专利名称:车辆用电源装置的制作方法
技术领域:
本发明涉及具有再生电力的回收功能和怠速停止功能的车辆用电源装置。
背景技术:
近年来,为了省燃费,正在开发具有怠速停止功能或减速时的再生功能的车辆。这样的车辆的怠速停止功能通过在停车时停止发动机,在前进时再起动发动机,能够节约停止发动机期间的燃料。
图5是专利文献I所记载的现有的车辆用电力控制装置的概略结构图。在图5中, 车辆用电力控制装置200具有发电机135 ;电池137 ;车辆电负载139 ;DC/DC转换器141 ; 双电层电容器143 ;和电子运算装置145。车辆的发动机131机械地连接于轮胎133和发电机135。作为主电源的电池137和车辆电负载139与发电机135电连接。车辆电负载139 包括启动装置。作为蓄电部的双电层电容器143经由DC/DC转换器141与发电机135电连接。DC/DC转换器141由作为控制部的电子运算装置145进行控制。
针对现有的车辆用电力控制装置200的动作进行说明。在车辆的减速期间,发电机135发电,并产生再生电力。电子运算装置145,以双电层电容器143充电再生电力的方式控制DC/DC转换器141。其结果是,在双电层电容器143中积蓄再生电力。之后,若车辆结束减速,则电子运算装置145,以使电池137将双电层电容器143所蓄积的再生电力优先向电池137放电的方式控制DC/DC转换器141。其结果是,使双电层电容器143所积蓄的再生电力被提供给电池137或车辆电负载139,能够有效利用再生电力。因此,能够谋求某种程度车辆的省燃费化。然而,针对怠速停止功能,由于若电池137变差,则怠速停止期间变短,因此作为车辆整体而言,无法谋求充分的燃费提高。
现有技术文献
专利文献
专利文献I JP特许第3465293号公报发明内容
发明概要
本发明的车辆用电源装置,构成为在搭载发动机和负载的车辆中使用,具有发电机、主电源、启动装置、第I开关、蓄电部、第2开关、和控制部。发电机由发动机进行发电。 主电源与发电机电连接。启动装置与主电源电连接。第I开关与主电源电连接。负载经由第一开关与主电源电连接。蓄电部经由DC/DC转换器与第I开关电连接。第2开关被电连接在主电源与蓄电部之间。控制部与第I开关、DC/DC转换器、以及第2开关电连接。
控制部在发电机产生再生电力时,控制DC/DC转换器,以使接通第I开关,并断开第2开关,将再生电力充电至蓄电部。当车辆在怠速停止期间中主电源未变差时,控制部控制DC/DC转换器,以使优先于主电源,将充电至蓄电部的再生电力提供给负载。当车辆在怠速停止期间中主电源变差时,控制部控制为将主电源的电力提供给负载,并且,在再起动发动机之前,断开第I开关,且接通第2开关,以主电源的电力和蓄电部的再生电力来驱动启动装置,再起动发动机。
其结果是,即使主电源变差,在怠速停止中,也能够从主电源向负载提供电力,因此,能够确保使怠速停止期间延长,由此,能够实现使车辆省燃费化的带有再生电力回收功能的车辆用电源装置。
图I是实施方式I的车辆用电源装置的方框电路图。
图2A是表示实施方式I的车辆用电源装置的怠速停止时的动作的流程图。
图2B是表示实施方式I的车辆用电源装置的怠速停止时的动作的流程图。
图3是表示实施方式I的车辆用电源装置的加速时、或定速行驶时的动作的流程图。
图4是实施方式I的车辆用电源装置的车速与放电下限电压的相关关系图。
图5是现有的车辆用电力控制装置的概略结构图。
具体实施方式
(实施方式I)
图I是本发明的实施方式I中的车辆用电源装置100的方框电路图。在图I中, 车辆用电源装置100构成为用于搭载有发动机14和负载19的车辆,该车辆用电源装置100 具有发电机11 ;主电源13 ;启动装置15 ;第I开关17 ;蓄电部25 ;第2开关27 ;和控制部 29。
通过车辆的发动机14进行发电的发电机11、与主电源13和启动装置15电连接。 主电源13由铅电池等二次电池构成。启动装置15与发动机14机械连接,以起动发动机14。 主电源13经由第I开关17与负载19电连接。负载19是车辆所搭载的电气设备。第I开关17是能够从外部进行接通/断开控制的结构,在实施方式I中,使用场效应晶体管(以下,称为FET)。在FET上构成寄生二极管21,寄生二极管21的阳极以成为主电源13侧的方式被连接。由此,防止了当第I开关17断开时,通过寄生二极管21从蓄电部25向主电源13侧流动不需要的电流的逆流。而且,可以使用继电器作为第I开关17。此时,通过继电器,主电源13与负载19之间,电连接完全断开,因此,即使没有寄生二极管21,也能够防止逆流。
第I开关17,除了与负载19电连接,还经由DC/DC转换器23与蓄电部25电连接。 DC/DC转换器23控制蓄电部25的充放电。当发电机11发电再生电力时,DC/DC转换器23 进行动作,以使再生电力对蓄电部25进行充电。此外,当发电机11未发电再生电力时,根据车辆的状况对蓄电部25进行放电。
蓄电部25在车辆减速时会积蓄再生电力。为了在车辆减速时充分积蓄陡峭地产生的再生电力,使用充电受入性良好的双电层电容器作为蓄电部25。双电层电容器的个数或电连接方法(串联、并联、串并联等),根据车辆所需的电力方式而被适当决定。在实施方式I中,串联连接5个额定电压为2. 5V的双电层电容器。即,能够向蓄电部25充电,使蓄电部电压Vc至12. 5V。以下,将该电压称为满充电电压Vcm。放电时为了避免过放电,双电层电容器I个相当于IV,即,作为蓄电部25放电至5V。以下,将该电压称为蓄电部最低电压Vck。因此,蓄电部25在蓄电部电压Vc从蓄电部最低电压Vck ( = 5V)至满充电电压 Vcm( = 12. 5V)的范围内被使用。DC/DC转换器23将蓄电部电压Vc控制为不脱离该范围。
在主电源13与蓄电部25之间,电连接第2开关27。第2开关27也与第I开关 17同样,根据来自外部的接通/断开信号而被控制。具体而言,对于第2开关27也能够适用FET或继电器。在实施方式I中对于第2开关27使用继电器。如后所述,第2开关27 中在驱动启动装置15时会流动大电流。为了尽量减少电压的损失,而对于第2开关27使用内部电阻小的继电器。
第I开关17、DC/DC转换器23、以及第2开关27由控制部29和信号系统布线进行电连接。控制部29由微型计算机与外围电路构成。控制部29通过第I接通/断开信号 Sffl来控制第I开关17的接通/断开。控制部29通过第2接通/断开信号SW2来控制第 2开关27的接通/断开。控制部29通过控制信号Scont来控制DC/DC转换器23。控制部 29具有电压检测功能。使控制部29分别由信号系统布线与主电源13的正极侧、负载19的正极侧、以及蓄电部25的正极侧电连接。控制部29对主电源13中的主电源电压Vb、负载 19中的负载电压Vf、以及蓄电部25中的蓄电部电压Vc进行检测。发电机11例如是在磁场中使用电磁铁的发电机,且能够在发动机14驱动过程中从外部操作发电机11是否发电。
控制部29通过信号系统布线与车辆用控制回路31电连接。车辆用控制回路31 进行车辆的整体控制。车辆用控制回路31将按照车辆通信规格由数据信号Sdata表示车辆各种状态的信号发送给控制部29,从控制部29接收各部的电压或DC/DC转换器23的动作状况等各种信息。而且,虽然发电机11或启动装置15的控制是通过车辆用控制回路31 进行的,但信号系统布线的记载繁琐,因此,在图I中省略了这些信号系统布线。
针对车辆用电源装置100的动作进行说明。
在车辆的通常行驶过程中,若驾驶员进行踩踏刹车踏板的制动动作而使车辆进行减速,则控制部29从车辆用控制回路31接收刹车踏板的数据信号Sdata。控制部29以将伴随制动动作而由发电机11产生的再生电力对蓄电部25进行充电的方式来控制DC/DC转换器23。
具体而言,以使第I开关17接通、第2开关27断开的方式,控制部29输出第I接通/断开信号SWl和第2接通/断开信号SW2。在此,控制部29断开第2开关27,是因为能够由DC/DC转换器23进行蓄电部25的充放电。当断开第2开关27时,为了由发电机11 产生的再生电力对蓄电部25进行充电,控制部29接通第I开关17。而且,实施方式I的情况是将第I开关17作为FET,从而构成寄生二极管21。因此,即使不接通第I开关17,发电机11也能够经由寄生二极管21使再生电力对蓄电部25进行充电。然而,由于寄生二极管21的电压下降会产生电力的损失,因此,即使在由FET来构成第I开关17的情况下,也优选接通第I开关17。
接着,控制部29为了使再生电力对蓄电部25进行充电,而读取施加于负载19的负载电压Vf,且以DC/DC转换器23的负载19侧的端子处于比负载电压Vf低O. 5V IV左右的电压的方式向DC/DC转换器23出力控制信号Scont。虽然对负载19施加再生电力正在产生时的发电机11的电压(约15V),但由于DC/DC转换器23使负载19侧的端子的电压比负载电压Vf下降O. 5V IV左右,因此,向蓄电部25输出再生电力。由此,能够充分回收陡峭地产生的再生电力。
为了对蓄电部25进行充电,DC/DC转换器23虽然进行使负载19侧的端子的电压比负载电压Vf低O. 5V IV左右的动作,但该下降电压宽度不局限于O. 5V IV。然而,若电压宽度过小,则电压检测精度或DC/DC转换器23的动作精度的影响相对会变大,可能无法充分地向蓄电部25充电。另一方面,若使电压宽度过大,则不仅从发电机11,来自主电源13的电力也对会蓄电部25充电,从而使主电源13进行不需要的放电,因此产生电力的浪费。综上所述,优选将电压宽度设为O. 5V IV左右。
控制部29也控制蓄电部电压Vc。控制部29,若蓄电部电压Vc达到满充电电压 Vcm( = 12. 5V),则即使还在产生着再生电力,也不会继续向蓄电部25充电,以维持满充电电压Vcm的方式来控制DC/DC转换器23。在蓄电部25的蓄电部电压Vc达到满充电电压 Vcm之后产生的再生电力,被提供给负载19或主电源13。
通过以上的动作,使车辆在减速时产生的再生电力对蓄电部25进行充电。控制部 29在蓄电部25的蓄电部电压Vc达到满充电电压Vcm之后,以维持该满充电电压Vcm的方式来控制DC/DC转换器23。控制部29当在蓄电部25的充电过程中蓄电部电压Vc未达到满充电电压Vcm时,以维持再生电力的产生结束的时刻的蓄电部电压Vc的方式来控制DC/ DC转换器23。
接着,针对车辆开始停止后的车辆用电源装置100的动作,使用图2A与图2B的流程图来进行说明。而且,图2A与图2B的流程图被记载为从未图示的主进程根据需要所执行的子进程。此外,在图2A的流程图的开始时刻,第I开关17处于接通,第2开关27处于断开的状态。
控制部29从车辆用控制回路31接收由数据信号Sdata表示的车辆停止的停止信息,则从主进程执行图2A的子进程。控制部29首先读取蓄电部电压Vc (步骤S11)。接着, 控制部29以维持所读取的蓄电部电压Vc的方式控制DC/DC转换器23(步骤S13)。而且, 控制部29在上述减速时也进行步骤S13所示的动作,在车辆停止后也继续进行。
控制部29判断主电源13是否变差(步骤S15)。在此,针对主电源13的变差判断方法进行说明。
若仅通过构成主电源13的铅电池等二次电池来驱动启动装置15,则主电源13的主电源电压Vb会在短时间内陡峭地降低而到达最小值。之后,若发动机14起动,则主电源 13的主电源电压Vb会从最小值阶段性地上升进行恢复。
若主电源13变差,则伴随其变差,启动装置15的驱动时的主电源电压Vb已降低时所示的电压的最小值会变小。这是由于以下的理由。在启动装置15的驱动时,会流动 400A左右的大电流,伴随于此,根据主电源13的内部电阻值大小,主电源电压Vb会降低。 另一方面,伴随主电源13的变差,主电源13的内部电阻值会变大。启动装置15的驱动时发生的主电源电压V b的降低宽度,当主电源13变差且内部电阻值增大时会变大。其结果是,主电源电压Vb的最小值与主电源13的变差一起变小。
关注主电源13的该性质,在车辆的使用开始时,即在通过点火开关来驱动车辆的启动装置15时,控制部29求出主电源电压Vb的最小值。若主电源电压V b的最小值在预先决定的变差判定值(例如7V)以下,则控制部29判断为主电源13变差。该变差判定的结果被存储在控制部29所内置的存储器中。而且,变差判定值被决定为如后述那样具有在怠速停止过程中能够向负载19提供电力之程度的余力的值,而不是完全变差时的值。因此, 变差判定值会根据负载19的消耗电力规格或主电源13的规格而变化,因此,可以针对这些规格来适当决定。
而且,主电源电压Vb的最小值,是在车辆的使用开始时,由主电源13的电力来驱动启动装置15时求出的。这是因为在车辆的使用开始时,因主电源13的充放电引起的发热的影响较小,所以能够更准确地获知主电源13的变差状态。
在步骤S15中,通过上述方法,控制部29判断主电源13的变差。当主电源13未变差时(步骤S15为“否”),控制部29进行后述的步骤S51的动作。另一方面,在主电源13 变差时(步骤S15为“是”),控制部29对在步骤Sll所读取的蓄电部电压Vc与蓄电部规定电压Vcs进行比较(步骤S17)。在此,所谓蓄电部规定电压Vcs,是指在怠速停止后在蓄电部25中积蓄有足够用于驱动启动装置15的电力时的蓄电部电压Vc。在实施方式I中, 将蓄电部规定电压Vcs预先决定为12V。接着叙述该决定方法的具体例。
首先,将蓄电部25的容量值设为140F (法拉)。此外,将在驱动启动装置15时从蓄电部25经由第2开关27流动的电流设为启动装置15的驱动电流(400A)的3/4即300A。 而且,将从蓄电部25流动的电流设为驱动电流的3/4的依据,是基于蓄电部25与主电源 13的内部电阻值的比率(I比3)。在主电源13变差的状态下,若实测主电源13的内部电阻值,则相对于蓄电部25的内部电阻值的实测值,主电源13的内部电阻值大约为3倍。因此,若从主电源13和蓄电部25向启动装置15提供电力,则从蓄电部25向启动装置15流动的电流为从主电源13向启动装置15流动的电流的3倍。所以,从蓄电部25流动的电流为400AX3/4 = 300A。此外,启动装置15的驱动期间较长地估计为2秒。而且,在驱动启动装置15之后,蓄电部电压Vc必须至少为蓄电部最低电压Vck ( = 5V)。
此外,当主电源13变差时,如上所述,若仅由主电源13来驱动启动装置15,则主电源电压Vb会下降至7V。主电源13变差时,也从蓄电部25向启动装置15提供电力。因此,可知若实验性求出从变差的主电源13和蓄电部25双方提供电力来驱动启动装置15 时的主电源电压Vb的最小值,则约为8V。
综上所述,根据能量收支来求出蓄电部25所需的电压Vx。首先,从蓄电部25 向启动装置15放电的能量为140FX (Vx2-82)/2,该能量与由启动装置15消耗的能量 (300AX8VX2秒)相等,因而Vx ^ 11. 5V。因此,其中考虑到冗余而将蓄电部规定电压Vcs 决定为12V。
若减速前的车辆的车速V小,则在蓄电部25中无法充分积蓄再生电力。在步骤 S17中,控制部29对积蓄了再生电力的蓄电部25的蓄电部电压Vc与蓄电部规定电压Vcs 进行比较。当蓄电部电压Vc小于蓄电部规定电压Vcs时(步骤S17为“否”),若进行了怠速停止则无法再起动发动机14的可能性大。因此,当蓄电部电压Vc小于蓄电部规定电压 Vcs时,控制部29不进行怠速停止动作,而直接结束图2A的子进程,并返回主进程。因此, 发动机14处于原样保持动作的状态。
另一方面,若蓄电部25积蓄有发动机14能够再起动的电力,且蓄电部电压Vc在蓄电部规定电压Vcs以上(步骤S17为“是”),则进行怠速停止。具体而言,控制部29将使发动机14停止的信号作为数据信号Sdata发送给车辆用控制回路31 (步骤S19)。接收数据信号Sdata之后,车辆用控制回路31停止发动机14。接着,控制部29以接通第2开关27的方式输出第2接通/断开信号SW2 (步骤S21)。由此,第2开关27接通,且并联连接蓄电部25与主电源13。在此,由于发动机14停止,所以来自发电机11发电也停止。因此, 主电源电压Vb成为接近于开放电压(约12V)的电压。另一方面,在步骤S17中,当蓄电部电压Vc在蓄电部规定电压Vcs以上时,控制部29断开第2开关27,直至蓄电部电压Vc与主电源电压Vb相等为止进行放电。蓄电部电压Vc放电后的电力主要提供负载19。然而, 蓄电部电压Vc的上限为满充电电压Vcm( = 12. 5V),蓄电部电压Vc最大降低O. 5V左右,SP 使接通第2开关27,所回收的再生电力的大部分也被积蓄在蓄电部25中。通过设为这样的电力系统布线的状态,从而怠速停止过程中的向负载19的电力提供,是由即使变差也与蓄电部25相比在容量上差别很大的大容量主电源13进行的。
接着,控制部29判断是否为驱动启动装置15的状态(步骤S23)。控制部29从车辆用控制回路31,接收表示驾驶员从刹车踏板换踩加速踏板的数据信号Sdata。控制部29 根据数据信号Sdata,得到是否处于由于结束怠速停止并再起动发动机14而驱动启动装置 15的状态的信息。如果处于驱动启动装置15的状态(步骤S23为“是”),则控制部29进行后述的步骤S29的动作。
另一方面,若处于非驱动启动装置15的状态(步骤S23为“否”),则控制部29通过来自车辆用控制回路31的数据信号Sdata而读取点火开关的信息,判断点火开关是否为断开状态(步骤S25)。如果点火开关为非断开(步骤S25为“否”),则返回步骤S23,控制部29继续维持怠速停止状态。另一方面,若点火开关为断开(步骤S25为“是”),则由于车辆的使用结束,因此控制部29停止DC/DC转换器23,并且断开第I开关17与第2开关 27(步骤S27),返回主进程。尽管通过这些动作来断开电力系统布线的连接,但是向消耗暗电流的负载19从主电源13经由寄生二极管21提供电力。
针对在步骤S23中,处于驱动启动装置15的状态的情况(步骤S23为“是”),使用图2B所示的流程图来进行说明。当处于驱动启动装置15的状态时,控制部29断开第I 开关17(步骤S29)。接着,控制部29读取负载电压Vf,且以负载电压Vf成为负载通常电压Vfa的方式控制DC/DC转换器23 (步骤S31)。其中,在以下描述进行这些动作的理由。
在步骤S21中接通第2开关27,在步骤S29中断开第I开关17,因此,主电源13 与蓄电部25不经由DC/DC转换器23而直接并列连接。由此,如后所述,由主电源13以及蓄电部25双方的电力来驱动启动装置15。此时,主电源13以及蓄电部25双方的电压大幅降低。向负载19的电力经由寄生二极管21,由主电源13提供,但随着主电源13的电压的降低,负载电压Vf也大幅降低。若负载19为即使伴随启动装置15的驱动而发生电压降低也能继续充分动作的规格的负载,则没问题,但一般的电气设备,例如,若负载电压Vf下降至IOV左右则动作停止。因此,为了在驱动启动装置15时使负载19也继续动作,控制部29 进行步骤S31的动作,并利用DC/DC转换器23对蓄电部25的再生电力的一部分进行升压, 来对负载19提供电力。而且,负载通常电压Vfa为用于持续驱动负载19的通常电压,因而在实施方式I中设为12V。因此,负载电压Vf为12V。在驱动启动装置15时,有时从蓄电部25向启动装置15提供电力,因此,主电源电压Vb如上所述会降低至8V左右。然而,第 I开关17断开,寄生二极管21的阴极侧为12V(负载电压Vf),阳极侧约为8V(主电源电压 Vb),因此,寄生二极管21也断开。所以,由DC/DC转换器23进行稳定化后的负载电压Vf 以不受主电源电压Vb的变动的影响的方式被施加至负载19。
而且,步骤S29与步骤S31的动作顺序也可以相反。然而,由继电器构成第I开关17时,不存在寄生二极管21,因此,为了维持向负载19提供电力,需要使步骤S29与步骤S31的动作相反。此时,虽然仅是瞬间,但第I开关17与第2开关27同时接通。然而, 如上所述,主电源电压Vb为开放电压(约12V),负载电压Vf会通过DC/DC转换器23而成为负载通常电压Vfa( = 12V),因此二者的电压值极其接近。所以,即使是第I开关17与第 2开关27同时接通的瞬间,过电流流动的可能性也很小。由此,也可以构成为对第I开关 17使用继电器,使步骤S29与步骤S31的动作相反。
根据至步骤S31的动作,协调驱动启动装置15的准备,控制部29对车辆用控制回路31输出驱动启动装置15的数据信号Sdata(步骤S33)。接收它,车辆用控制回路31进行启动装置15的驱动。此时,如上所述,主电源13与蓄电部25并列连接,因此,对启动装置15提供二者的电力。蓄电部25的内部电阻值与变差的主电源13的内部电阻值的比率为I比3,相对于启动装置15的峰值电流(400A)而言,从主电源13流动100A,从蓄电部25 流动300A。若在主电源13变差前,则仅从主电源13流动400A的峰值电流。在主电源13 变差后,以100A即可控制,因此即使主电源13变差,也能够驱动启动装置15。由此,即使主电源13变差,车辆也能够进行怠速停止,因此,能够抑制相应的燃料的消耗,以谋求省燃费化。
接着,控制部29读取主电源电压Vb (步骤S35),与主电源下限电压VbL进行比较 (步骤S37)。在此,主电源下限电压VbL为由主电源13能够驱动负载19的下限电压。本来,如上所述,主电源下限电压VbL为负载19停止的IOV左右。然而,在步骤S37的时刻, 处于第I开关17断开,且在主电源13与负载19之间连接有寄生二极管21的状态,因此考虑到因寄生二极管21引起的电压下降的影响、以及冗余,而将主电源下限电压VbL决定为 IlV0因此,如果主电源电压Vb小于主电源下限电压VbL(步骤S37为“否”),则启动装置 15处于大电流消耗过程中,且无法由主电源13使负载19动作,并且发动机14尚未再起动。 因此,发电机11也尚未动作,所以为了继续从蓄电部25经由DC/DC转换器23向负载19提供电力,而返回步骤S35。
另一方面,若发动机14的再起动接近于结束,由启动装置15所消耗的电流减少, 则主电源13的电压上升。若主电源电压Vb上升而恢复为主电源下限电压VbL以上(步骤 S37为“是”),则能够从主电源13向负载19提供电力。因此,控制部29取代蓄电部25的电力而对负载19提供主电源13的电力。具体而言,如以下动作。
首先,控制部29断开第2开关27 (步骤S39)。由此,解除蓄电部25与主电源13 的并联连接。接着,控制部29读取蓄电部电压Vc (步骤S41),控制DC/DC转换器23以维持当前的蓄电部电压Vc (步骤S43)。通过步骤S43的动作,不再进行DC/DC转换器23的负载电压Vf的控制。此时,如上所述,主电源电压Vb会恢复到主电源下限电压VbL以上,因此, 通过步骤S43的动作,取代蓄电部25的电力而向负载19提供主电源13的电力。此外,通过步骤S43的动作,成为不进行从发电机11向蓄电部25的充电的状态。因此,能够节省由发动机14消耗燃料来将所发电的电力充电至蓄电部25这样的浪费。此外,当发动机14再起动时,若对蓄电部25进行充电,则有时无法充分回收在以后产生的再生电力。因此,通过步骤S43的动作,不进行从发电机11对蓄电部25的充电,从而降低无法充分回收再生电力的可能性。
若至步骤S43的动作结束,则发电机11做好了开始发电的准备。若发电机11做好了开始发电的准备,则控制部29对车辆用控制回路31输出指令为发电机11进行发电的信号作为数据信号Sdata (步骤S45)。车辆用控制回路31以接收数据信号Sdata后开始发电的方式控制发电机11。之后,控制部29接通第I开关17 (步骤S47)。由此,在降低因寄生二极管21引起的损失的状态下,对负载19提供发电机11的电力。通过至此的动作,怠速停止结束,车辆处于能够行驶的状态,因此,控制部29结束图2B的子进程,返回主进程。
以上说明的步骤S19至步骤S47的动作,是主电源13变差时的怠速停止时的车辆用电源装置100的动作。若总结该特征的动作,则如下所述。控制部29在怠速停止期间中, 对负载19提供主电源13的电力。控制部29在再起动发动机14之前,断开第I开关17,接通第2开关27,控制为通过主电源13的电力与蓄电部25的再生电力来驱动启动装置15, 并再起动发动机14。在由启动装置15所消耗的大电流之中,从主电源13带出的电流的比例会减少,因此即使主电源13变差,发动机14的再起动也是可能的。其结果是,能够通过增加车辆的怠速停止的次数或期间来抑制燃料的消耗,以谋求省燃费化。
针对主电源13未变差时、即步骤S15为“否”时的动作进行说明。此时,首先,控制部29将停止发动机14的信号作为数据信号Sdata发送给车辆用控制回路31。该动作与步骤S19相同。车辆用控制回路31通过接收数据信号Sdata,使发动机14停止,开始怠速停止。
接着,控制部29控制DC/DC转换器23,以使所读取的负载电压Vf成为负载既定电压Vfs (步骤S53)。所谓负载既定电压Vfs,是指以将在怠速停止过程中蓄电部25所积蓄的再生电力提供给负载19的方式所决定的电压,具体而言,决定为如下。
在怠速停止过程中,由于发电机11停止,因此需要向负载19提供主电源13或蓄电部25的电力。在步骤S53的时刻,由于被判断为主电源13未变差,因此主电源13对怠速停止后的启动装置15的驱动提供电力,且尽量对负载19提供再生电力。该理由是因为主电源13未变差而能够充分进行启动装置15的驱动,因此提早消耗蓄电部25所积蓄的再生电力,以谋求再生电力的有效利用。如果未充分放电蓄电部25的电力,而直接进行车辆的制动,则无法有效利用已经积蓄的再生电力。此外,蓄电部25回收不完车辆的制动时新产生的再生电力。因此,作为整体,再生电力的利用的效率会降低。在实施方式I中,当主电源13未变差时,将蓄电部25的电力优先于主电源13提供给负载19。然后,由于蓄电部 25的电力优先于主电源13提供给负载19,因此,需要控制DC/DC转换器23,以使负载电压 Vf高于主电源电压Vb。在此,主电源电压Vb,在怠速停止过程中时,如上所述,会成为铅电池等二次电池的开放电压即12V左右。由于将负载电压Vf设为高于12V的电压,因此,考虑到DC/DC转换器23的控制误差等的冗余而将负载既定电压Vfs决定为13V。
通过这样的动作,蓄电部25所积蓄的再生电力经由DC/DC转换器23被提供给负载19。
接着,控制部29读取蓄电部电压Vc (步骤S55),与蓄电部下限电压VcL进行比较 (步骤S57)。在此,所谓蓄电部下限电压VcL是指为了以在怠速停止后的启动装置15的驱动过程中使负载19的动作不停止的方式从蓄电部25向负载19提供电力,蓄电部25所需要的下限蓄电部电压Vc,如下那样被决定。
首先,如上所述,负载既定电压Vfs为13V。蓄电部电压Vc在启动装置15的驱动后,至少需要蓄电部最低电压Vck ( = 5V)。此外,如上所述,蓄电部25的容量值为140F,将启动装置15的驱动时间设为2秒,将负载19的怠速停止时的消费电流设为10A。根据蓄电部25向负载19的放电能量与负载19的消耗能量的能量收支,求解140FX (VcL2-52)/2 = 10AX13VX2秒,得到VcL = 5. 4V。S卩,蓄电部下限电压VcL可以为5. 4V以上。在实施方式I中,考虑到电压检测误差等的冗余,将蓄电部下限电压VcL决定为6V。
在步骤S57中,如果蓄电部电压Vc小于蓄电部下限电压VcL (步骤S57为“否”), 则设置为不再对蓄电部25继续进行放电,控制部29控制DC/DC转换器23,以使维持在步骤 S55中所读取的蓄电部电压Vc (步骤S58)。其结果是,负载电压Vf不再由DC/DC转换器23 进行控制,因此,向负载19提供主电源13的电力。
接着,控制部29判断是否处于驱动启动装置15的状态(步骤S59)。步骤S59的动作与步骤S23相同。若处于驱动启动装置15的状态(步骤S59为“是”),则控制部29进行上述步骤S29以后的动作,进行发动机14的再起动。此时的重点在于,主电源13未变差时,第2开关27原样保持断开。因此,在步骤S29以后的动作中,在步骤S29中,将第I开关17设置为断开,因此,第I开关17与第2开关27双方均为断开。所以,若在步骤S33中驱动启动装置15,则仅对启动装置15提供主电源13的电力。此时,DC/DC转换器23,在步骤S31中,以负载电压Vf成为负载通常电压Vfa的方式进行动作,因此,启动装置15的驱动过程中,对负载19仅提供蓄电部25的电力,负载19的稳定动作成为可能。此外,此时, 蓄电部电压Vc至少为蓄电部下限电压VcL,在蓄电部25中,在启动装置15的驱动期间(2 秒)中也积蓄着能够向负载19提供的再生电力。
另一方面,若处于非驱动启动装置15的状态(步骤S59为“否”),则控制部29判断点火开关是否为断开状态(步骤S61)。步骤S61的动作与步骤S25相同。点火开关若为非断开(步骤S61为“否”),则为了继续怠速停止状态,而返回步骤S59,重复以后的动作。 另一方面,若点火开关为断开(步骤S61为“是”),则控制部29为了结束车辆的使用,进行步骤S27的动作。
在步骤S57中,若蓄电部电压Vc在蓄电部下限电压VcL以上(步骤S57为“是”), 则控制部29判断是否处于驱动启动装置15的状态(步骤S63),该动作与步骤S23相同。 如果处于驱动启动装置15的状态(步骤S63为“是”),则控制部29进行用于再起动上述发动机14的步骤S29以后的动作。此时的动作与步骤S59为“是”的情况相同。
另一方面,若处于非驱动启动装置15的状态(步骤S63为“否”),则控制部29判断点火开关是否为断开状态(步骤S65)。该动作与步骤S25相同。若点火开关为非断开 (步骤S65为“否”),则为了继续怠速停止状态,控制部29返回步骤S55并重复以后的动作。另一方面,若点火开关为断开(步骤S65为“是”),控制部29为了结束车辆的使用而进行步骤S27的动作。
以上说明的步骤S51至步骤S65的动作,是主电源13未变差时的怠速停止时的车辆用电源装置100的动作。若总结成为该特征的动作,则如下所述。控制部29控制DC/DC 转换器23,以使在怠速停止期间中优先于主电源13将充电至蓄电部25的再生电力提供给负载19。控制部29在再起动发动机14之前,控制为将第I开关17设为断开、且以主电源 13的电力来驱动启动装置15从而再起动发动机14。在主电源13未变差而能够充分驱动启动装置15时,在怠速停止过程中早期消耗蓄电部25所积蓄的再生电力。由此,已经被积蓄在蓄电部25中的再生电力会被有效利用,新产生的再生电力会被更多回收。因此,能够抑制燃料的消耗量,以谋求省燃费化。
针对车辆的加速时,或者匀速行驶时的动作,使用图3的流程图来进行说明。而且,图3的流程图也与图2A以及图2B同样,是由主进程所执行的子进程。
怠速停止结束,若车辆进行加速或匀速行驶,则该信息从车辆用控制回路31,通过数据信号Sdata发送给控制部29。若控制部29接收到数据信号Sdata,则从主进程执行图 3的子进程。而且,此时,第I开关17为接通,第2开关27为断开的状态。若执行图3的子进程,则控制部29首先读取蓄电部电压Vc (步骤S 71),并对蓄电部最低电压Vck ( = 5V) 与蓄电部电压Vc进行比较(步骤S73)。如果蓄电部电压Vc在蓄电部最低电压Vck以下 (步骤S73为“否”),则由于不再对蓄电部25继续进行放电,控制部29控制DC/DC转换器 23,以使维持在步骤S71读取的当前蓄电部电压Vc (步骤S75)。由此,蓄电部25能够尽可能多地回收车辆的制动时的再生电力。之后,结束图3的子进程返回主进程。
另一方面,若蓄电部电压Vc高于蓄电部最低电压Vck(步骤S73为“是”),则控制部29为了尽量使蓄电部25回收再生电力,而控制为将蓄电部25的电力进行放电。然而, 由于车辆的车速V的缘故,有可能在制动时,控制部29无法充分回收再生电力。若如此,则如果主电源13变差,则有时通过蓄电部25的电力也无法充分驱动怠速停止后的启动装置 15。因此,在实施方式I中,要根据车速V来改变能够放电的蓄电部电压Vc。以下表示该具体的动作。
首先,控制部29从来自车辆用控制回路31的数据信号Sdata中读取车速V (步骤 S77)。接着,控制部29根据预先求出的车速V与蓄电部25的放电下限电压VL之间的相关关系,求出根据车速V所求得的放电下限电压VL (步骤S79)。而且,相关关系被存储在存储器中。
图4表述车速V与放电下限电压VL之间的相关关系。而且,在图4中,横轴表示车速V,纵轴表示放电下限电压VL。对于车速V与放电下限电压VL之间的关系,若车速V 在可再生最低车速vm(例如,时速IOkm)以下,则车速V小而无法得到再生电力,因而将放电下限电压VL设为满充电电压Vcm(= 12.5V)。因此,若为无法得到再生电力的车速v,则在该时刻控制为蓄电部25不被放电。若车速V大于可再生最低车速vm,且在可最大放电车速Vl (例如时速60km)以下,则具有车速V越大、放电下限电压VL越低的相关关系。因此,由于车速V大时,能得到大的再生电力,所以超过根据车速V与放电下限电压VL之间的相关关系而得到的放电下限电压VL的蓄电部电压Vc,被控制为对蓄电部25进行放电。由此,能够有效利用蓄电部25所积蓄的再生电力,并且,当发生下一次制动时,能够无遗漏地回收再生电力,能够更有效地利用再生电力。
当车速V超过最大放电可能车速vl时,放电下限电压VL设为蓄电部最低电压 Vck( = 5V)的恒定值。由此,即使将蓄电部25所积蓄的电力放电至蓄电部最低电压Vck, 也能够通过下一次的制动,将蓄电部25充电至满充电电压Vcm,能够最大限度地利用蓄电部25。而且,上述再生可能最低车速vm或最大放电可能车速vl是一个示例,可以根据车辆的规格来适当决定最佳值。此外,图4的相关关系也不局限于直线关系的组合,预先决定与车辆的规格相应的最佳相关关系(例如设为曲线关系、或使弯曲点变得平滑等),并存储在控制部29中。
因此,在图3的步骤S79中,控制部29根据图4的相关关系和车速V求出放电下限电压VL,与在步骤S71得到的蓄电部电压Vc进行比较(步骤S81)。如果,蓄电部电压Vc 小于放电下限电压VL(步骤S81为“是”),则为了不再从蓄电部25继续放电,控制部29进行上述步骤S75的动作。另一方面,若蓄电部电压Vc在放电下限电压VL以上(步骤S81为 “否”),则能够将蓄电部25的电力向负载19放电,因此,控制部29控制DC/DC转换器23, 以使负载电压Vf成为负载既定电压Vfs ( = 13V)(步骤S83)。而且,步骤S83的动作与图 2A的步骤S53相同。由此,蓄电部25的电力优先于主电源13提供给负载19,以谋求再生电力的有效利用。之后,控制部29结束图3的子进程而返回主进程。而且,通过进行步骤 S83的动作,蓄电部电压Vc历时性降低,车速V历时性增加或成为恒定。因此,主进程在车辆的加速或者匀速行驶过程中重复执行图3的子进程,控制部29控制蓄电部25的放电以使蓄电部电压Vc成为最佳值。
总结以上说明的车辆的加速或者匀速行驶过程中的特征的动作如下。控制部29 在车辆的加速时、或者匀速行驶时,根据预先求出的车速V与蓄电部25的放电下限电压VL 之间的相关关系,由车速V求出放电下限电压VL。在所求出的放电下限电压VL低于由控制部29检测出的蓄电部25中的蓄电部电压Vc时,蓄电部电压Vc在达到放电下限电压VL之前,控制部29控制DC/DC转换器23,以使向负载19提供蓄电部25的再生电力。
根据以上的结构、动作,当主电源13变差时,将被充电至蓄电部25的再生电力仅用于启动装置15的驱动,因此,在怠速停止过程中能够从主电源13向负载19提供电力,能够长时间确保怠速停止期间。因此,能够实现带有能够使车辆省燃费化的再生电力回收功能的车辆用电源装置100。
若基于图5所示的现有的车辆用电力控制装置200,则确实能够有效利用再生电力。然而,若在怠速停止车辆中应用现有的车辆用电力控制装置200,则由于在怠速停止过程中车辆的减速已结束,因此对车辆电气负载139,首先提供双电层电容器143的电力,接着,提供电池137的电力。因此,当电池137变差时,在来自双电层电容器143的放电结束后,需要马上以电池137中残留的电力来驱动启动装置。如果不这样进行动作,而如通常那样,继续怠速停止,从电池137对车辆电气负载139提供电力,则电池137的电力不足而无法充分驱动启动装置,有发动机无法再起动的可能性。其结果是,若电池137变差,则怠速停止期间变短,无法谋求充分的燃费提高。
根据车辆用电源装置100,当主电源13变差时,仅对于启动装置15的驱动使用充电至蓄电部25的再生电力。因此,即使变差的主电源13在怠速停止过程中对负载19提供电力,也向陡峭地消耗大电流的启动装置15,避开损失大的DC/DC转换器23,而经由第2开关27主要提供蓄电部25的再生电力,能够充分驱动启动装置15。
而且,在实施方式I中,虽然控制部29控制DC/DC转换器23,以使在驱动启动装置15时向负载19提供蓄电部25的再生电力,但是,若是负载19即使在启动装置15的驱动时发生电压下降也继续动作的规格,则上述的动作也可以不进行。
此外,在实施方式I中,虽然使用图4的相关关系来进行了与车速V相应的蓄电部电压Vc的控制,但当例如蓄电部25的蓄电容量足够大,且在主电源13变差时能够充分驱动启动装置15的电力与车速V无关而总能够进行积蓄时,也可以不进行与车速V相应的蓄电部电压Vc的控制。但是,若超过需要地增大蓄电容量,则会导致高成本化,因此,优选构成最佳的蓄电容量的蓄电部25。
此外,在实施方式I中,在车辆的使用开始时,根据由主电源13的电力驱动启动装置15时的主电源电压Vb的最小值,来判断主电源13的变差,但不局限于该变差判断方法。 例如,在总测定主电源13的充电状态的车辆的情况下,也可以根据充电状态来进行主电源 13的变差判断。然而,充电状态的测定需要在主电源13中设置电流传感器来进行累计,当车辆用控制回路31不具有测定充电状态的功能时,如实施方式I所述地进行基于主电源电压Vb的最小值的变差判断是较容易的。
(实施方式2)
实施方式2中的车辆用蓄电装置的结构与图I相同,因此,省略详细的说明。实施方式2中的特征在于发动机14的初始起动中的动作,因此,针对该点详细说明。
在车辆的使用开始时,当主电源13变差时,有无法仅由主电源13驱动启动装置15 并进行发动机14的初始起动的可能性。在控制部29的存储器中存储有通过上一次车辆的使用、主电源13是否变差的信息。控制部29根据存储器所存储的信息,当主电源13变差时,在初始起动发动机14之前,将第I开关17断开,将第2开关27接通,控制为以主电源 13的电力和蓄电部25的电力来驱动启动装置15,并初始起动发动机14。由此,即使主电源 13变差,也能够可靠地起动发动机14。
如此,当主电源13变差时,不仅在怠速停止之后,在车辆的初始起动时,也以主电源13的电力和蓄电部25的电力来驱动启动装置15。由此,能够抑制从主电源13带出的陡峭的大电流,减轻主电源13的负担。其结果是,即使是变差的主电源13,也能够延长怠速停止期间,以谋求省燃费化。
而且,针对初始起动发动机14之后的动作,与实施方式I相同,因此省略说明。
在上述的车辆的初始起动时也以主电源13的电力和蓄电部25的电力来驱动启动装置15的动作,在蓄电部25中充分残留有上一次车辆使用时所积蓄的再生电力时是有效的。然而,在长时间未使用车辆而使再生电力已自然放电的情况下,在将第2开关27设置为接通的瞬间,由于蓄电部电压Vc与主电源电压Vb的电压差,而会从主电源13向蓄电部 25短时间流动大电流。其结果是,第2开关27有破损的可能性。因此,考虑到自然放电的产生,在实施方式2中,当主电源13变差时,在初始起动发动机14之前,控制部29读取蓄电部电压Vc。若蓄电部电压Vc不足初始既定电压Vci,则控制部29预先将第I开关17设置为接通,将第2开关27设置为断开,且控制DC/DC转换器23,以使在蓄电部电压Vc达到初始既定电压Vci之前,对蓄电部25充电主电源13的电力。之后,若进行充电直至蓄电部电压Vc达到初始既定电压Vci,则控制部29停止基于DC/DC转换器23的充电,并将上述第 I开关17设置为断开,将第2开关27设置为接通,进行图2B的步骤S33以后的动作。由此,能够降低第2开关27破损的可能性。
在此,针对初始既定电压Vci的求取方法进行描述。如上所述,第2开关27在驱动启动装置15时会流动300A的电流。因此,在第2开关27中使用即使以最大300A的电流流动也不破损的额定电流(例如,将安全系数设为3倍,考虑到冗余而为000A)的继电器。此外,主电源13的开放电压为12V。因此,为了在接通第2开关27时不流动300A以上电流,而将蓄电部25中的初始既定电压设为Vci,将蓄电部25的内部电阻值与变差的主电源13的内部电阻值的合计设为约20πιΩ的话,则(12V-Vci)/20mQ = 300A必须成立。若求解它,则Vci=6V。因此,若蓄电部电压Vc在6V(=初始既定电压Vci)以上,则即使直接接通第2开关27,最大电流也不会超过300A,因此,第2开关27破损的可能性极低。如此,能够决定初始既定电压Vci。由此,在实施方式2中,将初始既定电压Vci决定为6V。
由此,若当主电源13变差,并且在发动机14进行初始起动时,蓄电部电压Vc小于初始既定电压Vci ( = 6V),则控制部29首先接通第I开关17,断开第2开关27。接着,控制部29控制DC/DC转换器23,以使在蓄电部电压Vc达到初始既定电压Vci之前,对蓄电部25充电主电源13的电力。之后,控制部29断开第I开关17,接通第2开关27,由主电源13的电力与蓄电部25的电力来驱动启动装置15。
在这些动作中,设为长时间不使用车辆,且蓄电部25放电至蓄电部最低电压 Vck ( = 5V)。为了至初始既定电压Vci为止,对蓄电部25进行初始充电,而设置为通过DC/ DC转换器23从主电源13向蓄电部25在初始充电期间ti提供IkW的电力,初始充电期间 ti,求解140FX (62-52)/2 = IkffXti, ti ^ O. 8秒。由于初始既定电压Vci为6V,因此初始充电后,蓄电部电压Vc为6V。由于主电源13的开放电压为12V,因此若基于DC/DC转换器23的初始充电结束后,断开第I开关17,接通第2开关27,则如上所述,会从主电源13 向蓄电部25流动最大300A的电流。之后,蓄电部电压Vc由于内部电阻值的合计(20πιΩ) 与容量值140F的时间常数,最初陡峭,之后以指数函数的方式慢慢上升。在实施方式2的情况下,在5. 6秒后,蓄电部电压Vc成为11. 2V。由此,由于蓄电部电压Vc成为接近主电源电压Vb的值,因此,控制部29若处于该状态则驱动启动装置15。然而,主电源电压Vb仅比蓄电部电压Vc稍高一点几,因此从主电源13与从蓄电部25提供给启动装置15的电流的比率,与实施方式I所述的I : 3相比会有偏差,主电源13的比率会大一些。因此,尽管主电源13的负担仅在发动机14的初始起动时会稍变大,但对于由它引起的主电源13的变差发展是几乎无影响的程度。
根据这样的动作,从开始初始充电至能够驱动启动装置的电压为止对蓄电部25 进行充电所需的合计初始充电期间约为6. 4秒。例如,若在驾驶员打开车门的同时开始进行充电,则在启动装置15的驱动之前,能够充分地完成充电。
根据以上的结构、动作,当主电源13变差时,不仅在怠速停止后,而且还在开始使用车辆且初始起动发动机14时,也由主电源13的电力与蓄电部25的电力来驱动启动装置 15。由此,能够进一步抑制从主电源13带出的陡峭的大电流,减轻对主电源13的负担。因此,即使是变差的主电源13,也能够延长怠速停止期间,能够实现可省燃费化的带有再生电力回收功能的车辆用电源装置100。
而且,在实施方式2中,虽然将初始既定电压Vci设为6V,但这可以通根据DC/DC 转换器23的电力规格等适当决定。此外,可以将初始既定电压Vci设定为开放电压即12V。 此时,由于DC/DC转换器23将蓄电部25充电至12V,因此,最能够减轻启动装置15的驱动时对主电源13的负担。然而,为了将蓄电部25充电至12V,DC/DC转换器23以IkW充电约需8. 3秒,至驱动启动装置15为止的合计初始充电期间变长。而且,基于DC/DC转换器 23的电力消耗,也由于合计初始充电期间变长而变大。因此,优选能够将蓄电部电压Vc充电至主电源电压Vb,并且使合计初始充电期间变短的实施方式2的结构(将初始既定电压 Vci决定为尽量低的6V)。
而且,在实施方式1、2中,虽然在蓄电部25使用双电层电容器,但它也可以是电化学电容器等其它电容器。
产业上的可利用性
本发明的车辆用电源装置即使主电源变差也能够通过延长怠速停止期间来实现省燃料化,因此,尤其作为带有怠速停止功能和再生电力回收功能的车辆用电源装置很有用。
附图符号说明
11-发电机,
13-主电源,
14-发动机,
15-启动装置,
17-第I开关,
19-负载,
23-DC/DC转换器,
25—畜电部,
27-第2开关,
29-控制部。
权利要求
1.一种车辆用电源装置,构成为在搭载发动机和负载的车辆中使用,具有 发电机,其由所述发动机进行发电; 主电源,其与所述发电机电连接; 启动装置,其与所述主电源电连接; 第一开关,其与所述主电源电连接; 蓄电部,其经由DC/DC转换器与所述第一开关电连接; 第二开关,其被电连接在所述主电源与所述蓄电部之间;和 控制部,其与所述第一开关、DC/DC转换器以及第二开关电连接, 所述负载经由所述第一开关与所述主电源电连接,所述发电机在产生再生电力时,接通所述第一开关,并断开所述第二开关,所述控制部控制所述DC/DC转换器,以使将所述再生电力充电至所述蓄电部, 当所述车辆在怠速停止期间中所述主电源未变差时,所述控制部控制所述DC/DC转换器,以使优先于所述主电源,而将充电至所述蓄电部的所述再生电力提供给所述负载,并且,在再起动所述发动机之前,所述控制部断开所述第I开关,以所述主电源的电力来驱动所述启动装置,所述启动装置使所述发动机再起动, 当所述车辆在怠速停止期间中所述主电源变差时,所述控制部将所述主电源的电力提供给所述负载,并且,在再起动所述发动机之前,所述控制部断开所述第I开关,且接通所述第2开关,以所述主电源的电力和所述蓄电部的所述再生电力来驱动所述启动装置,所述启动装置使所述发动机再起动。
2.根据权利要求I所述的车辆用电源装置,其特征在于, 所述控制部控制所述DC/DC转换器,以使在驱动所述启动装置时,将所述蓄电部的所述再生电力提供给所述负载。
3.根据权利要求I所述的车辆用电源装置,其特征在于, 所述控制部在所述车辆的加速时或匀速行驶时,根据预先求出的所述车辆的车速与所述蓄电部的放电下限电压的相关关系,当根据所述车速求出的所述放电下限电压低于所述蓄电部中的蓄电部电压时,控制所述DC/DC转换器,以使直至所述蓄电部电压达到所述放电下限电压为止,将所述蓄电部的所述再生电力提供给所述负载。
4.根据权利要求I所述的车辆用电源装置,其特征在于, 所述控制部在所述车辆的使用开始时,根据以所述主电源的电力来驱动所述启动装置时的所述主电源中的主电源电压的最小值,所述控制部判断所述主电源的变差。
5.根据权利要求I所述的车辆用电源装置,其特征在于, 在所述主电源变差时,所述控制部在初始起动所述发动机之前,断开所述第I开关,并接通所述第2开关,以所述主电源的电力和所述蓄电部的电力来驱动所述启动装置,所述启动装置使所述发动机初始起动。
6.根据权利要求5所述的车辆用电源装置,其特征在于, 所述控制部在初始起动所述发动机之前,若由所述控制部检测出的所述蓄电部中的蓄电部电压不足初始既定电压,则预先接通所述第I开关,断开所述第2开关,并且,控制所述DC/DC转换器,以使在所述蓄电部电压达到所述初始既定电压之前,将所述主电源的电力充电至所述蓄电部。
全文摘要
本发明提供一种车辆用电源装置。即使主电源变差,也能通过延长怠速停止期间来谋求省燃费化。该车辆用电源装置,构成为在搭载发动机和负载的车辆中使用,具有发电机、主电源、启动装置、第一开关、蓄电部、第二开关、和控制部。控制部控制为在主电源变差时,车辆在怠速停止期间中,对负载提供主电源的电力,在发动机的再起动时,断开第一开关,并接通第二开关,以主电源的电力和蓄电部的再生电力来驱动启动装置。
文档编号H02J7/14GK102985293SQ20118003483
公开日2013年3月20日 申请日期2011年7月7日 优先权日2010年7月15日
发明者秋政向志, 我妻真人 申请人:松下电器产业株式会社