共直流电源的电源转换器及供电装置的制作方法

文档序号:21199266发布日期:2020-06-23 19:07阅读:200来源:国知局
共直流电源的电源转换器及供电装置的制作方法

本发明系有关一种电源转换器与供电装置,尤指一种共直流电源的电源转换器以及具有该共直流电源的电源转换器的供电装置。



背景技术:

不断电系统(uninterruptiblepowersystem,ups)用于在电网异常或停电的情况下不间断地为电器等负载设备提供备援交流或直流电源的供电,以维持电器正常运作的设备。在通常情况下,不断电供电装置被用于维持计算机、服务器等关键性商用设备或精密仪器的不间断的供电,防止数据损失、通讯中断或装置失去控制。在实际使用中,基于提高电源供电可靠度或需求功率的考虑,可同时使用两组(台)以上的ups进行并联耦接,形成双机或多机ups架构。再者,为节省可充电电池,例如蓄电池所占的体积,因此两组(台)以上的ups可共同使用单一可充电电池作为备援电源之用。

对于直流输出级(直流输出转换器)而言,基于满足高输出电压的需求以及耐压的要求,可使用两个电容串联连接(于耦接点)的方式提供双总线(bus)的直流输出,多个直流输出转换器通过将该些耦接点共接,实现并联供电的操作。由于该些耦接点共接的缘故,在共直流电源情况下,将使得不同直流输出转换器之间形成电流的回流路径,即输入电流会经由一组直流输出转换器流经另一组直流输出转换器造成电流回流,造成另一组直流输出转换器电流过流的状况发生。

欲抑制或改善所述电流回流的状况,若透过增设电感元件并将各个路径的电感电流独立控制,或增设开关元件,透过关断开关元件的控制切断回流电流,虽可以抑制不同直流输出转换器之间电流回流的问题,惟所增设的电感元件和/或开关元件以及相应的控制电路,不仅提高了成本,也增添了电路控制的复杂度与困难度。

为此,如何设计出一种共直流电源的电源转换器及供电装置,来解决前述的技术问题,乃为本案发明人所研究的重要课题。



技术实现要素:

本发明的目的在于提供一种共直流电源的电源转换器,解决因耦接点彼此耦接所造成不同直流输出转换器之间电流回流的问题。

为了达到前述目的,本发明所提出的共直流电源的电源转换器,包括直流电源与耦接直流电源的至少二个电源模块。各电源模块彼此耦接,且包括耦合式电感元件、直流输出转换单元以及电容组。耦合式电感元件耦接直流电源。直流输出转换单元耦接耦合式电感元件。电容组耦接直流输出转换单元,电容组具有串联耦接的二个电容器,二个电容器之间具有一耦接点。所述至少二个电源模块通过耦接点彼此耦接。

借由所提出的共直流电源的电源转换器,能够解决因耦接点彼此耦接所造成各电源模块间电流回流的问题,使得降低电路成本,并且简化电路控制上的复杂度与困难度。

本发明的另一目的在于提供一种供电装置,解决因耦接点彼此耦接所造成不同直流输出转换器之间电流回流的问题。

为了达到前述目的,本发明所提出的供电装置,应用于对负载供电,供电装置包括前述的共直流电源的电源转换器与至少二个直流输入转换单元。各直流输入转换单元具有输入端与输出端,输入端对应耦接各直流输出转换单元与各电容组,输出端耦接负载。

借由所提出的供电装置,能够解决因耦接点彼此耦接所造成各电源模块间电流回流的问题,使得降低电路成本,并且简化电路控制上的复杂度与困难度。

附图说明

图1为本发明共直流电源的电源转换器的一实施例的电路图;

图2为本发明共直流电源的电源转换器的另一实施例的电路图;

图3为本发明共直流电源的电源转换器的耦合式电感元件的示意图;

图4为本发明共直流电源的电源转换器应用于不断电供电装置的第一实施态样的功能架构方块示意图;以及

图5为本发明共直流电源的电源转换器应用于不断电供电装置的第二实施态样的功能架构方块示意图。

其中附图标记为:

1电源模块

11耦合式电感元件

12直流输出转换单元

13电容组

b1直流电源

c1、c1’、c1”第一电容器

c2、c2’、c2”第二电容器

d1、d1’、d1”第一二极管

d2、d2’、d2”第二二极管

d3、d3’、d3”第三二极管

d4、d4’、d4”第四二极管

q1、q1’、q1”第一功率开关

q2、q2’、q2”第二功率开关

p1、p1’、p1”输入电感

n、n’、n”耦接点

i1、i1’、i1”第一电流

i2、i2’、i2”第二电流

in_1第一输入端

out_1第一输出端

in_2第二输入端

out_2第二输出端

100铁心

14、14’直流输入转换单元

l1第一电源输出端

l2第二电源输出端

l”火线输出端

n”’中性线端

b_in输入端

b_out输出端

具体实施方式

以下借由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭示的内容轻易地了解本发明的其他优点及功效。本发明亦可借由其他不同的具体实例加以施行或应用,本发明说明书中的各项细节亦可基于不同观点与应用在不悖离本发明的精神下进行各种修饰与变更。须知,本说明书所附图式绘示的结构、比例、大小、元件数量等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应落在本发明所揭示的技术内容得能涵盖的范围内。兹有关本发明的技术内容及详细说明,配合图式说明如下。

请参阅图1与图3所示,其中,图1为本发明共直流电源的电源转换器的一实施例的电路图;图3为本发明共直流电源的电源转换器的耦合式电感元件的示意图。

本发明的共直流电源的电源转换器的一实施例中,其包括:一直流电源b1以及至少二个电源模块1,在本实施例中电源模块1具有两个。其中,二个电源模块1耦接直流电源b1;各电源模块1彼此耦接且包括耦合式电感元件11、直流输出转换单元12以及电容组13。

进一步而言,耦合式电感元件11耦接直流电源b1,第一电流i1流进耦合式电感元件11,且流回直流电源b1一第二电流i2。直流输出转换单元12耦接耦合式电感元件11,直流输出转换单元12接收第一电流i1,且第二电流i2经由直流输出转换单元12流回直流电源b1。电容组13耦接直流输出转换单元12,电容组13具有串联耦接的二个电容器(如图1所示的c1、c2),二个电容器分别为第一电容器c1与第二电容器c2。第一电容器c1与第二电容器c2之间具有一耦接点n,即第一电容器c1与第二电容器c2耦接于耦接点n上,耦接点n可用以连接交流电源系统的中性线端。其中,各电源模块1通过各耦接点n彼此耦接,在本实施例中,共有两个耦接点n。流出直流电源b1的第一电流i1与流回直流电源b1的第二电流i2两者电流大小相同。在本实施例中,直流电源b1可为锂电池或者铅酸电池,然不以此为限制本发明。

进一步而言,如图1与图3所示,耦合式电感元件11包括一第一输入端in_1、一第二输入端in_2、一第一输出端out_1以及一第二输出端out_2。其中,第一输入端in_1以及第二输出端out_2分别耦接直流电源b1,第一输出端out_1以及第二输入端in_2分别耦接直流输出转换单元12。其中,第一输入端in_1与第二输出端out_2具有相同极性(如图1的耦合式电感元件11左侧的两个黑圆点所示意)。第二输入端in_2以及第一输出端out_1具有相同极性(如图1的耦合式电感元件11右侧无黑圆点所示意)。第一电流i1通过第一输入端in_1流入耦合式电感元件11,且通过第一输出端out_1流出耦合式电感元件11,且流至直流输出转换单元12。第二电流i2通过第二输入端in_2流入耦合式电感元件11,且通过第二输出端out_2流出耦合式电感元件11,且流至直流电源b1。承前所述,通过使用耦合式电感元件11使得流入耦合式电感元件11的第一输入端in_1的第一电流i1与流出耦合式电感元件11的第二输出端out_2的第二电流i2两者电流大小相同,因此可以使得电流不会通过耦接点n流到其他电源模块1,借此可解决因耦接点n彼此耦接所造成各电源模块间电流回流,而导致电源模块的电流过流的状况发生。

如图3所示,在本实施例中,耦合式电感元件11为一共模扼流圈,或称为共模电感(commonmodechoke),其具有一铁心100与相对设置且相反绕制方向的两股线圈,其中,第一输入端in_1与第一输出端out_1为同一股线圈,第二输入端in_2与第二输出端out_2为同一股线圈。

详细而言,耦合式电感元件11的第一输入端in_1耦接直流电源b1的一正极,且各电源模块1通过第一输入端in_1彼此耦接;第二输出端out_2耦接直流电源b1的一负极,且各电源模块1通过第二输出端out_2彼此耦接。此外,直流输出转换单元12更可耦接交流电源(图中未示),因此,直流电源b1或交流电源可切换地耦接直流输出转换单元12,例如透过控制器控制切换开关,以切换直流电源b1或交流电源耦接直流输出转换单元12,且直流输出转换单元12转换该直流电源b1或交流电源为一直流输出电源,以对该负载提供不断电供电。在本实施例中,直流输出转换单元12用以转换直流输入或交流输入的电源,以提供直流的电源输出,因此直流输出转换单元12可控制为一直流输入-直流输出转换单元(dc-dcconverter),接收直流输入电源并转换其为直流输出电源,或者控制为一交流输入-直流输出转换单元(ac-dcconverter),接收交流输入电源并转换其为直流输出电源。

复见图1所示,直流输出转换单元12包括输入电感p1、第一二极管d1、第二二极管d2、第三二极管d3、第四二极管d4、第一功率开关q1以及第二功率开关q2。输入电感p1耦接耦合式电感元件11的第一输出端out_1。第一二极管d1耦接第二二极管d2于第一共接点,且形成第一支路,其中输入电感p1的一端耦接于第一共接点。第二功率开关q2与第一功率开关q1耦接于第二共接点,且形成第二支路,其中第二支路并联耦接第一支路,且第二共接点耦接耦接点n。第三二极管d3耦接第一二极管d1与第一功率开关q1;第四二极管d4耦接第二二极管d2与第二功率开关q2。第二二极管d2、第二功率开关q2以及第四二极管d4耦接耦合式电感元件11的第二输入端in_2。第三二极管d3耦接于第一二极管d1、第一功率开关q1与电容组13的第一电容器c1之间;第四二极管d4耦接于第二二极管d2、第二功率开关q2与电容组13的第二电容器c2之间。其中,第一功率开关q1与第二功率开关q2可为金属氧化物半导体场效晶体管(mosfet)、双载子接面晶体管(bjt)、绝缘栅双极晶体管(igbt)的其中一者,然不以此为限制本发明。本实施例的直流输出转换单元12仅为一种可能的电路,然不以此为限制本发明,应可理解本领域人员所知输出具有耦接点n位于两电容之间的其它转换电路都可适用本发明。

请参阅图2所示,为本发明共直流电源的电源转换器的另一实施例的电路图,其与前述图1所示的实施例大致相同,惟其具有多个电源模块1,并且,i1与i1’与i1”、i2与i2’与i2”、p1与p1’与p1”、d1与d1’与d1”、d2与d2’与d2”、d3与d3’与d3”、d4与d4’与d4”、c1与c1’与c1”、c2与c2’与c2”、q1与q1’与q1”、q2与q2’与q2”、n与n’与n”皆为相同或相近的电路配置。

请参阅图4以及图5所示,其中,图4为本发明共直流电源的电源转换器应用于供电装置的第一实施态样的功能架构方块示意图;以及图5为本发明共直流电源的电源转换器应用于供电装置的第二实施态样的功能架构方块示意图。

如图4所示,本发明的供电装置的第一实施态样,其应用于对一负载(图中未示)提供不断电供电,包括如前述的共直流电源的电源转换器(包括直流电源b1以及至少二个电源模块1),其中,各直流输出转换单元12除通过耦合式电感元件11耦接直流电源b1外,更可通过切换装置耦接交流电源(图中未示),其中,交流电源的一端(例如火线端)可耦接于耦合式电感元件11与该直流输出转换单元12之间,交流电源的另一端(例如中性线端)则耦接于耦接点n;以及至少二个直流输入转换单元14,各直流输入转换单元14具有输入端b_in以及输出端b_out,输入端b_in耦接共直流电源的电源转换器的直流输出转换单元12与电容组13;输出端b_out耦接负载。在本发明中,各直流输入转换单元14对应耦接各耦合式电感元件11、各直流输出转换单元12与各电容组13形成一电源转换模块,且各电源转换模块彼此间并联。

如果交流电源正常时,控制器控制以切换交流电源耦接直流输出转换单元12,使得交流电源通过直流输出转换单元12以及直流输入转换单元14进行电源转换,以对负载供电。反之,交流电源异常时,控制器控制以切换直流电源b1通过耦合式电感元件11耦接直流输出转换单元12,使得直流电源b1通过直流输出转换单元12以及直流输入转换单元14进行电源转换,以对负载供电。如此,在直流电源b1供电时,耦接点n为耦合式电感元件11而不会发生电流回流的状况。

如图4所示,对负载为直流负载而言,所使用的直流输入转换单元14为直流对直流转换器(dc-to-dcconverter),用以接收电容组13所提供的直流电源,且转换此直流电源为直流电源输出以对直流负载供电。各直流输入转换单元14提供第一电源输出端l1与第二电源输出端l2供负载耦接,第一电源输出端l1与第二电源输出端l2具有相异的极性(例如一者为正极,另一者为负极),且各直流输入转换单元14分别通过第一电源输出端l1以及第二电源输出端l2彼此耦接以达成输出并联。其中,耦接点n与n’之间的耦接连结独立于第一电源输出端l1以及第二电源输出端l2。

如果交流电源正常时,交流电源通过直流输出转换单元12以及电容组13、直流输入转换单元14以及第一电源输出端l1与第二电源输出端l2对负载供电。如果交流电源异常时,直流电源b1通过各电源模块1(包括耦合式电感元件11、直流输出转换单元12以及电容组13)、直流输入转换单元14以及第一电源输出端l1与第二电源输出端l2对负载供电,以维持负载的不断电供电。

如图5所示,若负载为交流负载,可使用的直流输入转换单元14为直流对交流转换器(dc-to-acconverter),用以接收电容组13所提供的直流电源,且转换此直流电源为交流电源输出以对交流负载供电。在此实施例中,电容组13的耦接点n耦接交流负载的一中性线端。各直流输入转换单元14’提供交流火线输出端l”,各直流输入转换单元14’通过火线输出端l”彼此耦接以达成输出并联。各电源模块1的耦接点n、n’耦接负载的中性线端n”’。此实施例的直流输入转换单元14可为一传统半桥逆变器(half-bridgeinverter),然不以此为限制本发明。

如果交流电源正常时,交流电源通过直流输出转换单元12以及电容组13、直流输入转换单元14’以及火线输出端l”与中性线端n”’对负载供电。如果交流电源异常时,直流电源b1通过各电源模块1(包括耦合式电感元件11、直流输出转换单元12以及电容组13)、直流输入转换单元14’以及火线输出端l”与中性线端n”’对负载供电,以维持负载的不断电供电。

综上所述,本发明具有以下的特征与优点:透过使用简单的电路元件-耦合式电感元件,例如共模扼流圈,即可解决因耦接点彼此耦接所造成各直流电源供电时电源模块间电流回流的问题,如此不仅可降低电路成本,亦可简化电路控制上的复杂度与困难度。

以上仅为本发明较佳具体实施例的详细说明与图式,惟本发明的特征并不局限于此,并非用以限制本发明,本发明的所有范围应以下述的权利要求为准,凡合于本发明权利要求的精神与其类似变化的实施例,皆应包含于本发明的范畴中,任何熟悉该项技艺者在本发明的领域内,可轻易思及的变化或修饰皆可涵盖在以下本案的专利范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1