的动作转换成交流,并从所述功率半导体电路部的交流端子输出交流电。
2、 如权利要求l所述的电力转换装置,其特征在于, 所述功率半导体电路部具有半导体模块,该半导体模块在外部设置有所述直流端子和所述交流端子,在内部具有所述功率半导体芯片,贯通所述制冷剂流路形成体的第一连接线将所述电容器的直流端子 和所述半导体模块的所述直流端子电连接。
3、 如权利要求2所述的电力转换装置,其特征在于, 所述半导体模块具有金属板和固定于所述金属板的树脂制外壳, 所述功率半导体芯片在所述树脂制外壳的内部通过绝缘基板固定在所述金属板上,所述直流端子和所述交流端子配置于所述树脂制外壳的外侧, 所述半导体模块的金属板固定在所述制冷剂流路形成体上。
4、 如权利要求3所述的电力转换装置,其特征在于,所述制冷剂流路形成体形成有平行的至少两条制冷剂流路,所述功率半导体电路部具有至少两个半导体模块,所述至少两个半导体模块分别对应两条制冷剂流路配置,同时,以使 所述至少两个半导体模块的直流端子相互靠近的方式将所述至少两个半 导体模块固定在所述制冷剂流路形成体上,贯通所述制冷剂流路形成体的第一连接线配置在平行的所述两条制 冷剂流路之间。
5、 一种电力转换装置,其特征在于,具有金属制壳体;设置在所述金属制壳体上的制冷剂流入管; 设置在所述金属制壳体上的制冷剂流出管;制冷剂流路形成体,将从所述制冷剂流入管流入的制冷剂导入所述制 冷剂流出管的制冷剂流路形成在所述壳体内,同时被机械式固定在所述金 属制壳体上;电容器,其配置在所述壳体内的所述制冷剂流路形成体的一侧,且具 有直流端子;功率半导体电路部,其配置在所述壳体内的所述制冷剂流路形成体的 另一侧,具有直流端子、交流端子及功率半导体芯片,该功率半导体电路 部利用所述功率半导体芯片的动作,将由所述直流端子供给的直流转换成 交流并从所述交流端子输出;第一连接线,在所述制冷剂流路形成体上形成孔,该第一连接线贯通 所述孔,将配置在所述制冷剂流路形成体的一侧的电容器的直流端子和配 置在所述制冷剂流路形成体的另一侧的功率半导体电路部的直流端子电 连接,其中,所述第一连接线形成中间夹有绝缘体的叠层构造, 供给到所述壳体内的直流电被提供给所述电容器的直流端子及所述 功率半导体电路部的直流端子,通过所述功率半导体芯片的动作转换成交流,并从所述功率半导体电路部的交流端子输出交流电。
6、 如权利要求5所述的电力转换装置,其特征在于, 所述功率半导体电路部具有大致呈长方形形状的半导体模块,该半导 体模块在外部设置有所述直流端子和所述交流端子,在内部具有所述功率 半导体芯片,将所述半导体模块固定在所述制冷剂流路形成体上,使得形成所述长 方形形状的半导体模块的长度方向成为流过所述制冷剂流路内的制冷剂 的流动方向,在位于所述制冷剂流路侧部的所述制冷剂流路形成体的部分上形成 有所述孔,贯通所述制冷剂流路形成体的第一连接线穿过形成于所述制冷剂流 路形成体的所述孔,将所述电容器的直流端子和所述半导体模块的所述直 流端子电连接。
7、 如权利要求6所述的电力转换装置,其特征在于, 所述半导体模块具有形成大致呈长方形形状的金属板和固定在所述金属板上的大致呈长方形的树脂制外壳,所述功率半导体芯片在所述树脂制外壳的内部通过绝缘基板固定在 所述金属板上,所述直流端子配置于大致呈长方形的所述树脂制外壳的一个长边侧, 所述交流端子配置于大致呈长方形的所述树脂制外壳的另一长边侧, 将所述金属板固定在所述制冷剂流路形成体上,使得所述半导体模块 的所述金属板的长度方向成为所述制冷剂流路的制冷剂的流动方向,并使 半导体模块的直流端子配置在形成在制冷剂流路形成体上的所述孔的一
8、 如权利要求7所述的电力转换装置,其特征在于, 在所述金属制壳体上安装有用于向旋转电机供给交流电的交流电端子,用片状的第二连接线电连接所述半导体模块的交流端子和所述交流 电端子。
9、 如权利要求8所述的电力转换装置,其特征在于, 所述制冷剂流路形成体形成有平行的至少两条制冷剂流路, 所述功率半导体电路部具有至少两个半导体模块, 所述至少两个半导体模块分别对应两条制冷剂流路配置,同时,以使 所述至少两个半导体模块的直流端子相互靠近的方式将所述至少两个半 导体模块固定在所述制冷剂流路形成体上,所述第一连接线贯通的孔设置在位于平行的所述两条制冷剂流路之 间的所述制冷剂流路形成体上,在平行的所述两条制冷剂流路的外侧配置 有所述第二连接线。
10、 一种电力转换装置,其特征在于,具有-壳体;制冷剂流路形成体,其设置于所述壳体内,形成通过制冷剂的制冷剂 流路;电容器,其配置在所述壳体内的所述制冷剂流路形成体的一侧,且具 有直流端子;功率半导体电路部,其配置在所述壳体内的所述制冷剂流路形成体的 另一侧,具有金属板、固定在所述金属板上的树脂制外壳、配置在所述树 脂制外壳的外侧的直流端子及交流端子、在所述树脂制外壳的内侧通过绝 缘基板固定在所述金属板的一个面上的功率半导体芯片、以及固定在所述 金属板的另一面上的散热片,该功率半导体电路部通过所述功率半导体芯 片的动作,将从所述直流端子供给的直流转换成交流,并从所述交流端子 输出;以及第一连接线,其贯通所述制冷剂流路形成体,将配置在所述制冷剂流 路形成体的一侧的电容器的直流端子和配置在所述制冷剂流路形成体的 另一侧的功率半导体电路部的直流端子电连接,其中,由所述制冷剂流路形成体形成的制冷剂流路具有开口,所述功率半导体电路部的散热片从所述制冷剂流路的开口向冷却通 路内突出,以用所述功率半导体电路部的所述金属板封闭所述制冷剂流路 的开口的方式,将所述功率半导体电路部固定在所述冷却通路形成体上,在位于所述制冷剂流路开口的侧部的所述冷却通路形成体的部分形 成有孔,贯通所述制冷剂流路形成体的第一连接线穿过所述孔,将所述电容器 的直流端子和所述功率半导体电路部的所述直流端子电连接, 供给到所述壳体内的直流电被提供给所述电容器的直流端子及所述 功率半导体电路部的直流端子,通过所述功率半导体芯片的动作转换成交 流,并从所述功率半导体电路部的交流端子输出交流电。
11、 如权利要求10所述的电力转换装置,其特征在于, 所述功率半导体电路部的金属板形成大致长方形的形状, 所述直流端子配置在位于所述大致长方形金属板的一个长边侧的所述树脂制外壳的外侧,所述交流端子配置在位于所述大致长方形金属板的另一长边侧的所述树脂制外壳的外侧,所述制冷剂流路的开口形成为在制冷剂的流动方向上长的细长形状, 以使所述功率半导体电路部的金属板的长度方向成为所述制冷剂的流动方向的方式,将所述功率半导体电路部的金属板固定在所述制冷剂流路形成体上。
12、 如权利要求ll所述的电力转换装置,其特征在于,所述制冷剂流路形成体形成有平行的至少两条制冷剂流路, 在各制冷剂流路上分别形成有沿流动方向长的大致呈长方形形状的 开口,所述功率半导体电路部具有至少两组金属板,该金属板具有所述树 脂制外壳、配置在所述树脂制外壳上的直流端子及交流端子、通过绝缘基 板固定在一个面上的功率半导体芯片、以及固定在另一面上的散热片,各金属板在其周边具有多个用于螺栓固定的孔,将各金属板用螺栓固定在所述制冷剂流路形成体上,使各金属板分别 堵塞所述冷却通路的各开口,同时,保持在各金属板上的散热片从各开口 向各冷却通路内突出,且使保持在各金属板上的直流端子具有彼此靠近的 关系,在位于平行的所述两条制冷剂流路之间的制冷剂流路形成体的一部 分上设置有孔,贯通所述制冷剂流路形成体的第一连接线穿过所述孔,将所述电容器 的直流端子和所述功率半导体电路部的所述直流端子电连接。
13、 一种电力转换装置,其特征在于,具有 金属制壳体;设置在所述金属制壳体上的制冷剂流入管; 设置在所述金属制壳体上的制冷剂流出管;制冷剂流路形成体,将从所述制冷剂流入管流入的制冷剂导入所述制 冷剂流出管的制冷剂流路形成在所述壳体内,同时被机械式固定在所述金 属制壳体上;电容器,其配置在所述壳体内的所述制冷剂流路形成体的一侧,且具 有直流端子;功率半导体电路部,其配置在所述壳体内的所述制冷剂流路形成体的 另一侧,具有直流端子、交流端子及功率半导体芯片,该功率半导体电路 部利用所述功率半导体芯片的动作,将由所述直流端子供给的直流转换成 交流并从所述交流端子输出;第一连接线,其贯通所述制冷剂流路形成体,将配置在所述制冷剂流 路形成体的一侧的电容器的直流端子和配置在所述制冷剂流路形成体的 另一侧的功率半导体电路部的直流端子电连接,其中,所述冷却通路设有开口,所述功率半导体电路部具有散热片,所述散热片以从所述冷却通路的所述开口向内部突出的方式配置在 所述功率半导体电路部上,供给到所述壳体内的直流电被提供给所述电容器的直流端子及所述 功率半导体电路部的直流端子,通过所述功率半导体芯片的动作,将所供 给的直流电转换成交流电,并从所述功率半导体电路部的交流端子输出交 流电。
14、如权利要求13所述的电力转换装置,其特征在于, 所述功率半导体电路部具有大致呈长方形形状的半导体模块,该半导体模块在外部设置有所述直流端子和所述交流端子,在内部具有所述功率半导体芯片,将所述半导体模块固定在所述制冷剂流路形成体上,使得形成所述长 方形形状的半导体模块的长度方向成为所述制冷剂流路的制冷剂的流动 方向,在位于所述制冷剂流路的开口部的侧部的所述制冷剂流路形成体的 部分上形成有孔,贯通所述制冷剂流路形成体的第一连接线穿过形成于所述制冷剂流 路形成体的所述孔,通过第一连接线电连接所述电容器的直流端子和所述 半导体模块的所述直流端子。
15、 如权利要求14所述的电力转换装置,其特征在于,所述半导体模块具有形成大致呈长方形形状的金属板和固定在所述 金属板的一个面上的树脂制外壳,所述功率半导体芯片在所述树脂制外壳的内部通过绝缘基板固定在 所述金属板的一个面上,所述直流端子配置在位于金属板的大致长方形的一个长边侧的树脂 制外壳的一部分上,所述交流端子配置在位于金属板的大致长方形的另一长边侧的树脂 制外壳的一部分上,在所述金属板的另一面上固定有所述散热片,所述冷却通路的所述开口形成为在制冷剂的流动方向上长的大致长 方形,所述半导体模块的散热片从所述开口向内部突出,同时,利用所述半 导体模块的所述金属板封闭所述开口 。
16、 如权利要求15所述的电力转换装置,其特征在于, 在所述金属制壳体上安装有用于向旋转电机供给交流电的交流电端子,用片状的第二连接线电连接所述半导体模块的交流端子和所述交流 电端子。
17、 如权利要求16所述的电力转换装置,其特征在于, 所述制冷剂流路形成体形成有平行的至少两条制冷剂流路, 在各冷却通路上分别形成有所述开口 , 所述功率半导体电路部具有至少两组所述半导体模块, 以使所述各半导体模块的散热片从制冷剂流路的各开口向内部突出的方式将各半导体模块固定在所述制冷剂流路形成体上,所述第一连接线贯通的孔设置在位于平行的所述两条制冷剂流路之 间的所述制冷剂流路形成体上。
18、 如权利要求17所述的电力转换装置,其特征在于, 以使所述至少两个半导体模块的直流端子配置在相互平行的所述两条制冷剂流路的内侧的方式来固定所述两个半导体模块,所述第二连接线配置在所述平行的两条制冷剂流路的外侧。
19、 一种电力转换装置,其特征在于,具有 金属制壳体;设置在所述金属制壳体上的发动机冷却液的流入管; 设置在所述金属制壳体上的发动机冷却液的排出管; 制冷剂流路形成体,将从所述流入管流入的发动机冷却液导入所述排出管的制冷剂流路形成在所述壳体内,同时被机械式固定在所述金属制壳体上;电容器,其配置在所述壳体内的所述制冷剂流路形成体的一侧,且具 有直流端子;功率半导体电路部,其配置在所述壳体内的所述制冷剂流路形成体的 另一侧,具有直流端子、交流端子及功率半导体芯片,该功率半导体电路 部利用所述功率半导体芯片的动作,将由所述直流端子供给的直流转换成 交流并从所述交流端子输出;以及第一连接线,其贯通所述制冷剂流路形成体,将配置在所述制冷剂流 路形成体的一侧的电容器的直流端子和配置在所述制冷剂流路形成体的 另一侧的功率半导体电路部的直流端子电连接,其中,所述冷却通路设有开口,所述功率半导体电路部具有散热片,所述散热片以从所述冷却通路的所述开口向内部突出的方式配置在 所述功率半导体电路部上,供给到所述壳体内的直流电被提供给所述电容器的直流端子及所述 功率半导体电路部的直流端子,通过所述功率半导体芯片的动作,将所供 给的直流电转换成交流电,并从所述功率半导体电路部的交流端子输出交 流电。
20、 如权利要求19所述的电力转换装置,其特征在于, 所述功率半导体电路部具有大致呈长方形形状的半导体模块,该半导体模块在外部设置有所述直流端子和所述交流端子,在内部具有所述功率 半导体芯片,将所述半导体模块固定在所述制冷剂流路形成体上,使得形成所述大 致长方形形状的半导体模块的长度方向成为流过所述制冷剂流路的发动 机冷却液的流动方向,部分上形成有第一孔,、L 、 b 、^ 、、、、々 " 、贯通所述制冷剂流路形成体的第一连接线穿过形成在所述制冷剂流 路形成体上的所述第一孔,利用第一连接线电连接所述电容器的直流端子 和所述半导体模块的所述直流端子。
21、 如权利要求20所述的电力转换装置,其特征在于, 所述半导体模块具有形成大致呈长方形形状的金属板和固定在所述金属板的一个面上的树脂制外壳,所述功率半导体芯片在所述树脂制外壳的内部通过绝缘基板固定在 所述金属板的一个面上,所述直流端子配置在位于金属板的大致长方形的一个长边侧的树脂 制外壳的一部分上,所述交流端子配置在位于金属板的大致长方形的另一长边侧的树脂 制外壳的一部分上,在所述金属板的另一面上固定有所述散热片,所述冷却通路的所述开口形成为在发动机冷却液的流动方向上长的 大致长方形的形状,所述半导体模块的散热片从所述开口向内部突出,同时,利用所述半 导体模块的所述金属板封闭所述开口。
22、 如权利要求21所述的电力转换装置,其特征在于, 在所述金属制壳体上安装有用于向旋转电机供给交流电的交流电端子,用片状的第二连接线电连接所述半导体模块的交流端子和所述交流电端子,在相对于所述制冷剂流路的开口部位于形成在制冷剂流路形成体上 的所述第一孔的相反侧的侧部的所述制冷剂流路形成体的一部分上形成 有第二孔,以贯通所述第二孔的方式来配置所述第二连接线。
23、如权利要求22所述的电力转换装置,其特征在于, 所述制冷剂流路形成体形成有平行的至少两条制冷剂流路, 在各冷却通路上分别形成有所述开口 , 所述功率半导体电路部具有至少两组所述半导体模块, 以使所述各半导体模块的散热片从制冷剂流路的各开口向内部突出的方式将各半导体模块固定在所述制冷剂流路形成体上,所述第一连接线贯通的第一孔设置在位于平行的所述两条制冷剂流路之间的所述制冷剂流路形成体上,所述第二连接线贯通的第二孔分别设置在分别位于平行的所述两条制冷剂流路的外侧的所述制冷剂流路形成体上。
全文摘要
本发明提供一种电力转换装置,其提高电力转换装置的冷却效率,同时确保内部配线的规则性,由此实现装置的小型化。在电力转换装置的中段配置构成冷却通路形成体的第一及第二底座(11、12),并在冷却通路形成体的两面配置半导体模块(20、30)及电容器(50),由此提高冷却效率。另外,在第一及第二底座(11、12)上形成有贯通孔(1112、1122),通过上述贯通孔(1112、1122)进行直流及交流电路的配线,由此实现装置的小型化。
文档编号H02M7/48GK101174799SQ20071016923
公开日2008年5月7日 申请日期2007年11月2日 优先权日2006年11月2日
发明者中村卓义, 中津欣也, 斋藤隆一, 船户裕树, 须贺卓 申请人:株式会社日立制作所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1