滤波器自动调整电路的制作方法

文档序号:7540227阅读:233来源:国知局
专利名称:滤波器自动调整电路的制作方法
技术领域
本发明涉及用于将滤波器的特性频率调整为目标频率的滤波器自动调整电路,特别是涉及该电路的低功耗化和高精度化。这里所谓特性频率,对于带通滤波器(BPF),就是指中心频率,对于高通滤波器(HPF)或低通滤波器(LPF),就是指截止频率。
背景技术
在通信用的集成电路中,常常使用gm-C滤波器。这就是为了使用电压或电流可变地控制频率特性而利用晶体管的互导(gm;又称跨导)和电容(C)的滤波器,在特开平7-297677号公报、特开2000-101392号公报等中给出了其结构例。
以往,在通信机器的受信部使用的滤波器自动调整电路中,每次受信为了进行滤波器调整而功耗增多,特别是在手提式电话系统中,难于实现等待时间的长时间化,调整动作时的低功耗化就是要解决的课题。另外,在手提式电话系统中,需要相对于中心频率具有约5%的频带的窄频率BPF,从而必须在短时间内高精度(约0.2~0.3%)地调整其中心频率。
在特开昭63-167511号公报(特公平7-120923号公报)中公开了用于调整作为gm-C滤波器之一的四次方(biquad)滤波器的下陷频率的滤波器自动调整电路。该调整电路内置于电视接收器的声音多重解调用集成电路中,将一定频率的正弦波信号输入被调整滤波器,通过利用微电脑控制数模变换器(DAC)的输出来逐渐地改变滤波器特性,将滤波器输出的电平检波输出横切指定的基准电平时的2个DAC输入值的平均值作为最佳的调整值,并将该调整值存储在非易失性存储器中。
在特开平5-114836号公报中公开了用于调整gm-C滤波器的特性频率和Q值(Q值表示该滤波器的频率选择性)的滤波器自动调整电路。该调整电路将脉冲信号、或阶跃信号输入被调整滤波器,取代正弦波信号,将在该滤波器的输出中出现的振动波形用模数变换器(ADC)变换为数字化,并输入微电脑,通过对该振动波形进行拉普拉斯变换处理,由该微电脑计算出被调整滤波器的特性频率和Q值。这样,在检测被调整滤波器的特性之后,为了修正与目标特性的偏离,决定特性频率用DAC和Q值用DAC的各自的调整值,并将这些调整值存储到非易失性存储器中。并且,在使用滤波器时,利用非易失性存储器存储的调整值控制滤波器特性。
特开2000-59162号公报公开的滤波器自动调整电路将脉冲信号或阶跃信号输入被调整滤波器,测量在该滤波器的输出中出现的振动波形的周期,根据该测量结果检测该滤波器的特性频率,为了修正与目标频率的偏离,控制该滤波器的特性。但是,在发生电源电压变化或温度变化时就要进行滤波器调整。
此外,特开昭63-167511号公报(特公平7-120923号公报)的现有技术是一点一点地改变DAC输入值来搜寻最佳的调整值,所以,滤波器调整需要长的时间。特别是在向手提式电话系统的应用中,每次接收都要进行滤波器调整,从而调整工作要消耗很多功率。另外,高精度的模拟电平检波器也难于实现,从而难于实现在手提式电话系统中要求的约0.2~0.3%的高的频率调整精度。
特开平5-114836号公报的现有技术是由微电脑进行用于计算被调整滤波器的特性频率和Q值的拉普拉斯变换处理,所以,该微电脑的负担太重。
特开2000-59162号公报的现有技术是在每次发生电源电压变化或温度变化时进行滤波器调整,所以,滤波器特性的调整要消耗很多功率。而且,在噪声重叠到在滤波器输出中出现的振动波形上时,周期测量结果将发生大的误差,从而难于实现高精度的特性频率调整。

发明内容
本发明的目的旨在提供适用于手提式电话系统的受信部等使用的滤波器的调整的抗噪声强、精度高并且可以实现低功耗化的滤波器自动调整电路。
为了达到上述目的,本发明利用脉冲信号或阶跃信号检测和调整被调整滤波器的特性频率,并将该调整结果存储到存储器中作为再利用的信息。而且,只有在滤波器调整时才将该滤波器的电路结构变更为具有适合于调整的高的SN比(信噪比)的电路结构。
具体而言,本发明的滤波器自动调整电路是用于将滤波器的特性频率调整为目标频率的电路,具有在该滤波器调整时,用于将上述滤波器的本来的电路结构变更为具有与上述本来的电路结构相同的特性频率,并且具有比上述本来的电路结构改善了的SN比的调整专用的电路结构的电路结构变更单元、在将脉冲信号或阶跃信号作为试验信号输入具有上述调整专用的电路结构的滤波器时测量在该滤波器的输出中出现的振动波形的周期,并根据该周期测量结果检测该滤波器的特性频率,从而为了修正与上述目标频率的偏离而向该滤波器供给调整信号的特性调整电路,和在发出用于起动该特性调整电路的调整命令后,存储上述滤波器的特性频率与上述目标频率之差已进入允许范围内时的上述调整信号,并在上述滤波器使用时返回到该滤波器的本来的电路结构而停止上述特性调整电路的动作,从而利用上述存储的调整信号控制上述滤波器的特性的控制器。
上述电路结构变更单元具有在上述滤波器调整时增大该滤波器的增益的单元、在上述滤波器调整时增大该滤波器的Q值的单元或在上述滤波器调整时使该滤波器以和该滤波器的特性频率相同的频率振荡的单元。


图1是表示本发明的滤波器自动调整电路的结构例的框图。
图2是用于说明图1中的升降计数器的动作的图。
图3是表示图1中的gm-C滤波器的第1结构例的框图。
图4是表示图3中的初级互导放大器的内部结构例的框图。
图5是表示图1中的gm-C滤波器的第2结构例的框图。
图6是表示图1中的gm-C滤波器的第3结构例的框图。
图7是表示图1中的gm-C滤波器的第4结构例的框图。
图8是表示本发明的滤波器自动调整电路的其他结构例的框图。
图9是使用本发明的滤波器自动调整电路的手提式电话系统的框图。
具体实施例方式
图1是表示本发明的滤波器自动调整电路的结构例的图。在图1中,10表示通信机器的受信部,具有作为窄频带BPF的gm-C滤波器11。图1中的带非易失性存储器的微电脑20、特性调整电路30、DAC40和相位同步环(PLL)电路50构成用于将gm-C滤波器11的中心频率f0调整为目标频率f0t的滤波器自动调整电路。如后面所述,gm-C滤波器11本身也可以构成为在其中心频率调整时,具有与本来的电路结构相同的中心频率f0并且可以将其电路结构变更为具有改善了的SN比的调整专用的电路结构。
特性调整电路30具有分频器31、试验信号发生器32、计数器33、频率检测器34和升降计数器35。是用于高精度地修正gm-C滤波器11的中心频率f0与目标频率f0t的偏离的电路。首先,分频器31是用于将作为基准信号从PLL电路50供给的时钟信号(频率fclk例如88.2MHz)分频的电路块。试验信号发生器32根据微电脑20发出的调整命令而起动,根据分频后的时钟信号发生试验信号,并将该试验信号供给gm-C滤波器11。该试验信号可以是包含gm-C滤波器11的中心频率f0的成分的信号,也可以是脉冲信号或阶跃信号。特别是脉冲信号包含所有频率的正弦波成分,所以,非常合适。与此相应地,在gm-C滤波器11的输出中将出现频率f0的振动波形。计数器33用于是使用作为基准信号从PLL电路50供给的时钟信号测量在gm-C滤波器11的输出中出现的振动波形的周期的电路块。频率检测器34根据计数器33的测量结果检测gm-C滤波器11的中心频率f0,并将该中心频率f0与目标频率f0t之差即频率误差Δf供给升降计数器35。升降计数器35如后面所述的那样根据频率误差Δf改变数字输出值。
DAC40接收升降计数器35的输出值,作为调整信号,通过将与该调整信号相应的模拟控制输出(电压或电流)供给gm-C滤波器11,来调整该gm-C滤波器11的中心频率f0。
PLL电路50由温度补偿型晶体振荡器(TCXO)51、相位比较器(PD)52、充电泵(CP)53、LPF54、电压控制振荡器(VCO)55和分频器(1/N)56构成,用以发生供给特性调整电路30的高精度的基准信号。VCO55的振荡频率是例如705.6MHz。为了可以发生具有88.2MHz以外的任意频率的基准信号,在分频器56中也可以使用程序控制计数器。
带非易失性存储器的微电脑20具有在发出用于起动试验信号发生器32的调整命令后存储gm-C滤波器11的中心频率f0与目标频率f0t之差进入允许范围内时的升降计数器35的输出值即DAC输入值,在包含gm-C滤波器11的受信部10使用时,停止特性调整电路30的动作并且将该存储值供给DAC40的功能。这样,便可降低特性调整电路30的功耗。另外,如果将多次试验的多个DAC输入值求平均并存储到带非易失性存储器的微电脑20中,便缓和周期测量结果的量化误差,减少统计上的弥散,所以,可以提高调整精度。
此外,上述gm-C滤波器11采用2次的BPF时,设角频率为ω、该滤波器的中心角频率为ω0、Q值为Q、j=(-1)、s=jω,则其传递函数H(s)可以表示为H(s)=(ω0×s/Q)/(s2+ω0×s/Q+ω02)…(1)设时间为t,则该滤波器的拉普拉斯反变换后的时间轴应答为K1×e×p{j(ω0/2)×(-1/Q+(1/Q2-4))t}+K2×e×p{j(ω0/2)×(-1/Q-(1/Q2-4))t} …(2)
K1、K2是常数。这里,若Q值非常大时,则有K1×e×p(jω0t)+K2×e×p(-jω0t)…(3)在滤波器的输出中出现中心角频率ω0的振动波形。即,如果将包含gm-C滤波器11的中心频率f0的成分的试验信号供给该gm-C滤波器11,与此相应地,在该gm-C滤波器11的输出中就出现频率f0的振动波形。
这里,供给gm-C滤波器11的试验信号最好是具有比该gm-C滤波器11的中心频率f0的一半低的频率的信号。用于保证计数器33的最低限度1周期的时间测量。设关于中心频率f0的M周期的计数值为Nc,则有f0=fclk×M/Nc…(4)的关系。因此,为了中心频率f0的高精度检测,可以增大作为基准信号从PLL电路50供给计数器33的时钟信号的频率fclk,并且可以增大测量周期的数M。
图2是用于说明图1中的升降计数器35的动作的图。以检测的中心频率f0与目标频率f0t之差即gm-C滤波器11的频率误差Δf为横轴(对数刻度)、以升降计数器35的输出值变化ΔN为纵轴。Δfa是量化的频率误差。升降计数器35如在图2中用实线(特性A)所示的那样,频率误差Δf越大,输出值变化也越大。这样,便可高速地调整中心频率,从而可以降低功耗。而且,升降计数器35如图2中虚线(特性B)所示的那样,在检测的中心频率f0接近目标频率f0t的时刻,降低输出值的控制灵敏度。这样,便可降低噪声引起的控制的混乱,从而可以使中心频率调整稳定。设n为整数时,则升降计数器35的输入位可以是带有±2k(k是0~n-1的整数)的权重的2n位,也可以是升/降的2位。
图3表示图1中的gm-C滤波器11的第1结构例。图3的gm-C滤波器11是具有4个互导放大器(gm放大器)110、111、112及113和2个电容器119及120的2次的BPF。gm放大器110、111、112、113分别具有互导gm1、gm2、gm3、gm4,电容器119和120分别具有电容C1、C2。Vin是滤波器输入电压,Vo是在电容器119的两端出现的滤波器输出电压。实际上,为了可以根据DAC40的模拟控制输出可变地控制滤波器特性,4个gm放大器110~113分别连接可变电流源,但是,图中只表示出了其中与初级gm放大器110连接的电流源(I01)124。该初级gm放大器110是决定gm-C滤波器11的增益的放大器,进而通过开关(S1)123连接滤波器调整专用的电流源(I02)125。图3的gm-C滤波器11的传递函数H(s)、增益G、中心角频率ω0、Q值分别为H(s)=(s·gm1/C1)/{(s2+s·gm2/C1)+gm3·gm4/(C1·C2)} …(5)G=gm1/gm2 …(6)ω0=2πf0={gm3·gm4/(C1·C2)} …(7)Q=(gm3·gm4·C1/C2)/gm2…(8)图4表示图3这的初级gm放大器110的内部结构例。初级gm放大器110由2个双极性晶体管140及141和2个电流源142及143构成。Vcc是电源。两个双极性晶体管140及141与电容器119和电流源142及143一起构成积分器。图3中的其他gm放大器111、112、113的内部结构和图4的初级gm放大器110相同。此外,也可以采用MOSFET,取代双极性晶体管140及141。
开关123仅在滤波器调整时闭合。两个晶体管140及141的共同的发射极电流在开关123断开的状态为I01,在开关123闭合的状态为I01+I02。这里,设温度为T、玻尔兹曼常数为k、电子的电荷为q,则两个晶体管140及141的阈值电压Vt为Vt=kT/q …(9)在滤波器非调整时,有gm1=I01/Vt …(10)在滤波器调整时,则有gm1=(I01+I02)/Vt …(11)即,由此可知,在滤波器调整时,gm1增大,从而根据式(6),gm-C滤波器11的增益增大。但是,由式(7)和式(8)可知,即使gm1增大,gm-C滤波器11的中心角频率和Q值也不变化。
在图4中,作为主要的噪声源,可以认为就是两个晶体管140及141发生的散粒噪声。设两个晶体管140及141的共同的发射极电流为I0(I01或I01+I02)、带宽为ΔF,则散粒噪声In可以表为In2=2qI0ΔF…(12)初级gm放大器110的输入换算噪声Vn为Vn=(In2)/gm1=(2qI0ΔF)/I0/Vt=Vt√(2qΔF/I0) …(13)即,在滤波器调整时,通过增大电流I0,便可减小输入换算噪声,从而可以改善gm-C滤波器11的SN比。
如上所述,如果采用图3的gm-C滤波器11,在进行特性调整时,通过将开关123闭合而增大该滤波器的增益,便可实现具有和本来的电路结构相同的中心频率f0并且具有改善了的SN比的调整专用的滤波器结构。因此,可以得到抗噪声强并且高精度的滤波器调整。开关123的通/断控制由利用微电脑20的调整命令而起动的试验信号发生器32或微电脑20本身进行。在包含gm-C滤波器11的受信部10使用时,开关123断开,恢复为该滤波器本来的电路结构,结果,就减少了gm-C滤波器11本身的功耗。
图5表示图1中的gm-C滤波器11的第2结构例。图5的gm-C滤波器11是除了图3的结构外还具有5个gm放大器114、115、116、117及118和2个电容器121及122的4次的BPF。gm放大器114、115、116、117、118分别具有互导gm5、gm6、gm7、gm8、gm9,电容器121、122分别具有电容C3、C4。Vin是滤波器输入电压,Vo是出现在电容器122的两端的滤波器输出电压。实际上,为了根据DAC40的模拟控制输出可变地控制滤波器特性,5个gm放大器114~118分别与可变电流源连接,但是,图中只表示出了其中与增益调整用的gm放大器114连接的电流源(I03)127。但是,该电流源127通过仅在滤波器调整时断开的开关(S2)126与该gm放大器114连接。
在图5的gm-C滤波器11中,将gm放大器114与电流源127连通的开关126打开时,滤波器输出电压Vo向gm放大器115的输入的反馈路径就被切断,所以,4次BPF就切换为2个2次BPF的串联连接。这里,初级的2次BPF由4个gm放大器110~113和2个电容器119及120构成,第2级的BPF由4个gm放大器115~118和2个电容器121及122构成。并且,通过该切换,虽然该gm-C滤波器11的中心频率不变化,但Q值则增大为1/(2-1)倍,即约2.4倍。结果,3dB下降的带宽缩小为约1/2.4,所以,频带内的噪声减少。而且,由于Q值增大,滤波器输出的振动频率稳定,所以,可以提高滤波器调整精度。
图6表示图1中的gm-C滤波器11的第3结构例。图6的gm-C滤波器11是除了图3的结构外还具有gm放大器128、开关(S3)129和电流源(I04)130的2次的BPF。gm放大器128具有互导gm10。开关129仅在滤波器调整时闭合。
开关129闭合状态的图6的gm-C滤波器11的传递函数H(s)为H(s)=(s·gm1/C1)/{(s2+s·(gm2-gm10)/C1)+gm3·gm4/(C1·C2)} …(14)因此,选择满足gm10>gm2 …(15)的gm10时,gm放大器128起负阻抗的功能,从而可以得到以与滤波器本来的中心频率f0相同的频率振荡的VCO。因此,可以增大式(4)中的测量周期数M,缓和噪声的影响,从而可以提高调整精度。
图7表示图1中的gm-C滤波器11的第4结构例。图7的gm-C滤波器11是除了图5的结构外还具有2个gm放大器128及131、2个开关(S3、S4)129及132和2个电流源(I04、I05)130及133的4次的BPF。gm放大器128、131分别具有互导gm10、gm11。开关129、132仅在滤波器调整时闭合。
在开关129、132闭合的状态下,选择满足gm10>gm2并且gm11>gm9 …(16)的gm10和gm11时,gm放大器128、131分别起负阻抗的功能,从而可以得到以与滤波器本来的中心频率f0相同的频率振荡的VCO。因此,可以增大式(4)中的测量周期数M,缓和噪声的影响,从而可以提高调整精度。
图8表示本发明的滤波器自动调整电路的其他结构例。按照图8,gm-C滤波器11具有分别可以根据DAC40的控制输出可变但是控制中心频率的主滤波器11a和辅滤波器11b,仅在调整时将该电路结构变更为高SN比的结构。主滤波器11a相对于辅滤波器11b起所谓的基准滤波器的功能,由分频器31从基准信号分频后的第2基准信号供给主滤波器11a进行预调整后,进行使用由试验信号发生器32发生的试验信号的辅滤波器11b的调整。这样,便可实现高精度的中心频率调整。
图9是使用本发明的滤波器自动调整电路的手提式电话系统的框图。图9中的集成电路60是将频率变换解调部61、合成PLL62和调制部63集成到1个芯片上的电路,作为被调整滤波器的gm-C滤波器及其自动调整电路位于频率变换解调部61中。
在图9的手提式电话系统中,天线70接收的RF信号通过共用器72输入受信放大器71,由BPF选择并放大受信信号。使用合成PLL62的信号对该受信信号进行频道选择,变换并放大为第1和第2IF(400kHz),输出解调后的声音信号。该声音信号由声音信号处理部74进行译码,并从扬声器77输出声音。另外,数据信号由数据处理部75进行译码,并由控制部76使之在显示部81进行显示。另一方面,从麦克风78输入的声音信号与由数据处理部75将从键矩阵80输入的数据信号编码的信号一起进行编码,并供给调制部63。该信号由合成PLL62的信号调制为RF信号。该调制信号由发信放大器73进行功率放大,放大到发信输出所需要的电平,通过共用器72从天线70输出。ID-ROM79是存储终端的ID号码的存储器。
手提式电话系统的各频道的带宽选择为约±10kHz(相对于中心频率约为5%),为了防止相邻频道(50kHz失调信号)的干扰,在频率变换解调部61中使用窄频带的BPF。通过在这样的手提式电话系统的受信部中采用上述本发明的滤波器自动调整电路,可以实现高精度的中心频率调整和等待时间的长时间化。
在以上的说明中,以gm-C滤波器作为被调整滤波器,但是,也可以是可以用电压或电流可变地控制中心频率的电子滤波器。另外,本发明不限于BPF,也可以应用于HPF或LPF。
权利要求
1.一种滤波器自动调整电路,是用于将滤波器的特性频率调整为目标频率的滤波器自动调整电路,其特征在于具有在该滤波器调整时用于将所述滤波器的本来的电路结构变更为具有与所述本来的电路结构相同的特性频率并且具有比所述本来的电路结构改善了的信噪比的调整专用的电路结构的电路结构变更单元、在将脉冲信号或阶跃信号作为试验信号输入具有所述调整专用的电路结构的滤波器时测量在该滤波器的输出中出现的振动波形的周期并根据该周期测量结果检测该滤波器的特性频率,从而为了修正与所述目标频率的偏离而向该滤波器供给调整信号的特性调整电路、和在发出用于起动所述特性调整电路的调整命令后,存储所述滤波器的特性频率与所述目标频率之差已进入允许范围内时的所述调整信号,并在所述滤波器使用时返回到该滤波器的本来的电路结构而停止所述特性调整电路的动作,从而利用所述存储的调整信号控制所述滤波器的特性的控制器。
2.根据权利要求1所述的滤波器自动调整电路,其特征在于所述滤波器是具有多个互导放大器和多个电容器的gm-C滤波器。
3.根据权利要求1所述的滤波器自动调整电路,其特征在于所述电路结构变更单元具有在所述滤波器调整时增大该滤波器的增益的单元。
4.根据权利要求1所述的滤波器自动调整电路,其特征在于所述电路结构变更单元具有在所述滤波器调整时增大该滤波器的Q值的单元。
5.根据权利要求1所述的滤波器自动调整电路,其特征在于所述电路结构变更单元具有在所述滤波器调整时,使该滤波器以与该滤波器的特性频率相同的频率振荡的单元。
6.根据权利要求1所述的滤波器自动调整电路,其特征在于所述控制器将多次试验的多个所述调整信号求平均并存储该平均后的调整信号,利用该平均后的调整信号控制所述滤波器的特性。
7.根据权利要求1所述的滤波器自动调整电路,其特征在于所述特性调整电路具有用于将作为基准信号而供给的时钟信号分频的分频器、用于根据所述分频后的时钟信号发生所述试验信号的试验信号发生器、使用所述时钟信号测量应答所述试验信号而在所述滤波器的输出中出现的振动波形的周期的计数器、根据所述计数器的测量结果检测所述滤波器的特性频率的频率检测器、和根据所述检测的特性频率与所述目标频率之差改变所述调整信号的升降计数器。
8.根据权利要求7所述的滤波器自动调整电路,其特征在于进而具有从所述特性调整电路或所述控制器接收数字形式的调整信号并将与该调整信号相应的模拟控制信号供给所述滤波器的数/模变换器。
9.根据权利要求7所述的滤波器自动调整电路,其特征在于还具有用于发生所述基准信号的相位同步环电路。
10.根据权利要求7所述的滤波器自动调整电路,其特征在于所述升降计数器构成为所述检测的特性频率与所述目标频率之差越大就使所述调整信号变化越大。
11.根据权利要求7所述的滤波器自动调整电路,其特征在于所述升降计数器构成为在所述检测的特性频率接近所述目标频率的时刻降低所述调整信号的控制灵敏度。
12.根据权利要求7所述的滤波器自动调整电路,其特征在于所述滤波器分别根据所述调整信号能够可变地控制特性频率的主滤波器和辅滤波器,从所述基准信号分频的第2基准信号供给所述主滤波器进行预调整后,使用所述试验信号进行所述辅滤波器的调整。
13.一种手提式电话系统,其特征在于在受信部具有根据权利要求1~12中任一权利要求所述的滤波器自动调整电路。
全文摘要
将构成窄频带的带通滤波器的gm-C滤波器的中心频率调整为目标频率。因此,仅在调整时将该滤波器的电路结构变更为具有高的信噪比的电路结构,由特性调整电路利用脉冲信号或阶跃信号检测和调整该滤波器的中心频率,并将该调整结果存储到非易失性存储器中,用于再利用。在该滤波器使用时停止特性调整电路的动作,降低功耗。
文档编号H03H11/04GK1333597SQ0112007
公开日2002年1月30日 申请日期2001年7月11日 优先权日2000年7月12日
发明者横山明夫, 高桥尚志, 山本道代, 衣笠教英, 荒屋敷护 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1