非接触式供电系统的制作方法
【专利摘要】非接触式供电系统(A)具备:包括供电线圈(4)的地上供电装置(S)、和包括受电线圈(11)的移动车辆(M),通过非接触式供电进行从供电线圈(4)到受电线圈(11)的电力供给,所述非接触式供电系统(A)具备供电用、受电用外罩(5、15),其覆盖供电线圈(4)及受电线圈(11)的周围和线圈间,从而屏蔽漏磁通。
【专利说明】非接触式供电系统
【技术领域】
[0001]本发明涉及非接触式供电系统。本申请根据于2012年2月6日在日本申请的特愿2012 - 23440号主张优先权,将其内容援用在此。
【背景技术】
[0002]下述专利文献I中,公开了屏蔽在电动车辆所具备的受电线圈和供电装置所具备的供电线圈的周围产生的漏磁通的非接触式供电系统。在上述非接触式供电系统中,在电动车辆设有:受电线圈,其为圆筒形,以线圈轴成为上下方向(垂直方向)的姿势设于底部,仅使一个端面从底部露出;屏蔽盒,其覆盖受电线圈的侧面和另一个端面。另一方面,在供电装置设有:供电线圈,其为与受电线圈相同直径的圆筒形,以使一个端面与受电线圈的一个端面对置的方式埋设于地面;屏蔽盒,其覆盖供电线圈的侧面和另一个端面。
[0003]现有技术文献专利文献
专利文献1:日本特开2010 — 70048号公报。
【发明内容】
[0004]发明要解决的课题
然而,在上述现有技术中,仅露出受电线圈及供电线圈的一个端面(对置面),用屏蔽盒覆盖这些线圈的侧面及另一端面,从而屏蔽泄漏磁通。但是,在受电线圈与供电线圈之间未被屏蔽部分覆盖。因此,在上述现有技术中,存在漏磁通从受电线圈与供电线圈的线圈间辐射到周围的问题。特别是,在受电线圈设于电动车辆的底部,或者供电线圈埋设于地面的情况下,因车高而线圈间被设定为较宽。因此,漏磁通容易辐射到周围。
[0005]本发明鉴于上述情况而构思,目的在于比现有技术减少辐射到周围的漏磁通。
[0006]用于解决课题的方案
为了达成上述目的,本发明的第I方式所涉及的非接触式供电系统,具备包括供电线圈的供电装置和包括受电线圈的受电装置,通过非接触式供电进行从所述供电线圈到所述受电线圈的电力供给。所述非接触式系统具备外罩,该外罩设在所述供电装置及所述受电装置的至少一个上,通过覆盖所述供电线圈及所述受电线圈的周围和线圈间的周围来屏蔽漏磁通。
[0007]依据本发明的第2方式,在上述第I方式中,所述非接触式供电系统具备气体供排气机构。所述外罩能够伸缩自如且被密闭。所述气体供排气机构在供电时,通过向所述外罩供给气体使所述外罩膨胀,覆盖所述供电线圈及所述受电线圈的周围和线圈间的周围,使得与所述外罩外部处于屏蔽状态。此外,气体供排气机构在非供电时,通过排出所述外罩内的气体,使所述外罩收缩,从而解除所述屏蔽状态。
[0008]依据本发明的第3方式,在上述第I或者第2方式中,所述外罩中,在位于所述供电线圈与所述受电线圈之间的部位配置有透磁率比其他部位高的材料。
[0009]依据本发明的第4方式,在上述第I?第3的任一方式中,所述受电装置是向电池充电所受到的电力、并根据所述电池的电力来驱动的移动车辆。
[0010]发明效果
依据本发明,由于在供电过程中被外罩覆盖供电线圈及受电线圈的周围和构成线圈间的非接触式供电空间,所以能够屏蔽或减少从供电线圈及受电线圈与线圈间辐射到周围的漏磁通。因而,能够减少从供电线圈及受电线圈与构成线圈间的非接触式供电空间辐射的漏磁通。
[0011]漏磁通是指从供电线圈及受电线圈的端部直接或间接地不到达自己或其他线圈端部的磁通。
[0012]非接触式供电空间是指从供电线圈及受电线圈的端部辐射的磁通形成电磁场的空间。
[0013]外罩是指以气体或流体不穿透的材质构成的覆盖或包围的部件,包括盖、伞等或者与这些均等的部件。
【专利附图】
【附图说明】
[0014]图1是示出本发明的一实施方式所涉及的非接触式供电系统的功能构成的框图; 图2A是示出本发明的一实施方式中的供电用外罩及受电用外罩膨胀且互相抵接的状态的示意图;
图2B是示出本发明的一实施方式中的供电用外罩及受电用外罩膨胀且抵接的状态下的抵接面的示意图;
图2C是示出本发明的一实施方式中的供电用外罩及受电用外罩膨胀且未抵接的状态的不意图;
图3是示出本发明的一实施方式的变形例的示意图。
【具体实施方式】
[0015]以下,参照附图,对本发明的一实施方式进行说明。
[0016]本实施方式所涉及的非接触式供电系统A,如图1所示,具备:埋设于地面的地上供电装置S、和接受来自地上供电装置S的供电的移动车辆M。非接触式供电系统A基于非接触式供电方式之一的磁场共振方式,以非接触方式从地上供电装置S向移动车辆M供应电力。
[0017]地上供电装置S例如埋设于交差路口或者道口的停车位置、或停车场的停车位置等,对停在这些停车位置的移动车辆M以非接触方式进行供电。如图1所示,地上供电装置S具备:电源1、整流电路2、供电电路3、供电线圈4、供电用外罩5、供电用气体供排气机构
6、及供电用控制部7。
[0018]电源I的输出端与整流电路2的输入端连接,是向整流电路2供给向移动车辆M的供电所需要的交流电力的交流电源。电源I是例如供给200V或者400V等的三相交流电力、或100V的单相交流电力的系统电源。
[0019]整流电路2的输入端与电源I连接,其输出端与供电电路3连接。整流电路2对从电源I供给的交流电力进行整流,变换为直流电力,并向供电电路3输出所述直流电力。
[0020]供电电路3的输入端与整流电路2连接,其输出端与供电线圈4的两端连接。供电电路3具备与供电线圈4构成供电侧共振电路的共振用电容器。供电电路3是基于从供电用控制部7输入的控制指令,将从整流电路2供给的直流电力变换为频率比电源I的交流电力高的交流电力(高频电力),向供电线圈4供给的一种逆变器。
[0021 ] 供电线圈4是具有既定的线圈直径的螺旋形线圈或圆筒形线圈(solenoidcoil)。供电线圈4例如以使其线圈轴为上下方向(垂直方向)的姿势,在利用塑料、纤维强化塑料、陶瓷、或它们的复合材料等的非磁性材料来模组化的状态下,设置在上述的停车位置。供电线圈4两端与供电电路3的输出端连接,从供电电路3被供给高频电力而产生磁场,从而以非接触方式对移动车辆M进行供电。供电线圈4只要能磁耦合,其线圈轴处于水平方向的姿势也可,也可以以一定角度倾斜。
[0022]供电用外罩5是将橡胶等的伸缩自如的弹性材料成形为膜状而形成为袋状的一种气球,在内包供电线圈4的状态下设置在地面。供电用外罩5被密闭,若从供电用气体供排气机构6供给气体(例如空气),则如图2A所示供电线圈4的周围膨胀。此外,如图2B所示,供电用外罩5中,在膨胀的状态下供电线圈4的受电线圈11侧的抵接面的部位形成为磁通穿透部5a。供电用外罩5中,在膨胀的状态下磁通穿透部5a以外的部位形成为磁通屏蔽部5b。此外,未抵接的情况下,供电用外罩5、受电用外罩15如图2C所示地膨胀。
[0023]磁通穿透部5a是在作为母材的膜状弹性材料的表面及内部附着或混合铁氧体等的高透磁率材料的粉体而形成的。磁通穿透部5a也可以具有相对于磁通的穿透性能和伸缩性能这两者,但是抵接的部分也可以不伸缩。磁通屏蔽部5b是在作为母材的膜状弹性材料的表面或内部附着或混合铝或铜粉等的由磁通屏蔽材料构成的顺磁性粉体而形成的。磁通屏蔽部5b具有相对于磁通的屏蔽性能和伸缩性能这两者。
[0024]供电用气体供排气机构6是基于从供电用控制部7输入的控制指令向供电用外罩5内供给气体,并且从供电用外罩5排出气体的一种泵。供电用控制部7具备微处理器、存储器等,是基于既定的供电用控制程序发挥功能的软件型控制装置。供电用控制部7控制供电电路3及供电用气体供排气机构6。对于供电用控制部7的处理的细节,将在后述的动作说明中进行说明。
[0025]移动车辆M是由驾驶员驾驶而行驶在道路上的汽车,例如以电力为动力源行驶的电动车或混合动力车。如图1所示,移动车辆M具备受电线圈11、受电电路12、充电电路
13、电池14、受电用外罩15、受电用气体供排气机构16、及受电用控制部17。此外,虽然在图1中进行了省略,但是移动车辆M还具备引擎、行驶马达、操作方向盘、及制动器等的行驶所需要的构成要素。移动车辆M未必一定为作为动力源使用电力的车辆,但是能够向移动车辆的电力使用设备供给电力。
[0026]受电线圈11是具有与地上供电装置S的供电线圈4大致相同的线圈直径的螺旋形线圈或圆筒形线圈。受电线圈11以使其线圈轴例如成为上下方向(垂直方向)的姿势,设置在移动车辆M的底部,以能与供电线圈4磁耦合。受电线圈11的两端与受电电路12的输入端连接,若供电线圈4的磁场作用,则因电磁感应或磁场共振而产生电动势,将所述电动势向受电电路12输出。受电线圈11如果能磁耦合,则其线圈轴设为水平方向的姿势也可,也可以以一定角度倾斜。
[0027]受电电路12的输入端与受电线圈11的两端连接,其输出端与充电电路13的输入端连接。受电电路12具备与受电线圈11构成受电侧共振电路的共振用电容器。受电电路12是将从受电线圈11供给的交流电力变换为直流电力,向充电电路13供给所述直流电力的一种整流电路。此外,受电电路12的共振用电容器的静电容量被设定为使供电侧共振电路的共振频率和受电侧共振电路的共振频率为同一频率。
[0028]充电电路13的输入端与受电电路12的输出端连接,其输出端与电池14的输入端连接,将从受电电路12供给的电力(直流电力)对电池14进行充电。电池14是搭载于移动车辆M的可再充电的电池(例如,锂离子电池、镍氢电池等的二次电池),向行驶马达等(未图示)供给驱动电力。
[0029]受电用外罩15是与上述的供电用外罩5同样地将橡胶等的伸缩自如的弹性材料成形为膜状并形成为袋状的一种气球,以内包受电线圈11的状态下设置于移动车辆M的底部。受电用外罩15被密闭,若从受电用气体供排气机构16供给气体(例如空气),如图2A所示受电线圈11的周围膨胀。此外,如图2B所示,受电用外罩15中,在膨胀的状态下相当于受电线圈11的端面(下表面)的正下方的部位形成为磁通穿透部15a。受电用外罩15中,在膨胀的状态下磁通穿透部15a以外的部位形成为磁通屏蔽部15b。
[0030]磁通穿透部15a与上述的供电用外罩5的磁通穿透部5a同样,是在作为母材的膜状弹性材的表面或内部附着或混合铁氧体等的高透磁率材料的粉体而形成的。磁通穿透部15a也可以具有相对于磁通的穿透性能和伸缩性能这两者,但是也可以不伸缩。磁通屏蔽部15b与上述的供电用外罩5的磁通屏蔽部5b同样,是在作为母材的膜状弹性材的表面或内部附着或混合由铝、铜粉等构成的磁通屏蔽材料构成的顺磁性粉体而形成的。磁通屏蔽部15b具有相对于磁通的屏蔽性能和伸缩性能这两者。
[0031]受电用气体供排气机构16是基于从受电用控制部17输入的控制指令向受电用外罩15内供给气体,并且从受电用外罩15排出气体的一种泵。受电用控制部17是具备微处理器或存储器等,并基于既定的受电用控制程序发挥功能的软件型控制装置。受电用控制部17控制充电电路13及受电用气体供排气机构16。对于供电用控制部7的处理细节,将在后述的动作说明中进行说明。
[0032]接着,对构成的本非接触式供电系统A的动作进行说明。
[0033]首先,对非供电时的移动车辆M及地上供电装置S的动作进行说明。移动车辆M的受电用控制部17,在非供电时(例如由用户正常驾驶移动车辆M时),受电用外罩15膨胀的情况下,会防碍移动车辆M的行驶。对此,以使受电用外罩15完全收缩的方式,使受电用气体供排气机构16排出受电用外罩15内的气体。此外,受电用控制部17停止充电电路13。另一方面,地上供电装置S的供电用控制部7,在非供电时(B卩,作为供电对象的移动车辆M未停在停车位置时),停止供电电路3。与此同时,供电用控制部7以使供电用外罩5完全收缩的方式,使供电用气体供排气机构6排出供电用外罩5内的气体。
[0034]然后,用户驾驶移动车辆M,使移动车辆M移动到地上供电装置S的设置场所并停车。移动车辆M的受电用控制部17根据声波传感器或光传感器等的位置传感器(未图示)的输出,掌握地上供电装置S的设置位置。受电用控制部17根据如上述的声波传感器或光传感器等的位置传感器的输出,探测出移动到地上供电装置S的上方的情况。探测到的受电用控制部17,如图2A及图2B所示,以使受电用外罩15抵接到供电用外罩5地膨胀的方式,使受电用气体供排气机构16供给气体。此外,然后,受电用控制部17使充电电路13开始充电准备动作。
[0035]利用压力传感器(未图示)监视受电用外罩15的内部压力,通过以既定压力抵接而受电用控制部17使充电电路13开始充电动作。
[0036]地上供电装置S的供电用控制部7根据与移动车辆M相同的声波传感器或光传感器等的位置传感器(未图示)的输出,掌握移动车辆M的位置。供电用控制部7根据声波传感器或光传感器等的位置传感器的输出,探测移动车辆M移动到地上供电装置S的上方而停止的情况。探测到的供电用控制部7以使供电用外罩5抵接到受电用外罩15而完全膨胀的方式,使供电用气体供排气机构6供给气体。此外,然后,供电用控制部7使供电电路3开始电池14的供电准备动作。
[0037]利用压力传感器(未图示),监视受电用外罩15的内部压力,通过以既定压力抵接而受电用控制部17能够使充电电路13开始充电动作。
[0038]此外,确认抵接状态,并测量气体供给量和外罩的内部压力,从而能够确认供电线圈与受电线圈间的距离或相对位置并调节供电的高频电力的频率。
[0039]再者,通过气体供给量和各外罩的内部气体的压力,确认外罩的抵接状态,并确认是否能供电。
[0040]通过上述动作,如图2A及图2B所示,地上供电装置S的供电用外罩5和移动车辆M的受电用外罩15,以磁通穿透部5a和磁通穿透部15a抵接的状态接触。S卩,在磁耦合的供电线圈4的磁通端面与受电线圈11的磁通端面之间,配置有磁通穿透部5a及磁通穿透部15a。另一方面,在供电线圈4的周面(侧方)配置有磁通屏蔽部5b,在受电线圈11的周面(侧方)配置有磁通屏蔽部15b。
[0041]在上述的状态下,高频电力从供电电路3供给到供电线圈4。当供给高频电力时,从供电线圈4的端面辐射的磁通(主磁通)经由磁通穿透部5a及磁通穿透部15a,入射到受电线圈11的端面,并共振。从各线圈的两端辐射的磁通经由磁通穿透部5a及磁通穿透部15a而在供电用外罩5内和受电用外罩15内I禹合并共振。
[0042]另一方面,关于从供电线圈4和受电线圈11的端面辐射的磁通(漏磁通),由磁通屏蔽部5b及磁通屏蔽部15b屏蔽上述磁通向供电用外罩5及受电用外罩15外部的泄漏。
[0043]移动车辆M的受电用控制部17 —边监视电池14的充电状态一边控制充电电路13,从而适宜地对电池14进行充电。受电用控制部17探测出电池14成为充满电状态的情况。探测到的受电用控制部17控制受电用气体供排气机构16,使受电用外罩15完全收缩,从而解除上述抵接状态。探测到的受电用控制部17停止供电电路3的控制,并且控制供电用气体供排气机构6,使供电用外罩5完全收缩。然后,当用户通过显示器等(未图示)认识到充满电状态时,驾驶移动车辆M,从地上供电装置S的设置场所移动。另一方面,地上供电装置S的供电用控制部7根据声波传感器或光传感器等的位置传感器(未图示)的输出探测出移动车辆M移动的情况。
[0044]依据本实施方式,通过磁通屏蔽部5b及磁通屏蔽部15b,防止供电线圈4的漏磁通泄漏到供电用外罩5及受电用外罩15的外部的情况。其结果,能比现有技术更加减少漏磁通。此外,依据本实施方式,在供电线圈4的磁通端面与受电线圈11的磁通端面之间,配置有磁通穿透部5a及磁通穿透部15a。由此,能够减少相对主磁通的磁阻。其结果,能比现有技术进一步提高高频电力的传输效率。而且,依据本实施方式,供电线圈4和受电线圈11之间的空间被供电用外罩5及受电用外罩15所占有。因而,能够完全防止向供电中的供电线圈4与受电线圈11之间的异物侵入。
[0045]此外,通过气体供给量和各外罩的内部气体的压力,确认外罩的抵接状态,若在外罩膨胀时存在异物,则抵接状态因异物而成为异常状态,可以确信不能供电。
[0046]而且,依据本实施方式,地上供电装置S与移动车辆M之间的电力传输采用磁场共振方式。该磁场共振方式与电磁感应方式相比,对供电线圈4和受电线圈11的错位适应能力强(可以允许错位),能够以较弱的磁场实现高效率且远距离的电力传输。因而,依据本实施方式,与采用电磁感应方式的装置相比,不需要高精度的定位机构(以上述的声波传感器、光传感器等的通用的位置传感器就足够)。其结果,能够以低成本实现地上供电装置S与移动车辆M之间的电力传输。
[0047]以上,对本发明的实施方式进行了说明,但本发明并不局限于上述实施方式,例如可以考虑如下的变形。
[0048]( I)上述实施方式中,在地上供电装置S设置供电用外罩5并且在移动车辆M设置受电用外罩15,但是本发明并不限定于此。例如,在地上供电装置S和移动车辆M的任一个上设置供电用外罩5或受电用外罩15,通过该I个外罩覆盖供电线圈4及受电线圈11也可。图3中例了例如仅在移动车辆M设置受电用外罩15的情况。即,受电用外罩15内包受电线圈11,并且通过膨胀还覆盖供电线圈4。该情况下,受电用外罩15的磁通穿透部15a,如图3所示,与供电线圈4的磁通端面相接。磁通端面在水平方向的情况下也通过根本覆盖而确保磁耦合。
[0049](2)在上述情况下,也可以利用干扰(jamming)转移现象。即,通过向受电用外罩15内一起供给气体和粉体,使受电用外罩15内充满粉体的同时使受电用外罩15膨胀,从而覆盖供电线圈4。然后,仅排出受电用外罩15内的气体,从而将受电用外罩15内的粉体伪固形物化。该状态下,粉体以覆盖供电线圈4及受电线圈11的状态固形化。由此,能够对供电线圈4固定受电线圈11。
[0050](3)而且,除了图3所示的以外作为与上述实施方式不同的形状的外罩,也可为在供电线圈4及受电线圈11之间未配置相对于磁通的穿透性能高的磁通穿透部5a及磁通穿透部15a的仅由硅橡胶等伸缩自如的弹性体构成的外罩。即,仅由母材形成与磁通穿透部5a及磁通穿透部15a相通的部位,并覆盖供电、受电线圈4、11的周围和供电、受电线圈4、11的线圈间也可。
[0051](4)在上述实施方式中,供电装置为埋设于地面的地上供电装置S,受电装置为地上行驶的移动车辆M。本发明并不局限于此。例如,也可为供电装置是设置在水中的水中供电装置,受电装置是水中移动的水中航行体。此外,在调查水中的水质等的情况下,上述水中航行体必须向外部取出水质数据。该情况下,也可以在水中供电装置的供电用外罩5及水中航行体的受电用外罩15的内部设置通信天线,经由所述通信天线向外部取出水质数据。即,经由通信电缆将水中供电装置与地上的水质数据管理装置等有线连接,水中航行体在传输电力时(电池14充电时)经由通信天线向水中供电装置无线发送水质数据,水中供电装置经由通信天线向水质数据管理装置等有线发送从水中航行体接收的水质数据也可。
[0052]此外,作为向外罩内供给的流体,除了气体体以外也可为液体。特别是在磁场共振方式的情况下,如果液体的种类具有对线圈或外罩不造成损伤的性质,则可为具有离子性的盐水,也可为蒸留水、酒精等。特别是由于气体和液体的比重不同,所以通过与气体并用,能够调节供电装置或受电装置的平衡。
[0053](5)在上述实施方式中,作为非接触式供电的方法采用了磁场共振方式,但是也可以采用电磁感应方式。
[0054](6)在上述实施方式中,仅在供电时使供电用外罩5及受电用外罩15膨胀,在非供电时使供电用外罩5及受电用外罩15收缩。本发明并不限定于此。如果不妨碍移动车辆M的行驶,在非供电时,使供电用外罩5及受电用外罩15膨胀也可。在该情况下,供电用气体供排气机构6及受电用气体供排气机构16可以省略。
[0055](7)在上述实施方式中,说明了供电用外罩5及受电用外罩15膨胀的情况下是具有角部的大体球状或大体半球状,但是膨胀时的形状并不限定于此。该情况下,以成为圆锥梯形或直方体的方式将不具有弹性的构件或弹性低的构件构成与具有弹性的构件组合而构成以膜状弹性体构成的外罩的一部分。
[0056]产业上的利用可能性
依据本发明,屏蔽从供电线圈及受电线圈和构成线圈间的非接触式供电空间向周围辐射的漏磁通,能够比现有技术更加减少辐射的漏磁通。
[0057]符号说明
A非接触式供电系统;S地上供电装置;M移动车辆;I电源;2整流电路;3供电电路;4供电线圈;5供电用外罩;6供电用气体供排气机构;7供电用控制部;11受电线圈;12受电电路;13充电电路;14电池;15受电用外罩;16受电用气体供排气机构;17受电用控制部;5a, 15a磁通穿透部;5b, 15b磁通屏蔽部。
【权利要求】
1.一种非接触式供电系统,具备:包括供电线圈的供电装置、和包括受电线圈的受电装置,通过非接触式供电进行从所述供电线圈到所述受电线圈的电力供给, 所述非接触式供电系统包括外罩,该外罩设在所述供电装置及所述受电装置的至少一个上,通过覆盖所述供电线圈及所述受电线圈的周围和线圈间的周围而屏蔽漏磁通。
2.根据权利要求1所述的非接触式供电系统,其中, 所述外罩伸缩自如且被密闭, 还具备气体供排气机构,其在供电时,通过向所述外罩供给气体而使所述外罩膨胀,覆盖所述供电线圈及所述受电线圈的周围和线圈间的周围,从而使得与所述外罩外部处于屏蔽状态,此外在非供电时,通过排出所述外罩内的气体而使所述外罩收缩,从而解除所述屏蔽状态。
3.根据权利要求1所述的非接触式供电系统,其中, 所述外罩中,在位于所述供电线圈与所述受电线圈之间的部位配置有透磁率比其他部位高的材料。
4.根据权利要求1所述的非接触式供电系统,其中, 所述受电装置是向电池充电所受到的电力且根据所述电池的电力来驱动的移动车辆。
【文档编号】H02J7/00GK104081482SQ201380007946
【公开日】2014年10月1日 申请日期:2013年2月6日 优先权日:2012年2月6日
【发明者】前川祐司 申请人:株式会社 Ihi