用于移动通信系统中的越区切换的信号测量装置及方法

文档序号:7748928阅读:424来源:国知局
专利名称:用于移动通信系统中的越区切换的信号测量装置及方法
技术领域
本发明通常涉及一种在CDMA移动通信系统中的信号测量装置及方法,特别是涉及一种在TDD-CDMA移动通信系统中的越区切换状态下的信号测量装置及方法。
背景技术
通常,主要提供语音业务的第二代移动通信系统包括GSM(全球移动通信系统)和IS-95系统(临时标准-95)。1992年,支持TDMA(时分多址)的GSM系统的商用化集中在欧洲,同时,支持CDMA(码分多址)的IS-95系统的商用化集中在韩国和美国。
同时,从第二代移动通信系统发展起来的第三代移动通信系统是指不仅支持语音业务,而且支持分组业务的CDMA移动通信系统。第三代移动通信系统分为由欧洲和日本领导的异步移动通信系统3GPP(第三代项目合作)或UTMS(通用移动通信系统)系统、由美国领导的同步移动通信系统3GPP2(第三代项目合作2)或CDMA2000系统。为了增加有限信道的利用率,3GPP提出了按频率划分上行链路传输和下行链路传输的频分双工(FDD,frequencydivision duplexing)系统和按时间划分上行链路传输和下行链路传输的时分双工(TDD,time division duplexing)系统。TDD系统分为使用3.84Mcps(兆码片/秒)的码片速率的宽带TDD(WB-TDD)系统和使用1.28Mcps的码片速率的窄带TDD(NB-TDD)系统。
在第三代移动通信系统商用化的早期,由第二代移动通信系统提供的业务和由第三代移动通信系统提供的业务一样。然而,由于第二代移动通信系统和第三代移动通信系统采用不同的频率和通信技术,所以需要制定用于保证两种系统之间的兼容性的计划。而且,需要制定用于维持甚至是在支持不同频率的第三代移动通信系统之间的兼容性的计划。特别是,为了确保在采用不同通信技术和不同频率的系统之间的兼容性,最重要的是正确地执行越区切换。也就是说,支持不同通信技术(FDD、WB-TDD、NB-TDD、GSM和CDMA2000)的系统以及虽然支持相同的通信技术但使用不同频率的系统,可以在几个区域中邻接。在这种情况下,如果UE(用户设备)从一个支持特定通信技术和特定频率的当前B节点的区域移动到采用不同通信技术和不同频率的新的节点B的区域,则需要节点B之间的切换用于全球漫游。节点B之间的切换分为频率间切换(inter-frequency handover)和无线接入技术(RAT,RadioAccess Technology)间切换(inter-RAT handover)。
首先,RAT间切换表示在采用不同通信技术的移动通信系统之间的切换。对于RAT间切换,需要UE监视该UE将被切换到的目标节点B的状态。在此,监视目标节点B将被称为“RAT间测量(inter-RAT measurement)”。
接着,频率间切换表示在采用不同频率的移动通信系统之间的切换,即使它们采用相同的通信技术。同样,对于频率间切换,需要UE监视目标节点B,这里,监视目标节点B将被称为“频率间测量(inter-frequencymeasurement)”。
对于频率间测量或RAT间测量来说,第三代移动通信系统使用各种测量方法,如下给出三种典型的测量方法。第一测量方法中断与当前节点B的通信预定的时间周期,并测量来自目标节点B的、由不同的通信技术在不同的频带上接收的信号。第二测量方法增加发送数据的数据速率预定的时间周期,以便维持当前呼叫的质量,即使第一测量方法中断了与当前节点B的通信预定的时间。第三测量方法减小发送数据的数据速率预定的时间周期,以便维持当前呼叫的质量,即使第一测量方法中断了与当前节点B的通信预定的时间。
根据是采用时分双工还是频分双工来划分下行链路传输和上行链路传输,可以采用不同的测量方法。具体地说,当采用时分双工来划分下行链路传输和上行链路传输时,UE使用不执行下行链路传输和上行链路传输的时段来执行频率间测量或RAT间测量。
现在,将说明支持上述通信技术的移动通信系统的信道结构。
图1A说明在支持NB-TDD的通用移动通信系统(下文中称为NB-TDD移动通信系统)中的帧结构,而图1B说明图1A所示的时隙和下行链路导频时隙(DwPTS)的结构。
参照图1A,基于在NB-TDD中使用的1.28Mcps的码片速率,帧101具有12800码片的长度(10ms),且由两个5ms的子帧组成。组成帧101的两个子帧具有相同的结构。每一子帧102由7个时隙TS#0至TS#6、下行链路导频时隙(DwPTS)104、上行链路导频时隙(UpPTS)106和保护时段(GP)105组成。每一时隙具有864-码片的长度,且被用作上行链路(UL)时隙或下行链路(DL)时隙。在图1A中,向上的箭头表示UL时隙,而向下的箭头表示DL时隙。根据上行链路传输数据和下行链路传输数据的比率来确定构成子帧102的7个时隙中的DL时隙的数目和UL时隙的数目。然而,在构成子帧102的7个时隙TS#0至TS#6中,第一时隙TS#0通常必须被用作DL时隙,而第二时隙TS#1通常必须被用作UL时隙。而且,96-码片的DwPTS 104、96-码片的GP 105和160-码片的UpPTS 106插在TS#0和TS#1之间。DwPTS 104被UE用于执行初始小区搜索、同步或信道估计,而UpPTS 106被节点B用于执行信道估计以及获得与UE的上行链路同步。GP 105被用于防止当相邻的TS#0和TS#1分别被用作DL时隙和UL时隙时,由于在TS#0上发送的下行链路传输信号的多径延迟而在TS#1上发送的上行链路传输信号中发生干扰。在NB-TDD中,为了防止如上所述的由于多径延迟造成的干扰,一个子帧中需要两个切换点。切换点存在于DL时隙和UL时隙的转折点上。在两个切换点中,第一切换点固定在DwPTS 104和UpPTS 106之间,而第二切换点根据上行链路传输数据和下行链路传输数据的比率,位于TS#1至TS#6中的特定位置。
在TS#1上,使用两个代码发送主公共控制物理信道(P-CCPCH)。在NB-TDD移动通信系统中,这些代码被用于区分使用相同时隙的下行链路信道或区分使用相同时隙的上行链路信道。一般采用长度为16的正交码作为这些代码。P-CCPCH 107是用于发送包括节点B的系统信息的广播信道(BCH)的物理信道。
参照图1B,P-CCPCH 107包括两个数据字段109和111、中置码字段110和GP 112。在数据字段109和111的每一字段上发送的数据符号被采用具有扩频因子(SF)16的信道化正交码扩频,并且具有352-码片的长度。在中置码字段110上发送的中置码对于DL时隙和UL时隙具有不同的功能。在DL时隙时,中置码被UE用于确定从节点B发送的信道并估计与节点B之间的信道状态。在UL时隙时,中置码被节点B用于确定从UE发送的信道并估计UE和节点B之间的信道状态。对于中置码,P-CCPCH使用m(1)码和m(2)码。通过移位唯一分配给每一小区的基本中置码来得到每个代码。在NB-TDD移动通信系统中,通过移位基本中置码产生的m(1)码和m(2)码被分配给P-CCPCH而不管节点B。m(2)码被用于在使用时间切换发送分集(TSTD,timeswitched transmit diversity)时通过第二天线发送的信道。GP 112是存在于时隙的末尾部分的16-码片,被用于防止在相邻时隙的信号之间产生干扰。
DwPTS 104包括32-码片的GP 113和64-码片的SYNC-DL码114。GP113和TS#0的GP 112一起,形成48-码片的GP,被用于防止由于TS#0和DwPTS 104之间的多径延迟造成的干扰。对GP分配48码片的长时段的原因是为了正确地接收DwPTS 104中的SYNC-DL码114,该代码具有重要的作用。SYNC-DL码114是在UE接入NB-TDD移动通信系统时首先搜索的信号。SYNC-DL码114被UE用于执行初始小区搜索并获得与小区的同步。因此,如果SYNC-DL码114与TS#0上发送的信号干扰,则UE不能与节点B正常通信。
存在32种SYNC-DL码。因此,UE通过计算当前接收的具有最大信号电平的信号与32个可用码字之间的相关值,来确定SYNC-DL码并获得与该UE所属的小区的同步。
图2A至2C说明在通用WB-TDD移动通信系统中的信道结构。具体地说,图2A说明在通用WB-TDD移动通信系统中的帧结构。图2B和2C说明P-CCPCH、P-SCH(主同步信道)和S-SCH(辅助同步信道)的示例性结构。图2B和2C中描述的P-CCPCH、P-SCH和S-SCH是在UE测量来自WB-TDD移动通信系统的信号或接入WB-TDD移动通信系统时首先接收的信道。即,P-CCPCH被UE用于获得WB-TDD移动通信系统的节点B信息,而P-SCH和S-SCH被UE用于获得与WB-TDD移动通信系统的节点B的同步。
结合图1A和1B描述的NB-TDD与WB-TDD之间的主要不同之处在于用于发送数据的带宽。即,NB-TDD使用1.28MHz的带宽,而WB-TDD使用3.84MHz的带宽。而且,不像NB-TDD,WB-TDD没有DwPTS和UpPTS。NB-TDD中使用的中置码和WB-TDD中使用的前置码具有相同作用,但它们采用不同的代码。
参照图2A,根据在WB-TDD中使用的3.84Mcps的码片速率,帧201具有38,400码片的长度(10ms),并且由15个时隙TS#0至TS#14组成。每一时隙202具有2,560码片的长度(0.67ms),且被分配作为DL时隙或UL时隙。
如图2B和2C所示,以两种不同的方式确定P-CCPCH 204和210、P-SCH205和211、S-SCH 206和212的位置。如图2B所示,在第一方式中,P-CCPCH204、P-SCH 205和S-SCH 206在TS#k 203(15个时隙中的一个)上同时被发送。如图2C所示,在第二方式中,P-CCPCH 210、P-SCH 211和S-SCH 212在TS#k 208上发送一次,并且然后P-SCH 211和S-SCH 212在TS#(k+8)209上再发送一次。在每一方式中,P-SCH 205和211、S-SCH 206和212在时间偏移toffset,n207和213处发送,每一时间偏移均具有256-码片的长度。P-SCH 205和211是所有WB-TDD小区公用的单个代码,并且是首先被UE接收的信道。具体地说,由于P-SCH 205和211在与S-SCH 206和212相同的时隙上发送,所以它们用于指示S-SCH 206和212的位置。对于S-SCH 206和212,同时发送3个代码,每个代码具有32种排列,每种排列与一个扰码组相关联。扰码被用于区分来自相邻节点B的信号。时间偏移207和213对于每一码组是唯一确定的,且允许每一码组在不同位置具有最大相关值。由于WB-TDD基本上支持同步移动通信系统,如果UE位于小区边界,则UE在相同时隙接收来自相邻节点B的P-SCH和S-SCH的过程中可能经历性能降低。为了解决这个问题,需要时间偏移207和213。即,通过允许相邻节点B使用时间偏移207和213发送P-SCH和S-SCH,可以增加P-SCH和S-SCH的接收性能。
因此,UE通过与P-SCH的相关性来搜索小区,并通过基于P-SCH的相位执行与S-SCH的相关来确定由3个S-SCH表示的码组。此时,利用为每一码组唯一确定的时间偏移值来获得时隙同步。
图3A至3C描述了通用GSM移动通信系统中的信道结构。具体地,图3A描述通用GSM移动通信系统中的复帧结构,图3B描述图3A所示的复帧结构中FCCH(频率校正信道,Frequency Correction Channel)和SCH的位置。此外,图3C描述FCCH和SCH的结构。图3B和3C所描述的FCCH和SCH是在UE测量来自GSM移动通信系统的信号或接入GSM移动通信系统时首先接收的信道。在UE搜索GSM移动通信系统中使用的频率并获得与节点B的同步时,UE使用FCCH和SCH。作为典型的第二代异步移动通信系统的GSM移动通信系统支持TDMA。
参照图3A,复帧301是GSM中的最大无线电发送单位,由51个帧组成。每一帧302由8个时隙TS#0至TS#7组成。
参照图3B,在复帧301中的第一帧#0、第十一帧#10、第二十一帧#20、第三十一帧#30和第四十一帧#40中的每一帧的第一时隙304发送FCCH。在复帧301的第二帧#1、第十二帧#11、第二十二帧#21、第三十二帧#3 1和第四十二帧#41中的每一帧的第一时隙305发送SCH。
通常,在GSM移动通信系统中,在用于初始化或切换的测量期间用于节点B和UE之间的同步的FCCH和SCH具有如图3C所示的结构。
图4描述在通用FDD移动通信系统中的帧结构、以及在该帧上发送的P-CCPCH和SCH的结构。P-CCPCH和SCH是UE在测量来自FDD移动通信系统的信号或接入FDD移动通信系统时首先接收的信道。在FDD移动通信系统中,按频率划分上行链路信道和下行链路信道。图4所示的是用于下行链路信道的帧结构。例如,图4描述发送P-SCH、S-SCH和P-CCPCH的示例性方法。
该P-CCPCH和SCH具有与WB-TDD中的P-CCPCH和SCH相同的功能。然而,在FDD中通过SCH获得同步和信息的处理与在WB-TDD中通过SCH获得同步和信息的处理不同。
参照图4,帧401具有38,400码片的长度(10ms),且由15个时隙TS#0至TS#14组成。每一时隙402具有2,560-码片的长度(0.67ms)。
在每一时隙的最前面256码片期间发送的P-SCH 403和S-SCH 404具有与WB-TDD中的P-SCH和S-SCH相同的功能。然而,在FDD中通过P-SCH 403和S-SCH 404获得同步和信息的处理与在WB-TDD中通过P-SCH和S-SCH获得同步和信息的处理不同。如结合WB-TDD所描述的,P-SCH 403是在支持FDD的所有节点B或小区中使用的唯一信道,且在帧的15个时隙上被重复发送15次。对于S-SCH 404,存在总共16个代码,从16个代码中选择15个代码,并在每一时隙发送。UE通过P-SCH 403检测与节点B或小区的时隙同步,并基于时隙同步从S-SCH 404检测15个代码。S-SCH 404中的15个代码根据S-SCH 404的代码排列从64个码组中搜索特定码组。即,代码排列可以指示64个码组中的特定码组。每一码组具有8个用于区分节点B的下行链路扰码。而且,由于形成代码排列以便能够区分构成一个帧的时隙的顺序,因此,UE可以根据代码排列来确定帧的边界。
在确定帧边界之后,UE利用主公共导频信道(P-CPICH)在码组中的8个扰码中检测当前节点B中使用的扰码。虽然在图4中未示出P-CPICH,它可被用于估计信道环境或测量从节点B到UE的功率损耗。P-CPICH发送通过将全‘1’序列和节点B中使用的下行链路扰码相乘而产生的信号。因此,UE通过P-CPICH上发送的信号和码组中的8个扰码之间的相关值,获得在节点B中使用的下行链路扰码。所获得的下行链路扰码是具有通过相关性计算相关值确定的最大相关值的扰码。UE根据所获得的扰码分析P-CCPCH406。P-CCPCH 406具有与WB-TDD中使用的P-CCPCH相同的功能。使用作为信道化正交代码的长度为256的沃尔什码中的全‘1’沃尔什码信道扩频P-CCPCH 406。因此,通过检测由节点B用于发送P-CCPCH 406的扰码,UE可以分析P-CCPCH 406。该信道化正交码被用于区分在节点B的区域中,从一个节点B发送到多个UE的信道或区分从一个UE发送到节点B的几个信道。对于下行链路传输,使用长度从4到512的信道化正交码,而对于上行链路传输,使用长度从4到256的信道化正交码。信道化正交码的长度表示数据的扩频因子。当数据的扩频因子增加时,扩频增益也增加。而且,当在相同的功率电平上发送时,可以以更高的质量发送具有较大扩频因子的数据。P-CCPCH 406是在其上发送具有节点B的系统信息的BCH的信道。因此,UE通过接收P-CCPCH 406并解码其中所包含的BCH,获得与该UE当前所属的小区或节点B有关的信息。然而,由于TTI(传送时间间隔,TransportTime Interval),即BCH的解码单位是20ms,所以为了从UE自己所属的小区或节点B获得BCH中所包含的系统信息,UE应当可以接收P-CCPCH 40620ms。即,为了获得系统信息,UE必须接收经过两帧发送的P-CCPCH 406。
图5描述必须执行频率间测量或RAT间测量的情形。将假设图5中,节点B 501支持NB-TDD,另一节点B 502也支持NB-TDD,但是使用与节点B 501所采用的频率不同的频率,或节点B 502支持除NB-TDD之外的其它通信技术。所述其它通信技术可以包括诸如GSM、FDD、WB-TDD、CDMA2000和IS-95等的第二代和第三代通信标准。而且,将假设UE 503不仅可以通过NB-TDD通信,而且也可以通过其它通信技术通信,并且在与节点B 501交换语音或分组信号时,正在向节点B 502移动。基于这些假设,需要UE 503执行用于从支持NB-TDD的节点B到虽然支持NB-TDD但使用不同频率的节点B的切换的频率间测量。而且,需要UE 503执行频率间或测量用于从支持NB-TDD的节点B到支持不同通信技术的节点B的切换的RAT间测量。
参照图5,当与节点B 501(下文中称为源节点B)通信的UE 503向节点B 502(下文中称为目标节点B)移动时,UE 503从源节点B 501接收频率间测量命令或RAT间测量命令,然后测量来自目标节点B 502的信号。来自目标节点B 502的信号是指基于上述通信技术的信号。源节点B 501在下列情况下向UE 503发送频率间测量命令或RAT间测量命令分析在源节点B 501使用的频带上,由UE 503对来自支持NB-TDD的其它节点B的信号的测量结果之后,源节点B 501确定对于UE 503执行切换来说信号电平太低,或源节点B 501和UE 503之间的信号电平逐渐变低。
UE 503通过测量来自目标节点B 502的信号,获得与目标节点B 502同步有关的信息和目标节点B 502的系统信息,并且将测量结果发送至源节点B 501。响应于来自源节点B 501的基于测量结果的命令,UE通过切换到目标节点B 502继续当前呼叫。
到目前为止,已说明了UE 503通过与源节点B 501建立的呼叫接收频率间测量命令或RAT间测量命令时所执行的操作。然而,即使在UE 503和源节点B 501之间没有建立呼叫时,UE 503也可以根据P-CCPCH上发送的BCH上的系统信息所包含的频率间测量信息或RAT间测量信息,执行频率间测量和RAT间测量。另外,如果源节点B 501具有与目标节点B 502所使用的通信技术有关的信息,则源节点B 501可以在UE 503执行频率间测量或RAT间测量之前,预先向UE 503提供与相邻节点B所使用的通信技术有关的信息,以便UE 503可以简单地获得来自相邻节点B的系统信息和同步信号。
图6描述了与支持NB-TDD的节点B通信的UE可以执行频率间测量或RAT间测量的时段。参照图6,附图标记601表示UE和节点B之间的第i个子帧。UE在构成第i个子帧的7个时隙之中的第二时隙603执行上行链路传输,并且在第五时隙604执行下行链路传输。UE在不执行上行链路传输和下行链路传输的其它时隙的时段中执行频率间测量或RAT间测量。在图6中,UE可以在两个连续子帧中由附图标记605、606、607和608表示的时段中执行频率间测量或RAT间测量。然而,对于UE实际上可以执行频率间测量或RAT间测量的时段,应当考虑用于偏移发送频率间信号和RAT间信号的频带所需的无线电频率转换时间,以及用于返回原来的频带所需的无线电频率转换时间。
为了使UE能够简单地执行频率间测量或RAT间测量并增加测量的可靠性,最好增加UE实际上可以执行频率间测量或RAT间测量的时段。
如上所述,根据上行链路时隙和下行链路时隙的位置,确定可以执行频率间测量或RAT间测量的时段的长度。即,测量时段依赖于上行链路时隙和下行链路时隙的位置。
因此,如果UE实际上执行频率间测量或RAT间测量的时段较短,则UE可能不能执行正常的频率间测量或RAT间测量。此外,当测量由FDD发送的SCH和P-CCPCH时,UE不能正确地解码在S-SCH和P-CCPCH上发送的BCH的内容。换句话说,由于NB-TDD和FDD中的基本发送单位是10ms的帧,所以,NB-TDD中的定时和FDD中的定时具有特定的时间偏移。因此,由于UE测量在特定位置的S-SCH和P-CCPCH,所以,UE不能正确地测量在S-SCH和P-CCPCH上发送的BCH。这是因为,对于正常的分析,S-SCH必须接收具有10ms长度的信号,而P-CCPCH必须接收具有20ms长度的信号。

发明内容
因此,本发明的一个目的是,提供一种用于改变NB-TDD移动通信系统中的上行链路和下行链路传输信道的信道分配位置的装置和方法。
本发明的另一目的是,提供一种用于通过改变NB-TDD移动通信系统中的上行链路和下行链路传输信道的信道分配位置,测量具有不同频率的频率间信号的装置和方法。
本发明的再一目的是,提供一种用于通过改变NB-TDD移动通信系统中的上行链路和下行链路传输信道的信道分配位置,测量与不支持NB-TDD的另一系统的系统间信号的装置和方法。
本发明的再一目的是,提供一种用于改变NB-TDD移动通信系统中的上行链路和下行链路传输信道的信道分配位置的信令方法。
本发明的再一目的是,提供一种用于在基于时分来划分上行链路传输和下行链路传输的通信系统中,使用UE不执行发送和接收的时段来执行频率间测量或RAT间测量的装置和方法。
本发明的再一目的是,提供一种用于在NB-TDD系统中,通过增加用于频率间测量以及频率间测量或RAT间测量的测量时段的长度,并改变测量时段的位置来有效地分配频率间测量或RAT间测量的装置和方法。
本发明的再一目的是,提供一种用于改变测量频率间信号和RAT间信号的UE的上行链路和下行链路信道的发送位置,以便有效地执行频率间测量或RAT间测量的方法。
本发明的再一目的是,提供一种通过改变上行链路时隙和下行链路时隙的位置来增加测量性能和可靠性以最大地增加用于频率间测量或RAT间测量的时段的装置和方法,所述频率间测量或RAT间测量用于监视来自使用与另一NB-TDD系统中的UE当前所使用的频带不同的频带的NB-TDD系统的信号。
本发明的再一目的是,提供一种通过改变上行链路时隙和下行链路时隙的位置来增加测量性能和可靠性以最大地增加用于频率间测量或RAT间测量的时段的装置和方法,所述频率间测量或RAT间测量用于监视来自支持与NB-TDD系统所支持的通信技术不同的通信技术的系统的信号。
本发明的再一目的是,提供一种用于向UE和该UE所属的节点B中的其它UE重新分配信道,以便增加频率间测量时段或RAT间测量时段的装置和方法。
本发明的再一目的是,提供一种通过在节点B和UE之间预先约定用于频率间测量或RAT间测量的预定模式信息,以改变用于频率间测量或RAT间测量的时段的位置,当需要频率间测量或RAT间测量时,基于指示预定模式信息的索引信息来执行频率间测量或RAT间测量的装置和方法。
为了获得上述和其它目的,本发明提供一种在系统中由UE(用户设备)测量来自第二节点B的控制信道上的同步信号和第二节点B信息的方法,该系统包括第一节点B、与所述第一节点B相邻的第二节点B以及由所述第一节点B覆盖的小区中的所述UE,所述第一节点B和UE在具有多个时段的帧上使用TDD(时分双工)CDMA(码分多址)通信技术,在所述帧中的所述多个时段中的至少一个时段上,从所述第一节点B向所述UE发送下行链路信道,在除发送下行链路信道的至少一个时段之外的其余时段中的至少一个时段上,从所述UE向所述第一节点B发送上行链路信道,所述UE和所述第二节点B通过使用与TDD CDMA通信技术不同的频带的TDD通信技术执行通信,所述同步信号用于同步所述UE和所述第二节点B,所述控制信道指示在所述多个时段中的至少一个时段上,从所述第二节点B发送至所述UE的第二节点B信息,所述方法包括步骤改变从所述第一节点B向所述UE发送所述下行链路信道的下行链路时段的位置,并改变从所述UE向所述第一节点B发送所述上行链路信道的上行链路时段的位置,以便从所述第二节点B发送到所述UE的控制信道的时段位于前一子帧内以及下一子帧和帧中的一个内。
为了获得上述和其它目的,本发明提供一种在系统中由UE(用户设备)测量来自第二节点B的控制信道上的同步信号和第二节点B信息的方法,该系统包括第一节点B、与所述第一节点B相邻的第二节点B以及由所述第一节点B覆盖的小区中的所述UE,所述第一节点B和UE在具有多个时段的帧上使用TDD(时分双工)CDMA(码分多址)通信技术,在所述帧的所述多个时段当中的至少一个时段上,从所述第一节点B向所述UE发送下行链路信道,在除发送下行链路信道的至少一个时段之外的其余时段中的至少一个时段上,从所述UE向所述第一节点B发送上行链路信道,所述UE和所述第二节点B通过不同于TDD CDMA通信技术的通信技术执行通信,所述同步信号用于同步所述UE和第二节点B,所述控制信道指示在从所述第二节点B发送至所述UE的至少一个下行链路信道上发送的第二节点B信息,所述方法包括步骤改变从所述第一节点B向所述UE发送下行链路信道的时段的位置,以及改变从所述UE向所述第一节点B发送所述上行链路信道的时段的位置,以便从所述第二节点B发送到所述UE的控制信道的时段位于前一子帧内以及下一子帧和帧中的一个内。
为了获得上述和其它目的,本发明提供一种在系统中由UE(用户设备)测量来自第二节点B的控制信道上的同步信号和第二节点B信息的方法,该系统包括第一节点B、与所述第一节点B相邻的第二节点B、用于管理所述第一节点B的无线电网络控制器(RNC)以及所述第一节点B覆盖的小区中的所述UE,所述第一节点B和UE在具有多个时段的帧上使用TDD(时分双工)CDMA(码分多址)通信技术,在所述帧的多个时段中的至少一个时段上,从所述第一节点B向所述UE发送下行链路信道,在除发送下行链路信道的至少一个时段之外的其余时段中的至少一个时段上,从所述UE向所述第一节点B发送上行链路信道,所述UE和第二节点B通过不同于TDD CDMA通信技术的频带或通信技术执行通信,所述同步信号用于同步所述UE和所述第二节点B,所述控制信道指示在从所述第二节点B发送至所述UE的至少一个下行链路信道上发送的第二节点B信息,所述方法包括下列步骤由RNC确定可用于所述同步信号和第二节点B信息的测量的所有参数,在无线电链路建立期间将所确定的参数发送至所述第一节点B,以及在无线电承载建立期间将所确定的参数发送至所述UE;如果由RNC识别出需要所述同步信号和第二节点B信息的测量,则向所述第一节点B和UE发送用于测量所述同步信号和第二节点B信息的参数选择信息;由所述第一节点B和UE根据基于所述参数选择信息而从所有参数中选择的参数,改变从所述第一节点B向所述UE发送下行链路信道的下行链路时段的位置,和从所述UE向所述第一节点B发送上行链路信道的上行链路时段的位置;和由UE在除多个时段当中的改变的下行链路时段和改变的上行链路时段之外的时段中,接收从所述第二节点B发送的同步信号和第二节点B信息。
为了获得上述和其它目的,本发明提供一种在系统中由UE(用户设备)测量来自第二节点B的控制信道上的同步信号以及第二节点B信息的方法,该系统包括第一节点B、与所述第一节点B相邻的第二节点B、用于管理所述第一节点B的无线电网络控制器(RNC)以及由所述第一节点B覆盖的小区中的所述UE,所述第一节点B和UE在具有多个时段的帧上使用TDD(时分双工)CDMA(码分多址)通信技术,在所述帧的多个时段当中的至少一个时段上,从所述第一节点B向UE发送下行链路信道,在除发送下行链路信道的至少一个时段之外的其余时段中的至少一个时段上,从所述UE向第一节点B发送上行链路信道,所述UE和所述第二节点B通过不同于TDD CDMA通信技术的频带或通信技术执行通信,所述同步信号用于同步所述UE和所述第二节点B,所述控制信道指示在从所述第二节点B发送至所述UE的至少一个下行链路信道上发送的第二节点B信息,所述方法包括包括下列步骤由RNC确定可用于所述同步信号和第二节点B信息的测量的所有参数,如果RNC识别出所述UE需要测量所述同步信号和第二节点B信息,则向所述第一节点B和UE发送所确定的参数中的任何一个参数;由所述第一节点B和UE根据基于参数选择信息由RNC选择的参数,改变从所述第一节点B向UE发送下行链路信道的下行链路时段的位置,和从所述UE向第一节点B发送上行链路信道的上行链路时段的位置;和由UE在除了所述多个时段当中改变的下行链路时段和改变的上行链路时段之外的时段中,接收从所述第二节点B发送的同步信号和第二节点B信息。
为了获得上述和其它目的,本发明提供一种在系统中由UE(用户设备)测量来自第二节点B的控制信道上的同步信号以及第二节点B信息的装置,该系统包括第一节点B、与所述第一节点B相邻的第二节点B、用于管理所述第一节点B的无线网络控制器(RNC)以及由所述第一节点B覆盖的小区中的UE,所述第一节点B和UE在具有多个时段的帧上使用TDD(时分双工)CDMA(码分多址)通信技术,在所述帧的所述多个时段中的至少一个时段上,从所述第一节点B向UE发送下行链路信道,在除发送下行链路信道的至少一个时段之外的其余时段中的至少一个时段上,从所述UE向第一节点B发送上行链路信道,所述UE和第二节点B通过不同于TDD CDMA通信技术的频带或通信技术执行通信,所述同步信号用于同步所述UE和第二节点B,所述控制信道指示在从所述第二节点B发送至UE的至少一个下行链路信道上发送的第二节点B信息,所述装置包括RNC,用于确定可用于所述同步信号和第二节点B信息的测量的所有参数,在无线电链路建立期间将所确定的参数发送至所述第一节点B,且在无线电承载建立期间将所确定的参数发送至所述UE,如果识别出需要测量所述同步信号和第二节点B信息,则向所述第一节点B和UE发送用于测量所述同步信号和第二节点B信息的参数选择信息;第一节点B,用于根据基于所述参数选择信息从所有参数中选择的参数,改变从所述第一节点B向所述UE发送下行链路信道的下行链路时段的位置,和从所述UE向第一节点B发送上行链路信道的上行链路时段的位置;和UE,用于根据基于所述参数选择信息从所有参数中选择的参数,改变从所述第一节点B向UE发送下行链路信道的下行链路时段的位置,和从所述UE向第一节点B发送上行链路信道的上行链路时段的位置,并在除了多个时段当中改变的下行链路时段和改变的上行链路时段之外的时段中,接收从所述第二节点B发送的所述同步信号和第二节点B信息。
为了获得上述和其它目的,本发明提供一种在系统中由UE(用户设备)测量来自第二节点B的控制信道上的同步信号和第二节点B信息的装置,该系统包括第一节点B、与所述第一节点B相邻的第二节点B、用于管理所述第一节点B的无线电网络控制器(RNC)以及由所述第一节点B覆盖的小区中的所述UE,所述第一节点B和UE在具有多个时段的帧上使用TDD(时分双工)CDMA(码分多址)通信技术,在所述帧的多个时段中的至少一个时段上,从所述第一节点B向UE发送下行链路信道,在除了发送下行链路信道的至少一个时段之外的其余时段中的至少一个时段上,从所述UE向第一节点B发送上行链路信道,所述UE和第二节点B通过不同于TDD CDMA通信技术的频带或通信技术执行通信,所述同步信号用于同步所述UE和第二节点B,所述控制信道指示在从所述第二节点B发送至所述UE的至少一个下行链路信道上发送的第二节点B信息,所述装置包括RNC,用于确定可用于所述同步信号和第二节点B信息的测量的所有参数,如果识别出所述UE需要测量所述同步信号和第二节点B信息,则向所述第一节点B和UE发送所确定的参数的任一个;第一节点B,用于根据基于参数选择信息由RNC选择的参数,改变从所述第一节点B向UE发送所述下行链路信道的下行链路时段的位置,和从所述UE向第一节点B发送所述上行链路信道的上行链路时段的位置;和UE,用于根据基于参数选择信息由RNC选择的参数,改变从所述第一节点B向UE发送所述下行链路信道的下行链路时段的位置,和从所述UE向第一节点B发送所述上行链路信道的上行链路时段的位置,并在除了多个时段当中改变的下行链路时段和改变的上行链路时段之外的时段中,接收从所述第二节点B发送的所述同步信号和第二节点B信息。


从下列结合附图的详细描述中,本发明的上述和其它目的、特征和优点将变得更加清楚,其中图1A和1B描述了通用NB-TDD移动通信系统中的信道结构;图2A至2C描述了通用WB-TDD移动通信系统中的信道结构;图3A至3C描述了通用GSM移动通信系统中的信道结构;图4描述了通用FDD移动通信系统中的信道结构;图5概念性地描述了通用移动通信系统中的越区切换状态;图6是用于说明在传统NB-TDD移动通信系统中,在越区切换状态下用于搜索目标节点B的时段的图;图7至10描述根据本发明的一个实施例,在NB-TDD移动通信系统中,在越区切换状态下用于搜索目标节点B的时段的例子;图11描述根据本发明的一个实施例,在NB-TDD移动通信系统中,在越区切换状态下用于搜索目标节点B的过程;图12描述根据本发明的一个实施例,在NB-TDD移动通信系统中,在越区切换状态下用于搜索目标节点B的示例性模式;图13描述根据本发明的一个实施例,在NB-TDD移动通信系统中的越区切换状态下的信令过程;图14描述根据本发明的一个实施例的RNC的操作;图15描述根据本发明的一个实施例的节点B的操作;图16描述根据本发明的一个实施例的UE的操作;图17描述根据本发明的一个实施例的用于提高效率的RNC的操作;图18描述根据本发明的一个实施例的用于提高效率的UE的操作;图19描述根据本发明的一个实施例的UE收发信机的结构;图20描述根据本发明的一个实施例的节点B收发信机的结构;图21描述根据本发明的一个实施例的测量时段序列的结构;图22至24以及26A至26D描述根据本发明的一个实施例的测量时段模式的例子;和图25描述根据本发明的一个实施例的用于确定测量参数的过程。
具体实施例方式
在此将参照附图详细说明本发明的优选实施例。在下列描述中,由于已知功能和结构会以不必要的细节模糊本发明,所以将不详细对它们进行说明。
首先,下面将给出用于说明本发明的参数的定义。
测量时段开始点(MPSP,Measurement Period Starting Point)表示频率间测量或RAT间测量的开始点。
测量时段(MP,Measurement Period)表示改变UE和节点B之间的上行链路和下行链路传输信道的位置用于频率间测量或RAT间测量的时段,且MP的数目是n。
测量时段间隔(MPI,Measurement Period Interval)表示相邻MP之间的间隔。
测量时段序列(MPS,Measurement Period Sequence)表示用于频率间测量或RAT间测量的序列,且MPS由n个MP和k个MPI组成。
MPS重复次数(MPSRN,MPS Repetition Number)表示用于频率间测量或RAT间测量的MPS重复的次数,且MPSRN由1到M的正数来表达。
现在,将参照附图详细说明本发明的优选实施例。
图21是用于说明在上面定义的参数MPSP、MP、MPI、MPS和MPSRN的图。参照图21,MPSP 2101表示由UE执行的频率间测量或RAT间测量的开始点,并使用用于区分NB-TDD节点B中的发送帧的发送顺序的系统帧编号(SFN,system frame number)或系统子帧编号(S-SFN,system subframenumber)、或用于区分节点B和UE之间交换的帧的发送顺序的连接帧编号(CFN,connection frame number)来确定。在NB-TDD通信系统中,SFN具有0到4,095的值,当执行与UE的特定操作时,节点B使用SFN通知UE该特定操作的开始点或结束点。S-SFN是与NB-TDD通信系统中使用的子帧相关联的值,具有0到8,195的值,其功能和SFN相同。当在节点B和UE之间建立呼叫时,CFN被用于区分上行链路和下行链路无线电发送帧的发送顺序。与在一个节点B中公用的SFN或S-SFN不同,在节点B和一个UE之间唯一地设定CFN。CFN的范围从0到255。节点B可以使用SFN、S-SFN和CFN中的任意一个,通知欲执行频率间测量或RAT间测量的UE测量时段开始点。
MP#1 2102、MP#2 2104、...、MP#n 2106表示UE实际上测量频率间信号或RAT间信号的时段。MP#1 2102、MP#2 2104、...、MP#n 2106可以具有不同的长度,且可以根据执行频率间测量或RAT间测量的UE的测量项目以及连接至UE的节点B中使用的上行链路和下行链路信道的数目,来确定MP的长度。MP的最小单位可以包括一个子帧,而MP的最大单位可以包括几帧。
图7到10中说明了MP的例子。在图7到10中假定MP是10ms的帧,节点B使用具有图7到10所示结构的帧与UE进行通信。即,可以考虑节点B中的上行链路和下行链路传输数据的量,来设置上行链路时隙的排列和下行链路时隙的排列。但是,在下面的说明中,将假定上行链路和下行链路时隙如图7至10所示排列。而且,将假定UE当前在频率f1执行通信,且UE要测量的RAT间信号具有频率f2。
图7说明了MP的一个例子,其中,可以扩大RAT间测量时段。为了方便说明,将假定UE使用由向上的箭头表示的上行链路时隙中的一个特定时隙执行上行链路传输,并使用由向下的箭头表示的下行链路时隙中的一个特定时隙执行下行链路传输。而且,将假定UE在每个上行链路/下行链路时隙使用一个唯一的信道化正交码来执行通信。
附图标记701表示给定帧的第一子帧,附图标记702表示给定帧的第二子帧。在必须在由子帧701和子帧702组成的一个帧中执行RAT间测量的情况下,为了确保测量时段在子帧701和子帧702的结构中具有最大可能的长度,最好将欲执行频率间测量或RAT间测量的UE的上行链路和下行链路信道分配到子帧701的下行链路时隙710和上行链路时隙711以及子帧702的上行链路时隙712和下行链路时隙713。这将通过减少在UE从当前通信频率f1移到测量频率f2时所发生的频率转换的次数来扩大实际测量时段。如果欲执行频率间测量或RAT间测量的UE的上行链路和下行链路信道被随机地分散在子帧701和子帧702中的非特定时隙上,则UE为了执行频率间测量或RAT间测量而频繁地在f1和f2之间移动,从而减小了实际测量时段。
将执行频率间测量或RAT间测量的测量时段703的一个帧可以提供包括DwPTS、GP和UpPTS时段的至少8个连续时隙的时段。即,在子帧701中,可以在从被分配UE的上行链路信道的时隙711到子帧701的最后一个时隙的5-时隙时段中执行RAT间测量。而且,对于跟随子帧701的子帧702,从子帧702的第一时隙到被分配UE的上行链路信道的时隙712之前的时隙的3-时隙时段以及DwPTS、GP和UpPTS的时段可以被加起来作为可用于频率间测量或RAT间测量的时段。
因此,测量时段703具有包括7-时隙时段以及插在第二子帧702的第一时隙和第二时隙之间的DwPTS、GP和UpPTS的时段的长度,测量时段704包括跟随时隙713的两个时隙。在传统信道分配方法中很少产生的测量时段703,有助于增加频率间测量或RAT间测量的性能。
此外,为了构成图7所示的MP,节点B可以保留时隙710和时隙713的信道化正交码用于欲执行频率间测量或RAT间测量的UE的下行链路信道分配,然后首先将所保留的信道化正交码分配给必须执行频率间测量或RAT间测量的UE,或将所保留的信道化正交码重新分配给必须执行测量的UE。而且,节点B可以保留时隙711和时隙712的信道化正交码用于欲执行频率间测量或RAT间测量的UE的上行链路信道分配,然后首先将所保留的信道化正交码分配给必须执行频率间测量或RAT间测量的UE,或将所保留的信道化正交码重新分配给必须执行测量的UE。因此,不执行频率间测量或RAT间测量的UE首先被分配除了时隙710、时隙711、时隙712和时隙713之外的时隙,用于上行链路和下行链路传输。另外,如果在不执行频率间测量或RAT间测量的UE中存在使用时隙710、时隙711、时隙712和时隙713执行上行链路和下行链路传输的UE,则UE被重新分配除了时隙710、时隙711、时隙712和时隙713之外的时隙,用于上行链路和下行链路传输。
图8说明结合图21描述的MP的另一例子。与图7的MP不同的是,对于排列在切换点的两边的DL时隙811、DL时隙813、UL时隙810和UL时隙812,保留预定数目的DL信道化码和UL信道化码。因此,当在f1上执行业务发送和接收的节点B和UE需要测量在f2上发送的信号时,重新分配所保留的DL信道化码中的一个以及所保留的UL信道化码中的一个。然而,由于每个子帧的时隙#0主要由P-CCPCH或其它下行链路共享信道使用,所以对于可以分配给需要执行频率间测量或RAT间测量的UE的信道化正交码的数目存在限制。因此,图8所示方法可支持的需要执行频率间测量或RAT间测量的UE的数目大于图7所示方法可支持的需要执行频率间测量或RAT间测量的UE的数目。
在图8中,如果必须在由第一子帧801和第二子帧802组成的一个帧中执行频率间测量或RAT间测量,则可能提供测量时段803、测量时段804和测量时段805。测量时段804具有在时隙811后的至少5个连续时隙,包括DwPTS、GP和UpPTS的发送时段,并且平均比UE的上行链路和下行链路传输信道位于非特定时隙中时要长。
同时,对于连续帧的结构,由于测量时段803和测量时段805也可以使用时隙813之后的3个时隙和时隙810之前的2个时隙,包括DwPTS、GP和UpPTS的发送时段,所以它们平均比UE的上行链路和下行链路传输信道位于非特定时隙中时要长。
图9说明了结合图21描述的MP的另一示例。在图9中,对于需要执行频率间测量或RAT间测量的UE的上行链路和下行链路传输,分配第一子帧901的时隙910和时隙911,以及对于需要执行频率间测量或RAT间测量的UE的上行链路和下行链路传输,分配第二子帧902的时隙912和时隙913。在图9的方法中,由于测量频率间信号或RAT间信号的UE在子帧的时隙#0接收下行链路信道,UE可以接收P-CCPCH和在时隙#0发送的其它下行链路共享信道。因此,UE可以在任意时刻接收关于当前节点B的系统信息中的变化的信息。而且,由于UE也接收DwPTS,所以它可以分析由DwPTS发送的信息,即,有关与当前节点B的同步调整的信息。
图9的测量时段903和测量时段904分别包括时隙911后的5个时隙和时隙913后的5个时隙。
图10说明结合图21描述的MP的再一个示例。在图10中,对于需要执行频率间测量或RAT间测量的UE的上行链路和下行链路传输,分配第一子帧1001的时隙1010和时隙1011,以及对于需要执行频率间测量或RAT间测量的UE的上行链路和下行链路传输,分配第二子帧1002的时隙1012和时隙1013。在图10的方法中,由于测量频率间信号或RAT间信号的UE在下一子帧的时隙#0之前的子帧的最后一个时隙接收下行链路信号,并在继时隙#0之后的时隙#1发送上行链路信号,所以UE可以在时隙#0从当前使用f1执行通信的节点B接收下行链路共享信道。而且,由于未使用时隙#0,可以支持更多需要执行RAT间测量的UE。
图10的测量时段1003和测量时段1004分别包括时隙1010和时隙1011之间的4个时隙,以及时隙1012和时隙1013之间的4个时隙。
图7到10说明了10ms MP的示例。然而,图22和23说明了20ms的MP的例子,以及图24使用与图7至10中采用的方法不同的方法来描述10ms的MP的例子。
图22描述通过连接两个无线电帧以产生更长的测量时段而提供的MP的例子。在图22中,欲执行频率间测量或RAT间测量的UE每子帧使用一个时隙,用于以和根据图7至10描述的相同方式,与当前节点B的上行链路和下行链路通信。在图22中,上行链路和下行链路传输数据被分配给子帧2201和子帧2204两者的时隙。即,如果时隙2205、时隙2206、时隙2207和时隙2208用于UE的上行链路传输,而时隙2209、时隙2210、时隙2211和时隙2212用于UE的下行链路传输,则时隙2207之后的子帧2201的两个时隙、子帧2202、子帧2203、子帧2204的时隙2307之前的两个时隙以及DwPTS、GP和UpPTS的时段可被分配作为测量时段2213。
在图22中,由欲执行频率间测量或RAT间测量的UE在两个无线帧上分配信道的方法比图7至10中向UE分配信道的方法更复杂。然而,可以提供比图7至10的测量时段更长的测量时段。
假定欲执行频率间测量或RAT间测量的UE每子帧使用一个时隙用于每个上行链路和下行链路传输,图23的构造MP的方法允许欲执行频率间测量或RAT间测量的UE通过减少在MP期间使用的时隙数目,从而增长测量时段2309和测量时段2310而执行与当前节点B的上行链路和下行链路通信。在图23中,欲执行频率间测量或RAT间测量的UE使用时隙2305和2306的时段以及时隙2307和时隙2308的时段中的每一个时段中的两个信道化正交码,执行上行链路和下行链路传输。即,为了减小实际接收的时隙的时段从而增长测量时段,图23的方法允许欲执行频率间测量或RAT间测量的UE在MP期间使用更多的信道资源。在图23中,鉴于连续帧的结构,测量时段2309包括子帧2301的时隙2305之前的3个时隙和DwPTS、GP和UpPTS时段,以及子帧2304的时隙2308之后的两个时隙。测量时段2310包括子帧2301的时隙2306之后的两个时隙、子帧2302、子帧2303、子帧2304的时隙2307之前的3个时隙和DwPTS、GP和UpPTS时段。
图24描述了如何将通过在MP期间向欲执行频率间测量或RAT间测量的UE分配更多信道资源来减少实际所接收时隙的时段的方法应用到10ms的帧。在图24中,欲执行频率间测量或RAT间测量的UE在时隙2405执行上行链路传输,而在时隙2406执行下行链路传输。因此,测量时段2407包括子帧2401的5个时隙以及子帧2402的6个时隙和DwPTS、GP和UpPTS时段。
在图23和24介绍的方法中,欲执行频率间测量或RAT间测量的UE通过信道资源变化方法,而不是简单信道资源分配方法,在MP期间利用当前节点B中的使用的信道资源来构造MP。
图26A至26D描述了在3GPP TDD中,利用信道分配方法的重复周期和重复长度来扩大UE的测量时段的方法。
在图26A至26D中,重复周期是1、2、4、8、16、32和64个无线电帧,且对于每一重复周期,重复执行上行链路传输或下行链路传输、或上行链路/下行链路传输。重复长度表示在重复周期中经历上行链路传输或下行链路传输的连续帧的数目,且具有小于“(重复周期)-1”的值。
将参照图26A说明重复周期。UE使用子帧2601的上行链路/下行链路时隙2605、子帧2602的上行链路/下行链路时隙2606、子帧2603的上行链路/下行链路时隙2607和子帧2604的上行链路/下行链路时隙2608来执行上行链路发送和下行链路接收。由UE执行的上行链路/下行链路传输的重复周期变成10ms的帧,而重复长度也变成10ms的帧。图26C描述图26A的信道的例子被修改成具有10ms重复周期和20ms重复长度。即,UE可以每10ms执行上行链路/下行链路传输,且如果重复周期是20ms,则UE以20ms的周期执行上行链路/下行链路传输。即“重复周期”是指用于完全发送上行链路/下行链路数据达某一时段的值,而不管UE的上行链路/下行链路传输数据的量。
在图26B、26C和26D中描述用于基于重复周期和重复长度的特性,扩大本发明的一个实施例中介绍的MP的长度的方法。为了更好地理解图26B、26C和26D中介绍的MP,将首先参照采用图26A的信道结构的UE的MP。
参照图26A,根据本发明的一个实施例,UE的上行链路/下行链路时隙集中在切换点上,UE可以执行频率间测量或RAT间测量的时段包括子帧2601的测量时段2609、子帧2601和子帧2602的测量时段2610、子帧2602和子帧2603的测量时段2611、子帧2603和子帧2604的测量时段2612和子帧2604的测量时段2613。在图26A的信道结构中,UE难于具有超过10ms的长测量时段。如果测量时段长于10ms,则UE具有更高的测量准确性和更大的测量可靠性。因此,本发明提供了根据参照图26B、26C和26D的上述重复周期和重复长度来扩大测量时段的方法。
在图26B、26C和26D中,将假定UE的重复周期是20ms。然而,和20ms重复周期一样,本发明可以同样地应用于40ms、80ms、160ms、320ms和640ms重复周期。而且,使用类似于重复周期的概念,本发明可以应用于其它TDD系统。而且,将假定在图26B、26C和26D的结构被用作UE的上行链路/下行链路传输结构之前,一般使用图26A的结构。
在图26B中,正在利用图26A的结构执行与节点B的上行链路/下行链路通信以及频率间测量或RAT间测量的UE,使用子帧2621的上行链路/下行链路时隙2625以及子帧2622的上行链路/下行链路时隙2626来执行与节点B的上行链路/下行链路通信,并使用子帧2621的测量时段2627、子帧2621和子帧2622的测量时段2628以及子帧2622、子帧2623和子帧2624的测量时段2629执行频率间测量或RAT间测量。图26B的测量周期2629具有超过10ms的长度,鉴于连续帧的结构,它可以和测量时段2627相连,从而扩大了测量时段的长度。通过将图26A中以10ms重复周期和10ms重复长度重复的UE的上行链路/下行链路时隙变成20ms重复周期和10ms重复长度,然后将图26A中由UE使用的上行链路/下行链路时隙聚集到20ms重复周期内的两个帧中的一个,来构造测量周期2629。
图26B的方法通过在维持信道资源或信道化码的数目的同时仅改变重复周期,向UE提供更长的测量时段,用于图26A中由UE使用的上行链路/下行链路时隙。在图26B的情况下,重复周期是20ms,而重复长度是10ms。因此,为了发送相同的信息,一般被发送20ms的信息必须被发送一个重复周期内的一个重复长度,与图26A中对于一个重复长度使用一个时隙用于每一上行链路/下行链路传输的方法不同,图26B中的方法可以通过对于一个重复长度使用两个时隙用于每一上行链路/下行链路传输,来发送相同量的信息。
图2C的方法通过组合图26B中引入的改变重复周期的方法以及改变分配给UE的上行链路/下行链路信道的数据速率的方法,来扩大测量长度。在图26C的情况下,以如图26B所述相同的方式,重复周期是20ms,而重复长度是10ms。
在图26C中,子帧2641的上行链路/下行链路时隙2645和子帧2642的上行链路/下行链路时隙2646代表图26A中由UE用于上行链路/下行链路传输的上行链路/下行链路时隙2605、上行链路/下行链路时隙2606、上行链路/下行链路时隙2607和上行链路/下行链路时隙2608,且在时隙2645和2646由UE使用的上行链路/下行链路数据速率是在图26A中由UE使用的上行链路/下行链路数据速率的两倍。在图26C中,可以根据由UE用于上行链路/下行链路传输的数据速率来变化UE占用的时隙数目。
作为增加数据速率的方法,存在一种增加一个时隙内使用的信道化码的数目的方法。即,与在一个时隙内使用一个信道化码的传统方法不同,为了使数据速率加倍,新的方法可以在一个时隙内使用两个信道化码。
作为增加数据速率的另一方法,存在一种在固定一个时隙内使用的信道化码的数目的同时减小扩频因子的方法。即,可以通过以传统方法在一个时隙内使用一个信道化码用于上行链路传输并将信道化码的扩频因子从16变为8,使数据速率加倍。
在图26C中,UE可以使用测量时段2647、测量时段2648和测量时段2649用于频率间测量或RAT间测量,并鉴于连续帧的发送,UE可以一起使用测量时段2649和测量时段2647用于频率间测量或RAT间测量。
图26D的方法将分散在两个子帧上的UE的上行链路/下行链路时隙聚集到一个子帧中。在图26 D的方法中,欲执行频率间测量或RAT间测量的UE可以使用子帧2661的测量时段2666以及跨子帧2661、子帧2662、子帧2663和子帧2664的测量时段2667。上行链路/下行链路时隙2665可被用于上行链路/下行链路传输。在图26D中,测量时段长于15ms,且如果测量时段被用于频率间测量或RAT间测量,则UE可以获得更加准确的测量结果。在图26D的方法中,如果可以改变图26C中由UE使用的上行链路/下行链路数据速率,则UE可以具有更长的测量时段。图26D示出具有20ms的重复周期和5ms的重复长度的MP的例子。
在图26B、26C、26D中介绍的构造MP的方法是通过改变重复周期和重复长度来扩大测量时段的示例性方法。而且,这些方法是通过改变UE的上行链路/下行链路数据速率来构造更长的测量时段的示例性方法。
现在,将说明用于支持图26A至26D提出的通过改变重复周期和重复长度的MP扩大方法的上层信令处理。
为了转换分配给UE的信道的格式,标准规范提出了几种将在信道转换处理中使用的消息。这些消息包括“无线电承载建立”、“无线电承载重新配置”、“发送信道重新配置”、“物理信道重新配置”消息。这些消息包括表1和表2中所描述的关于上行链路/下行链路专用信道的信息。
表1

表2


可以通过表1和表2中给出的专用信道信息的组合,来确定分配或重新分配给UE的信道的格式。
例如,为了将具有图26A的格式的信道分配给UE,表1和表2中给出的专用信道信息如表3所示给出。
表3

这里,如果上行链路和下行链路专用信道均具有10ms的重复周期,则重复长度必然为10ms。根据当前标准规范,如果重复周期是10ms,则不需要表示重复长度。分配给上行链路和下行链路专用信道的代码被用于时隙#3和时隙#4中的一个,而这在上述表中没有描述。
为了将以图26A中描述的方式分配的信道转换成图26B的信道格式,必须发送包括表4中所描述的信息的消息。在这种情况下,可用消息的类型为“无线电承载重新配置”、“发送信道重新配置”和“物理信道重新配置”消息。
表4


在表4中,可以以几种方式提供有关连续时隙的信息。然而,为了方便说明,将假定通过简单地通知所加时隙的唯一编号来提供有关连续时隙的信息。
即使在图26C的情形中,也可以提供类似于表4的信息。然而,由于一个时隙被分配给每个上行链路和下行链路专用信道,不包括有关连续时隙的信息。
然而,在图26D的情况下,当前标准规范无法提供需要的信息。在图26D的情况下,重复长度不是10ms的帧单位,而是5ms的子帧单位。甚至在这种情况下,可以以上述方式通过重复周期和重复长度来提供有关信道分配类型的信息。然而,重复周期和重复长度的值必须与当前值不同。即,当前重复周期可以具有1、2、4、8、16、32、64的一个值,这对应于10ms的帧的数目。然而,当以如图26D所示的子帧单位分配信道时,重复周期必须被定义为范围从1到128的整数,且每个值必须被重新定义以便它应当对应于子帧的数目。而且,虽然重复长度最初也对应于10ms的帧的数目,但是它必须被重新定义为相应于5ms的子帧的数目的值。
据此,在表1和表2中给出的有关上行链路和下行链路专用信道的信息必须被变成如表5和表6所示。
表5

表6


如表5和表6所示,重复周期的值被变为范围从1至128的一个整数,且重复周期和重复长度的定义被改变,以便它们应当对应于5ms的子帧的数目。
如果通过采用改变的定义,以图26D所描述的格式分配或修改专用信道,则每一信息字段具有表7中所示的值。
表7

如果根据表5和表6中重定义的重复周期和重复长度,以图26A和图26B所描述的格式分配或修改信道,则表3和表4的信息必须被变成表8和表9中所示。
表8

表9

在图26B的情况下,重复周期和重复长度仅仅被简单地加倍。然而,在图26A的情况下,由于重复周期被变成两个子帧,所以需要规定重复长度对应于一个子帧。因此,虽然现有的定义不需要有关重复长度的信息,但是修改的定义需要有关重复长度的信息。
图25中描述了构造图7、8、9、10、22、23、24和26A-26D中所示的MP,以及使用MP的MPS的过程。
虽然结合图25描述的构造MP和MPS的方法被应用于NB-TDD通信系统测量来自使用不同频带的另一NB-TDD通信系统的信号或RAT间信号的情况,但是该方法也可被应用于支持类似于NB-TDD的时分双工(TDD)技术的其它通信系统。
参照图25,在步骤2501,SRNC确定将由UE测量的项目的类型。即,SRNC确定UE是执行频率间测量还是执行RAT间测量。在步骤2502,SRNC计算当前未被UE使用的时隙的位置。如果在步骤2501确定存在几个将由UE测量的项目(即,GSM或FDD的频率间测量和RAT间测量),则SRNC确定执行相应的测量。另外,SRNC可以确定顺序地执行RAT间测量。
在步骤2503,SRNC确定是否可对于步骤2502中计算的未使用时隙时段,测量步骤2501中确定的测量项目,如果可以对于步骤2502中计算的时隙时段测量步骤2501确定的测量项目,则在步骤2506,SRNC根据在步骤2502中计算的未使用时隙时段来确定MP。如果在步骤2503确定不能对于当前未被UE使用的时隙时段测量步骤2501中所确定的测量项目,则SRNC在步骤2504中分析未被UE使用的时隙的信道资源的使用条件。
在步骤2505,SRNC根据在步骤2504中获得的分析结果,确定将被用于UE的MP。根据在步骤2501确定的测量项目的特性来确定MP。如果在步骤2501中确定的测量项目的数目是多于一个的数,则SRNC确定用于各个测量项目的MP。用于各个测量项目的MP可以被同时应用或被顺序应用。如图7、8、9、10、22、23、24和26A-26D所示,MP的长度可以被定义为子帧、帧或几个帧的长度。
在步骤2507,SRNC根据在步骤2506或2505中确定的MP来确定MPS,以及指示多个MP之间的间隔的MPI。可以在MPS中定义多个MP和MPI。
在步骤2507中确定MPS之后,SRNC在步骤2508中结束MP和MPS判决算法。
在确定MPSP和MPSRN之后,通过图25的过程确定的MPS被提供给UE,以便UE可以执行频率间测量或RAT间测量。
确定MPSRN以便可以执行可靠的测量或使用MPS可以获得满意的测量结果。UE在MPSRN结束点报告测量结果。此外,如果即使在MPSRM结束点之前测量结果是令人满意的,那么UE可以报告该测量结果。
本发明提供由UE执行RAT间测量的另一示例性方法。在该方法中,UE通过上层的数据发送调度方法来中断子帧或帧时段内的发送。结合图25描述的构造MP和MPS的方法被应用于在UE未与节点B通信的时段中,欲执行频率间测量或RAT间测量的UE监视来自使用不同频率或支持不同通信技术的通信系统的信号的情况。对于频率间测量或RAT间测量,UE必须通过除了当前使用的时隙之外的空闲时隙的时段或信道重新分配来执行测量。然而,在高速数据发送/接收期间,UE不能在除当前使用的时隙之外的空闲时隙执行正确的测量。另外,由于UE执行高速数据发送/接收,可被重新分配给信道的时隙不足。因此,在这种情况下,UE可以使用中断在子帧或帧时段中的数据发送/接收的方法来执行频率间测量或RAT间测量。发送/接收中断方法也可被用作另一种类似于通过图25的过程确定的MP的模式。
图11、13、14、15、16、17和18描述了根据本发明的实施例的节点B和UE的操作以及上层信令过程。为了便于对图11、13、14、15、16、17和18的说明,将对3GPP通信系统中通常使用的通信网络的每一组件进行说明。3GPP通信网络包括UTRAN(UTMS地面无线电接入网络,UMTS TerrestrialRadio Access Network)和UE。UTRAN包括多个RNC(无线电网络控制器,Radio Network Controller)和多个由RNC控制的节点B。根据与UE的关系,RNC分为SRNC(业务RNC)和DRNC(漂移RNC)。SRNC是UE所注册的RNC,而DRNC是管理当前与UE通信的节点B的RNC。SRNC和DRNC可以彼此相同或不同。
参照图11、13、14、15、16、17和18,将对当NB-TDD系统的SRNC识别出UE需要执行RAT间测量时,SRNC、节点B和UE之间执行的信令、以及因此所需要的物理信道中的变化进行说明。
而且,在图11、13、14、15、16、17和18中,本发明提供一种用于预先确定相应于可应用上述MP和MPS的DL时隙和UL时隙的无线电资源,以及保留所确定的无线电资源以便在需要时UE可以使用所保留的无线电资源用于RAT间测量的方法。
将在下面说明用于保留无线电资源以便在需要时UE可以使用所保留的无线电资源用于RAT间测量的方法。为了实现用于扩大RAT间测量时段的信道分配改变方法,有利于RAT间测量的DL或UL信道的时隙资源被分配给需要执行RAT间测量的UE,而不分配给除需要执行频率间测量或RAT间测量的UE之外的其它UE。参照图8,如果切换点存在于第四时隙和第五时隙之间,则相应于第四时隙的无线电资源即N个UL信道化码和相应于第五时隙的无线电资源即M个DL信道化码被保留作为用于频率间测量或RAT间测量的无线电资源。可被保留作为用于频率间测量或RAT间测量的无线电资源的时隙可以是存在于给定切换点两侧的UL时隙和DL时隙。前面的描述相当于先前参照图7、8、9、10、22、23、24和26所作的描述。在NB-TDD中,DL信道使用具有SF=1和SF=16的两个信道化码,而UL信道使用具有SF=1、SF=2、SF=4、SF=8和SF=16的5个信道化码,因此SF=16的信道化码被保留作为N个UL资源和M个DL资源。根据本发明,在需要执行RAT间测量时,正在使用在初始呼叫请求时分配的DL和UL时隙执行发送/接收的节点B和UE被重新分配保留时隙中的一个时隙,并且继续执行通信。结果,RAT间测量时段被扩大,有助于提高RAT间测量性能。
图11说明根据本发明的一个实施例的节点B和UE的操作。当UE执行频率间测量或RAT间测量时,节点B预先定义几个MPS并向UE发送有关定义的MPS的信息。随后,当必须执行频率间测量或RAT间测量时,节点B向UE发送用于MPS信息的索引,以便UE可以使用相应于索引信息的MPS来执行频率间测量或RAT间测量。除了用于预先定义几个MPS并使用相应于MPS的索引信息向UE发送MPS的方法之外,还存在一种用于在每一测量点向需要执行频率间测量或RAT间测量的UE发送MPS所需信息的另一方法。
在图11中,当UE开始与NB-TDD系统通信时,SRNC向UE和连接至UE的节点B提供用于频率间测量或RAT间测量的模式信息。即,SRNC提供有关上面所定义的MP、MPI和MPS的信息。由于MPSP是指示频率间测量或RAT间测量的开始点的信息,所以在频率间测量或RAT间测量的开始点之前提供该信息。MPSRN是对于每个测量项目,可以与MP、MPI和MPS一起被预先提供的信息。而且,MPSRN是对于每一测量项目与MPSP一起确定的,且可以在测量开始点之前立即提供。
MPI是UE不执行频率间测量或RAT间测量的间隔。在MPI时段中,UE使用原先使用的时隙和信道化正交码来执行上行链路/下行链路通信。通过使用UE原先使用的时隙和信道化正交码用于MPI时段,可以保留子帧中的特定时隙内的几个信道化正交码,以便向欲执行频率间测量和RAT间测量的UE提供更长的测量时段。由于UE使用在频率间测量或RAT间测量之前使用的时隙和信道化正交码用于MPI时段,所以执行频率间测量或RAT间测量的其它UE可以再次使用在频率间测量或RAT间测量期间由UE使用的时隙和信道化正交码。因此,UE也可以使用更长的测量时段。在图11的步骤1101,SRNC确定用于频率间测量或RAT间测量的模式信息参数。可以使用根据图25描述的方法来确定模式信息。在步骤1102,在无线电链路建立期间,SRNC向节点B发送在步骤1101中确定的参数且在无线电承载建立期间向UE发送该参数。“无线电链路建立”是指SRNC和节点B之间的物理通信路径,而“无线电承载建立”是指SRNC和UE之间的逻辑或物理通信路径。
由于在步骤1102,与频率间测量或RAT间测量相关的参数被发送至节点B和UE,节点B和UE具有所有可用于频率间测量或RAT间测量的模式信息。接着,在步骤1103中识别出UE需要执行RAT间测量之后,在步骤1104,如果MPSRN未包含在相应于先前发送给节点B和UE的参数的索引、MPSP以及在步骤1102发送的参数中,SRNC仅向节点B和UE发送MPSRN。在步骤1105,节点B和UE仅基于由SRNC发送的索引来确定是否它们将使用频率间测量模式或RAT间测量模式。在确定频率间测量模式或RAT间测量模式之后,以当前使用的信道上的模式,通过每个模式的信道重新分配方法,向节点B和UE重新分配保留用于频率间测量或RAT间测量的信道,并使用所重新分配的信道继续进行通信。在步骤1107,UE在除了重新分配的信道之外的非发送时隙执行频率间测量或RAT间测量。由于用于频率间测量或RAT间测量的MPS具有几个帧的长度,所以在步骤1108中,UE和节点B通过比较MPS和MPSRN来确定当前帧是否是频率间测量或RAT间测量结束点。如果当前帧是结束点,则UE在步骤1111结束频率间测量或RAT间测量并报告测量结果。随后,在步骤1112,UE和节点B使用在频率间测量或RAT间测量开始之前使用的上行链路/下行链路时隙来继续通信。然而,如果当前帧不是结束点,则UE在步骤1109中确定将被用于下一测量的MPS是否与当前MPS相同。如果将被用于下一测量的MPS和当前MPS不同,则UE在步骤1110中根据MPS的信道重新分配方法,再次执行信道重新分配。
虽然在假设UE仅执行一个测量的假设上对图11进行了描述,但是图11的过程甚至可以应用于UE并行或串行执行几个测量的情况。而且,在图11的描述中,预先定义将用于测量的参数并使用相应于参数的索引信息。然而,可以从外部设备提供将用于测量的参数。在这种情况下,不包括步骤1102和1105,且在步骤1104中,SRNC发送参数而不是相应于参数的索引。
将参照图12,假设实际通信条件再次描述根据图11描述的频率间测量或RAT间测量过程。假定在图12中使用两种类型的MP,且MP具有1个无线电帧的长度。
图12说明在UE和节点B之间发送的连续帧。在连续帧中,在时段1202和时段1204执行RAT间测量。将假定该周期从MPSP 1201经过MP1 1202继续,并在MPI 1203之后经过MP2 1024再次继续。MP1或MP2包括用于RAT间测量的帧。构成MP1和MP2的频率间或RAT间测量模式可以是相同的或者是不同的。而且,MPI可以具有0值。即,MP1和MP2可以连续地存在。MP1 1202、MPI 1203和MP2 1204构成一个MPS。MPS可以被重复M次,并由MPSRN表示该重复。如果MPSRN期满,则RAT间测量结束,且UE向SRNC报告测量结果。在图12中,MP1 1202和MP2 1204被应用于无线帧1205、无线帧1206、无线帧1207和无线帧1208。应用MP的每一RAT间测量帧使用有利于RAT间测量的信道分配方法。即,在MP1和MP2,如根据图7、8、9、10、22、23、24和26A-26D所述改变信道分配方法。
虽然假设在图12中,MP1 1202和MP2 1204使用不同的模式,但是MP11202和MP2 1204可以使用相同的模式。然而,如果对MP1 1202和MP2 1204使用相同模式,则由于在监视图1的NB-TDD系统、图2的WB-TDD系统、图3的SGM系统的过程中,在特定时隙上发送P-CCPCH和DwPTS、P-CCPCH和SCH、以及SCH和FCCH,所以NB-TDD通信系统在执行测量时没有困难。然而,在结合图4描述FDD系统的情形中,即使P-SCH被应用于相同MP也可以测量P-SCH,但是如果S-SCH和P-CCPCH被应用于相同的MP,则它们不能被测量。在S-SCH的情况下,由于每一时隙发送不同的代码,所以必须监视每一时隙。同样,P-CCPCH也在每一时隙上发送,必须监视一帧中的所有时隙。而且,由于必须执行监视达20ms以便读取P-CCPCH上发送的BCH信息。因此,如果仅重复地使用一个模式,则每次不一定读取特定周期,使得不可能正确地执行频率间测量或RAT间测量。因此,本发明提供一种根据RAT间测量的目的,将不同模式应用于MP的方法。
图12描述使用两种模式的示例性方法。在图12中,帧1205使用由子帧1209和子帧1210组成的一个模式。该模式是如图7所示用于扩大频率间测量或RAT间测量时段的信道重新分配方法的例子。在子帧1209中,第四时隙被分配作为UL信道,而第五时隙被分配作为DL信道。在子帧1210中,第四时隙被分配作为UL信道,而第五时隙被分配作为DL信道。因此,在帧1205中,频率间或RAT间测量时段包括子帧1209的第一时隙至第三时隙的时段1217、子帧1209的第六时隙至子帧1210的第三时隙的时段1218、以及子帧1210的最后两个时隙。子帧1210的最后两个时隙被连接至下一帧1206的子帧1211的第一时隙到第三时隙,形成频率间或RAT间测量时段1219。在本发明的一个实施例中,在第一帧1205中使用的图7的完整模式甚至用于第二帧1206。然而,在第三帧1207的开始使用结合图8所述的模式。根据结合图8所述的信道分配方法,在第一子帧1213中,第一时隙被分配作为DL信道,而第二时隙被分配作为UL信道,并且,在第二子帧1214中,第一时隙被分配作为DL信道,而第二时隙被分配作为UL信道。因此,帧1207的测量时段包括子帧1213的第三时隙到最后一个时隙的时段1222和子帧1214的第三时隙到最后一个时隙的时段1223。甚至在下一帧1208中,重复图8的信道分配方法。图12中所示是使用各种MP的最简单例子,且可以增加MP的数目。
接着,将对节点B、UE和SRNC之间的执行的以实现上述信道分配方法的信令方法进行描述。
对于使用上述模式的频率间测量或RAT间测量,当在UE和节点B之间建立呼叫时,即当在UE和节点B之间建立无线电链路和无线电承载时,必须将模式信息从SRNC发送至节点B和UE。模式信息包括有关由MP、MPI、MPS、MPSP和MPSRN表示的每一模式的信道重新分配方法的信息、有关多个模式的可能组合的信息和有关频率间或RAT间测量的开始点和结束点的信息。信道重新分配方法是根据图25的过程确定的方法,且在图7、8、9、10、22、23、24和26A-26D中描述了信道重新分配方法的例子。如上所述,通过预先定义几个参数并且然后或者发送相应于定义的参数的索引或定义的参数,来提供RAT间测量参数。
图13描述在假定预先定义频率间或RAT间测量参数并且然后发送相应于定义的参数的索引时,用于RAT间测量的信令消息的方法。图13示出如何将结合图11所述的节点B和UE之间的操作流程应用到3GPP标准中规定的信令方法。即,在无线电链路建立期间,SRNC将模式信息发送至节点B,而在无线电承载建立期间,SRNC将模式信息发送至UE。
参照图13,SRNC 1301在步骤1304,将无线电链路建立请求NBAP(节点B应用部分)消息发送至节点B 1302,且节点B 1302在步骤1305将无线电链路建立响应NBAP消息发送至SRNC 1301,以完成无线电链路建立。术语“NBAP”是指用于执行节点B和SRNC之间的信今的逻辑部分。随后,SRNC1301在步骤1306将无线电承载建立RRC(无线电资源控制,Radio ResourceControl)消息发送至UE 1303,且作为响应,UE 1303在步骤1307将无线电承载建立完成RRC消息发送至SRNC 1301,以完成无线电承载建立。术语“RRC”是指用于管理UE或节点B的无线电链路的增加、删除和修改的上层的逻辑部分。
表10描述了在无线电承载建立期间必须通过RRC消息发送的信息的例子。
表10

在表10中使用的参数包括指示测量开始帧的帧编号的开始SFN(MPSP)、指示用于测量的每一MPS的可用性的测量模式序列状态标志、指示测量时段的总长度的模式序列总长度(MPSRN)以及指示每一MPS的模式。模式包括指示MPS的索引的MPS索引、指示MPS中的每一MP的MP长度的MP长度、用于MP的将由UE和节点B用于上行链路/下行链路传输的时隙和代码信息、以及指示MP之后到下一MP的间隔的MPI。将假定可以在MPS中定义几个MP且它们被顺序地使用。如果不是顺序地使用MP,则必须加上用于每一MP的索引信息。
表11描述了在无线电承载建立期间,必须通过RRC消息发送的信息的另一例子。
表11

在表11中使用的大多数参数和表10中采用的参数相同。在表11中,开始子帧编号(缺省值=第一个)被用于将频率间或RAT间测量开始点的单位设置为子帧单元而不是帧单元。而MP长度与表10中使用的MP长度不同,用于将MP长度的单位设置为子帧单位。即,MP的单位变成5ms*n(其中,n是自然数)。可以组合将频率间或RAT间测量开始点的单位设置成帧单元或子帧单元和将MP长度的单位设置成帧单元或子帧单元。
在图13中,在通过上述处理执行无线电承载建立之后,如果在UE 1303和节点B 1302之间执行通信时,SRNC 1301识别出UE 1303需要执行RAT间测量,则SRNC 1301在步骤1308将用于请求用于测量的信道分配的RL重新分配请求NBAP消息发送至节点B 1302。NBAP信息是用于通过对于相应UE的信道重新分配来请求信道改变而用于频率间或RAT间测量的消息。在步骤1309,响应于RL重新分配请求NBAP消息,节点B将RL_重新分配响应NBAP消息发送给SRNC 1301。一旦收到来自节点B 1302的响应,SRNC1301在步骤1310将用于测量控制的测量控制RRC消息发送至UE 1303。通过测量控制RRC消息,SRNC 1301将用于在无线电承载建立期间发送的一个模式的索引发送至UE 1303,一旦收到来自SRNC 1301的测量控制RRC消息,则UE 1303分析该索引并确定用于RAT间测量的帧。而且,UE 1303分析将在每一帧中使用的模式,根据每一模式重新分配保留时隙的信道化码并使用重新分配的信道化码来继续通信。UE 1303在继续执行通信的同时执行RAT间测量。由于节点B 1302也识别出UE正在执行RAT间测量,所以可以经过用于保留时隙的信道化码执行通信。在RAT间测量之后,UE 1303在步骤1311可以将频率间或RAT间测量结果和测量报告RRC消息一起发送至SRNC1301。在图13中,对于每次必须执行频率间或RAT间测量时向UE提供频率间或RAT间测量参数的情况的UE、节点B和SRNC之间的信令流,SRNC1301通过图13的步骤1308中的RL重新分配请求消息,将表10和11中所示的参数发送至节点B 1302,并在图13的步骤1310中,将测量控制消息发送至UE 1303。
图14、15和16描述了在频率间测量或RAT间测量期间执行的SRNC、节点B和UE的操作。将假设在图14、15和16中,预先在UE、节点B和SRNC之间商定将被用于频率间测量或RAT间测量的参数,并在测量期间,从SRNC向UE和节点B发送相应于参数的索引。图14是描述在RAT间信号测量期间SRNC的操作。
参照图14,在步骤1401,当SRNC开始呼叫建立时,SRNC在步骤1402产生与UE的呼叫建立所需的各种参数,包括用于RAT间测量的模式信息。在步骤1403,SRNC通过NBAP消息将产生的参数发送至节点B,且在步骤1404从节点B接收响应NBAP消息。随后,在步骤1405,SRNC通过无线电承载建立RRC消息将参数信息发送至UE,且在步骤1406,从UE接收无线电承载建立完成消息。然后,在步骤1407,SRNC执行到UE的呼叫连接。如果在步骤1408,SRNC识别出UE需要执行RAT间测量,SRNC在步骤1409将RL重新分配请求NBAP消息发送至包含UE的节点B,以请求信道重新分配用于RAT间测量。SRNC将指示在无线电链路建立期间预先发送的RAT间测量模式之一的索引信息,通过NBAP消息发送至节点B。在步骤1410,SRNC接收来自节点B的NBAP消息。通过来自节点B的NBAP消息,SRNC确定是否用于频率间或RAT间测量的信道重新分配,即信道改变可用于UE。如果UE可以使用保留用于频率间或RAT间测量的资源来执行频率间或RAT间测量,则在步骤1411,SRNC通过测量控制RRC消息将测量控制信息发送至UE。SRNC通过RRC消息,将指示在无线电承载建立期间预先发送的RAT间测量模式之一的索引信息发送至UE。UE根据该索引信息确定RAT间测量模式,并重新分配上述发送/接收时隙作为保留用于RAT间测量的时隙。在步骤1412,SRNC通过作为RRC消息的测量报告消息,接收由UE发送的RAT间测量的结果。在步骤1413,SNRC根据测量结果执行诸如越区切换等的其它操作。
图15是描述在RAT间测量期间节点B的操作的流程图。参照图15,在步骤1501,节点B从SRNC接收无线电链路建立请求NBAP消息,并从接收的消息中获得用于RAT间测量的模式信息。在步骤1502,节点B存储模式信息。随后,在步骤1503,节点B将无线电链路建立响应NBAP消息发送至SRNC以通知无线电链路建立,然后在步骤1504执行与UE的呼叫连接。在步骤1504维持与UE的呼叫的节点B,在步骤1505中,从SRNC接收RL_重新分配请求NBAP消息。在收到该NBAP消息之后,节点B使用由UE保留用于RAT间测量的信道化码,分析NBAP消息中的索引并确定信道分配,即信道变化的可用性。在步骤1506,根据所确定的信道变化可用性,节点B将信道变化可用性和NBAP消息一起发送至SRNC。随后,在步骤1507,节点B分配由UE保留用于RAT间测量的无线电资源(相应于DL时隙和UL时隙的信道化码),并使用分配的无线电资源维持与UE的通信。
图16是描述在RAT间测量期间UE的操作的流程图。参照图16,在步骤1601,UE从SRNC接收无线电承载建立RRC消息,并从接收的消息中获得用于RAT间测量的模式信息。在步骤1602,UE存储该模式信息。随后,在步骤1603,UE将无线电承载建立完成RRC消息发送至SRNC以通知无线电承载建立,然后在步骤1604维持与节点B的通信。在步骤1605,UE从SRNC接收测量控制信息和RRC消息。UE从接收的RRC消息中读取由SRNC发送的模式信息索引,并选择使用的模式。在步骤1606,UE根据该模式,使用保留用于RAT间测量的信道资源(或无线电资源),来改变发送/接收信道,然后使用改变的信道来维持通信。UE在由于资源变化而扩大的频率间或RAT间测量时段中执行RAT间测量,并在步骤1607中,将测量结果和测量报告RRC消息一起发送至SRNC。
本发明并不限于如上所述的用于频率间或RAT间测量的信令方法。SRNC在无线电链路和无线电承载建立期间,预先将频率间或RAT间测量参数发送至节点B和UE,并在需要频率间或RAT间测量时,通过测量RRC消息仅发送索引。当SRNC识别出需要频率间或RAT间测量时,它可以通过RRC消息发送用于频率间或RAT间测量的各种参数。换句话说,当UE首先开始与系统的通信时,可以从SRNC向节点B和UE发送频率间或RAT间测量参数。另外,当需要频率间测量或RAT间测量时,SRNC可以将频率间或RAT间测量参数和测量控制消息一起发送给UE。
图17提出一种用于向频率间或RAT间测量相关的UE给定优先级的方法,因而和正常UE(与RAT间测量不相关)一起使用它们,而不是严格使用由用于分配保留用于频率间或RAT间测量的时隙的方法所保留的信道化码,仅用于RAT间测量相关的UE。在保留用于特定时隙的信道化码用于RAT间测量相关的UE的情况下,即使不存在需要执行RAT间测量的UE,保留的资源也不能被分配给正常的UE,从而降低了资源的利用效率。为了解决该问题,最好给予资源较低优先级,而不是严格地保留资源以便不将资源分配给正常UE。即,可以将除保留资源之外的资源分配给与RAT间测量相关的UE,并仅当资源不足时将资源分配正常UE。如果如上所述给予较低优先级以增加效率,则存在将用于RAT间测量的资源分配给不需要执行RAT间测量的UE的可能。此时,如果存在需要执行RAT间测量的UE,则需要将不需要执行RAT间测量的UE的资源换成需要执行RAT间测量的UE的资源。当然,如果没必要执行RAT间测量,则UE可以使用先前的资源或使用交换的资源。
参照图17,在步骤1701,如果SRNC识别出某一UE需要执行RAT间测量,则在步骤1702,确定SRNC是否是该UE的CRNC(控制RNC)。术语“CRNC”是指连接至UE的RNC。如果SRNC不是UE的CRNC,则在步骤1703,SRNC将用于RAT间测量的资源信息的请求发送至DRNC。随后,在步骤1704,SRNC确定保留用于RAT间测量的资源是否全部处于使用中,如果在步骤1705,资源并没有被全部使用,则SRNC执行图14的步骤1408和其后续步骤。然而,如果资源全部被使用,则在步骤1706,SRNC确定使用资源的UE是否是执行RAT间测量的UE。如果执行RAT间测量的UE使用资源,则在步骤1707,UE等待直到资源变成可用。然而,不需要执行RAT间测量的UE被分配用于RAT间测量的资源,则SRNC在步骤1708交换由两个UE使用的资源。在这种情况下,由于必须交换分配给两个UE两者的资源,所以相应的信息必须被发送至节点B和两个UE。即,结合图14的过程,与两个UE有关的信息必须被发送至节点B,必须对需要执行RAT间测量的UE使用根据图16描述的过程。而且,必须执行将保留的资源应用到原UE的处理。
同时,UE在频率间或RAT间测量结束点将这些报告给SRNC,这样释放重新分配给UE用于RAT间测量的DL时隙和UL时隙。而且,UE继续使用先前使用的DL时隙和UL时隙进行通信。
图18是描述给予UE中断RAT间测量的权限以增进效率的方法的流程图。在该实施例中,UE根据相应于发送给它的索引的模式来执行RAT间测量,有助于减小用于RAT间测量的信令负载。然而,如果UE在根据模式执行RAT间测量时识别出RAT间测量变得不必要,继续根据该模式执行RAT间测量将降低效率。因此,在该实施例中,根据模式执行RAT间测量的UE将RAT间测量结束请求和RRC消息一起发送给SRNC,于是,UE甚至在RAT间测量结束点之前就可以结束RAT间测量。
参照图18,在接收模式信息之后,在步骤1801,UE从SRNC接收测量控制RRC消息并检测相应于包含在接收模式信息中的索引的模式。在步骤1802,UE根据检测的模式执行RAT间测量,然后发送测量报告RRC消息。在步骤1803,UE确定是否需要继续RAT间测量,如果继续需要RAT间测量,则UE继续执行RAT间测量。如果在步骤1804,根据模式确定必须结束测量,则在步骤1805,UE结束RAT间测量并将改变的资源恢复至原状态。如果在步骤1803,根据该模式在结束RAT间测量之前,确定RAT间测量变得不必要,则在步骤1806,UE将RAT间测量结束请求和RRC消息一起发送至SRNC。一旦从SRNC收到响应RRC消息,则在步骤1807,UE结束RAT间测量而不管该模式。
图19描述了根据本发明的一个实施例的UE中的收发信机的结构,其中,发送机将UL物理信道从UE发送至节点B,以及接收机从节点B接收DL物理信道。由于NB-TDD系统使用相同的频带用于上行链路和下行链路传输,所以发送机和接收机由一个开关分开。
首先,将在下面说明在图19的UE收发信机中发送具有用户数据的UL信道的处理。
用户数据1901包括来自上层的信令信息和用户数据信息。用户数据1901经过编码器1902进行编码。执行编码以检测在数据发送期间产生的可能错误并校正检测的错误。编码被分类为卷积编码、turbo编码和信道化正交编码。由编码器1902编码的用户数据在交织器1903经过交织。执行交织以防止在物理信道上发送的用户数据中发生的可能突发错误。交织是一种根据预定规则改变用户数据的发送顺序的技术。通过执行上述处理,尽管在数据发送期间由于噪声而发生了突发错误,但是错误位置通过接收机的去交织而被分散,从而最小化突发错误的影响。由交织器1903交织的用户数据被提供给复用器1907,复用器1907通过将交织的用户数据与TFCI(传输格式组合指示符,Transmission Format Combination Indicator)1904、SS(同步偏移,SynchronizationShift)1905和TPC(发送功率控制命令,Transmit Power control Command)1906相乘而产生用户数据部分。在同时发送几种用户数据时,TFCI 1904指示每一用户数据的数据速率和传输格式,并使节点B能够正确地分析数据。每一子帧发送的命令SS 1905,用于调整DL同步。用于功率控制的命令TPC 1906,用于控制从节点B发送到UE的下行链路的发送功率。由复用器1907产生的数据部分被提供给扩频器1908,扩频器1908将该数据部分乘以输入的信道化码用于扩频。当通信开始时向UE分配由扩频器1908使用的信道化码。
本发明提供一种改变由UE发送的信道用于频率间或RAT间测量的处理。一旦收到频率间或RAT间测量开始命令,UE根据从SRNC发送的信息,选择频率间或RAT间测量参数,然后基于所选择的参数,根据频率间或RAT间测量模式来执行信道重新分配。为了执行信道重新分配,扩频器1908必须将接收的数据部分和用于频率间或RAT间测量的模式中将被使用的信道化码相乘,而不是现有的信道化码。由控制器1921提供信道化码信息。对于RAT间测量,控制器1921根据由SNRC确定的参数,确定与将由UE用于数据发送/接收的上行链路/下行链路传输信道有关的信息,并使扩频器1908在数据接收/发送期间,能够使用用于被分配给上行链路/下行链路传输信道的时隙的信道化码。扩频器1908将用户数据部分和重新分配用于频率间或RAT间测量的信道化码相乘。
乘法器1909将从扩频器1908输出的用户数据部分和信道增益相乘。信道增益是根据从UE发送到节点B的UL信道的发送功率确定的。乘法器1910将从乘法器1909输出的用户数据部分与扰码相乘。扰码被用于标识节点B和减小同一信号的多径分量之间的交叉相关性。由乘法器1910加扰的用户数据部分被分成两个部分,中置码1914被插在两个分开的用户数据部分之间。两个用户数据部分和中置码1914和GP一起构成一个UL时隙。中置码1914被用于标识使用同一时隙的UE,标识使用同一时隙的节点B信道,并在DL/UL发送期间执行信道估计。而且,中置码1914被用于测量在DL发送期间从节点B到UE的多径损耗。而且,由于每一节点B使用它自己的唯一中置码,所以中置码被用于标识节点B。对于中置码,采用128种特定序列。每一节点B采用一种特定序列,且节点B中的每一UE使用该特定序列的移位版本。GP被用于防止由于DL和UL时隙之间的多径延迟而引起的干扰,如由DL时隙和UL时隙之间的重叠引起的干扰,且实际上,在GP时段中不发送任何数据。
调制器1912对从复用器1911输出的UL用户信道进行调制。调制器1912使用的调制技术是QPSK(四相相移键控)或8PSK(8相相移键控)。从调制器1912输出的UL用户信道被提供给开关(SW)1920,且开关1920在被指定发送UL用户信道的时隙将UL用户信道发送至节点B。
在该实施例中,由于在发送之前重新分配信道用于频率间或RAT间测量,通过控制器1921控制开关1920,UE在新分配的时隙时段发送信道,而不是当前的时隙时段。根据用于扩大频率间或RAT间测量时段的模式,确定与新时隙有关的信息,并根据图25的过程选择模式。控制器1921根据NB-TDD系统的子帧结构,控制UL信道的发送点,控制UpPTS的发送点和DwPTS的接收点,并根据从节点B发送的DL信道的接收点控制开关1920。UpPTS是由UpPTS发生器1913产生的,并用于获得UL发送同步。从开关1920输出的UL用户信道被RF(射频)单元1922上变频为载波频带信号,然后通过天线1923发送至节点B。发送至节点B的信号被再次发送至UTRAN。当执行根据本发明的频率间或RAT间测量时,UE在除了发送和接收UE信号的时隙之外的时段监视其它系统。因此,在UE不发送UL信道或接收DL信道的时隙时段中,控制器1921控制RF单元1922的频率以监视其它系统。对于频率间或RAT间测量,控制器1921将RF单元的频带改变至由相邻节点B使用的频带,这样接收来自相邻节点B的信号。在频率间或RAT间测量之后,控制器1921控制RF单元1922将当前频带返回至原来用于UL发送的频带。
接着,将在下面说明在图19的UE收发信机中接收DL信道的处理。
通过天线1923接收的下行链路信道由RF单元1922下变频为基带信号,然后提供给开关1920。在控制器1921的控制下,开关1920在将接收下行链路信道的时间点被连接至解调器1932。由UE接收的信号可以包括从节点B发送的DwPTS和从其它节点B发送的DwPTS。开关1920在DwPTS的接收点被连接至DwPTS分析器1931,以向DwPTS分析器1931提供接收的DwPTS。在用于搜索节点B的初始小区搜索处理中,DwPTS被UE接收用于指示P-CCPCH的位置、用于发送具有系统信息的BCH的物理信道和复帧结构中当前接收的DL帧的位置,并被用于测量UL信道的同步。DwPTS分析器1931可以用相关器或匹配滤波器替代。
解调器1932根据节点B使用的调制技术解调DL信道,并将其输出提供给去复用器1933。去复用器1933将DL信道分(去复用)为中置码1934和用户数据部分。中置码1934被用于测量从节点B接收的下行链路信道的功率电平,识别由节点B发送的下行链路信道,并通过分析中置码来确定是否存在发送至UE的数据。
从去复用器1933输出的下行链路数据部分被施加于乘法器1935,乘法器1935将解调后的DL数据部分和节点B使用的扰码相乘用于解扰。解扰后的数据被提供给解扩器1936。解扩器1936将下行链路数据部分分为用户数据和在其上发送节点B系统信息或UE控制信息的DL共享信道1937,并通过将扩频用户数据和DL共享信道与由节点B使用用于用户数据部分和下行链路共享信道的OVSF(正交可变扩频因子,Orthogonal Variable SpreadingFactor)相乘,解扩扩频用户数据和DL共享信道。
当UE执行RAT间测量时,解扩器1936通过信道化码重新分配来改变下行链路传输信道。对于RAT间测量,控制器1921向解扩器1936提供信道化码信息以便UE可以利用新分配的信道接收数据。解扩器1936然后将下行链路传输信道和重新分配的信道化码相乘用于解扩。
从解扩器1936输出的用户数据被提供给去复用器1938,去复用器1938将提供的用户数据分解为TPC 1939、TFCI 1940、SS 1970和纯用户数据。TPC1939被用于控制将由UE发送的上行链路信道的发送功率,而TFCI 1940被用于区分从节点B发送到UE的数据的类型。而且,SS 1970被用作请求从节点B发送到UE的上行链路信道的同步控制的命令。从去复用器1938输出的纯用户数据被提供给去交织器1941,去交织器1941通过去交织分散在下行链路传输期间产生的突发错误,并将去交织后的用户数据提供给解码器1942。解码器1942解码去交织后的用户数据并输出用户数据1943。
一旦收到RAT间测量开始消息,UE在不执行与该UE所属的节点B的数据通信的时隙时段中,测量来自其它节点B的信号。如果RAT间测量开始,则控制器1921控制RF单元1922的频率,以从除该UE所属的当前节点B之外的其它相邻节点B接收信号。相邻节点B可以包括使用与当前节点B的频率相同频率的NB-TDD节点B、使用与当前节点B的频率不同频率的NB-TDD节点B或支持其它通信技术的节点B。“其它通信技术”可以包括如结合图5所述的SGM、FDD、WB-TDD、CDMA2000和IS-95,已参照图1、2、3和4对它们进行了描述。
对于频率间或RAT间测量,通过RF单元1922接收的其它节点B的信号被提供给其它节点B的信号测量器1951。在UE不执行发送/接收时,其它节点B的信号测量器1951从从其它B接收的信号中读取P-CCPCH、P-SCH和S-SCH信息。测量的信号和用户数据1901一起被提供给发送机,然后被发送至节点B以向SRNC报告测量结果。
图20描述相应于图19的UE收发信机的节点B收发信机的结构。
首先,将参照图20描述节点B中,将DL信道从节点B发送到UE的处理。为了方便起见,仅对用于将DL信道发送至某一用户的部分进行描述。然而,对于本技术领域人员来说,很明显,可以用相同方法将DL信道发送至节点B中的其它用户。
参照图20,附图标记2001表示将被发送至用户的DL数据。DL数据2001经过编码器2002的信道化正交编码,然后被提供给交织器2003。交织器2003交织编码后的DL数据,并将其输出提供给复用器2006。复用器2006通过将从交织器2003输出的交织后的用户数据和TPC 2005、TFCI 2004以及SS 2060复用来产生用户数据部分。用户数据部分被扩频器2007使用用于DL信道的OVSF码进行信道扩频处理,且乘法器2008将扩频后的用户数据部分和信道增益相乘,该信道增益用于控制将被发送至用户的DL信道的发送功率。从乘法器2008输出的经增益控制的用户数据被提供给求和器2011。
本发明提供一种改变节点B正与UE通信的信道用于频率间或RAT间测量的处理。如结合图11所描述的,UE被重新分配用于频率间或RAT间测量的信道,将由UE使用的信道被发送至节点B。因此,节点B必须如结合图11所描述的改变用于频率间或RAT间测量的DL信道化码。控制器2021使扩频器2007能够将现有信道化码变成重新分配用于频率间或RAT间测量的信道化码。控制器2021根据从SRNC发送至节点B的参数,来确定将在扩频器2007中使用的信道化码,以及扩频器2007将用户数据部分和重新分配用于频率间或RAT间测量的信道化码相乘。
求和器2011对DL共享信道2010、其它用户的信道2009和用户信道求和。由于这些信道被采用它们自己的唯一OVSF码进行信道扩频,因此虽然被求和,但是它们相互之间不干扰。从求和器2011输出的DL信道被乘法器2012利用用于节点B的扰码进行加扰,并被提供给复用器2014。复用器2014通过复用DL信道和中置码2013产生DL信道时隙。中置码2013由接收中置码201 3的UE用于估计节点B的发送功率电平。而且,中置码2013被用于找出经过由复用器2014复用的DL信道时隙发送的信道。
复用器2014的DL信道信号输出被提供给调制器2015。调制器2015通过QPSK、8PSK或QAM(正交幅度调制,Quadrature Amplitude Modulation)调制提供的DL信道信号。调制的DL信道信号被提供给开关(SW)2020,在控制器2021的控制下,开关2020在DL信道时隙的发送点被连接至调制器2015,从而向RF单元2012提供DL信道时隙。在控制器2021的控制下,开关2020被连接至DwPTS发生器2016以在DwPTS发送点发送DwPTS。DwPTS被接收DwPTS的UE用于在初始小区搜索处理中估计具有节点B信息的BCH的位置和节点B信号的电平。RF单元2022将DL信道时隙上变频成载波频带信号,然后通过天线2023将载波频带信号发送至节点B中的所有UE。
接着,将参照图20描述节点B中接收来自UE的UL信号的处理。
通过天线2023接收的UL信号被RF单元2022下变频为基带信号,然后提供给开关2020。在控制器2021的控制下,开关2020在预定点将从UE接收的UL信号提供给解调器2031。控制器2021具有通过基于SRNC确定的参数,根据有关新信道化码的信息控制扩频器2007和解扩器2035,将UL和DL信号和重新分配的信道化码相乘,以在频率间或RAT间测量期间重新分配UE和节点B之间的数据发送/接收信道的功能,以及通过确定节点B中的UE发送UL信道信号的时间点来控制开关2020的功能。而且,控制器2021具有在UpPTS的接收点将开关2020连接至UpPTS分析器2030以分析从每个UE接收的UpPTS的功能。
解调器2031解调接收的UL信号,并向去复用器2032提供解调后的UL信号。去复用器2032将接收的UL信号分解(去复用)为中置码2033和UL信号数据部分。中置码2033被用于检测多个用户,检测在UE和节点B之间的信道环境和估计UE的发送信号电平。从去复用器2032输出的UL信号数据部分被提供给乘法器2034,乘法器2034将UL信号数据部分和由图19的UE收发信机使用的扰码相乘用于解扰。解扰后的UL信号数据部分被提供给解扩器2035,解扩器2035将解扰后的UL信号数据部分和与UE使用的信道化码相同的信道化码相乘。一旦收到来自SRNC的频率间或RAT间测量请求,UE根据由SRNC确定的模式重新分配数据发送/接收信道。信道重新分配请求不仅被发送给UE,而且被发送给节点B。控制器2021根据由SNRC发送的信道重新分配信息,通过控制解扩器2035改变信道化码,并将输入的数据部分和重新分配的信道化码相乘。根据用户分离与重新分配的信道化码相乘后的数据部分,用户的UL信号数据部分被提供给去复用器2036。
去复用器2036将用户的UL信号数据部分分解为TPC 2037、TFCI 2038、SS 2070以及用户数据。TPC 2037被UL功率控制器(未示出)用来控制UL信号的发送功率。TFCI 2038被用于分析用于用户数据部分的发送格式,以及SS 2070被用于控制发送至UE的DL信道的发送点。从去复用器2036输出的用户数据被去交织器2039进行去交织,然后被解码器2040解码,从而产生用户数据2041。从解扩器2035输出的其它用户的UL信道2050也通过和用户数据相同的处理被接收。
通过上述处理接收的用户数据2041可以包括通过由UE测量来自其它节点B的信号而产生的频率间或RAT间测量数据,以及测量数据被发送至SRNC。然后SRNC使用报告的测量数据来执行其它操作,如越区切换。
虽然为了方便起见,已参照NB-TDD技术描述了本发明,但是本发明提出的方法可以以相同方式用在由类似于NB-TDD的其它TDD技术划分上行链路/下行链路传输的移动通信系统中。
总之,对于频率间或RAT间测量,UE在频率间或RAT间测量期间改变诸如现有时隙等的资源,从而充分利用频率间或RAT间测量时段。特别是,本发明提供一种用于改变RAT间测量时段对FDD系统的测量的可能方法、以及为实现该可能方法,在SRNC、节点B和UE之间的信令方法,从而由UE提高RAT间测量性能。RAT间测量性能上的提高确保了RAT间切换的更加正确和更加灵活的结果。
虽然参照本发明的优选实施例对它进行了展示和描述,但是本技术领域人员应当理解,在未脱离如所附权利要求限定的本发明的精神和范围的情况下,可以在形式上和细节上进行各种修改。
权利要求
1.一种在系统中由UE(用户设备)测量来自第二节点B的控制信道上的同步信号和第二节点B信息的方法,该系统包括第一节点B、与所述第一节点B相邻的第二节点B以及所述第一节点B覆盖的小区中的所述UE,所述第一节点B和UE通过具有多个时段的帧,使用TDD(时分双工)CDMA(码分多址)通信技术,在所述帧中的所述多个时段中的至少一个时段上,从所述第一节点B向所述UE发送下行链路信道,在除发送下行链路信道的至少一个时段之外的其余时段中的至少一个时段上,从所述UE向所述第一节点B发送上行链路信道,所述UE和所述第二节点B通过使用与TDD CDMA通信技术不同的频带的TDD通信技术执行通信,所述同步信号用于同步所述UE和所述第二节点B,所述控制信道指示在所述多个时段中的至少一个时段上,从所述第二节点B发送至所述UE的第二节点B信息,所述方法包括步骤改变从所述第一节点B向所述UE发送所述下行链路信道的下行链路时段的位置,并改变从所述UE向所述第一节点B发送所述上行链路信道的上行链路时段的位置,以便从所述第二节点B发送到所述UE的控制信道的时段位于前一子帧内以及下一子帧和帧中的一个内。
2.如权利要求1所述的方法,其中,前一子帧中的多个时段当中的第一时段和第二时段被分别改变为下行链路时段和上行链路时段,每个与存在于下一子帧中的第二切换点相邻的第三和第四时段被分别改变为下行链路时段和上行链路时段。
3.如权利要求1所述的方法,其中,每个与存在于前一子帧和下一子帧的每一个中的两个切换点中的一个切换点相邻的第一和第二时段被分别改变为下行链路时段和上行链路时段。
4.如权利要求1所述的方法,其中,存在于前一子帧和下一子帧中的多个时段当中彼此分开最大距离的第一时段和第二时段被改变为上行链路时段和下行链路时段。
5.如权利要求1所述的方法,其中,存在于四个连续子帧当中的第一子帧中的多个时段中的开始四个时段被改变为上行链路时段和下行链路时段中的一个,而存在于四个连续子帧当中的最后一个子帧中的多个时段中的最后四个时段被改变为上行链路时段和下行链路时段中的一个。
6.如权利要求1所述的方法,其中,存在于四个连续子帧当中的第一子帧中的多个时段当中的两个时段中使用的多个信道化正交码中的至少两个正交码被改变为用于上行链路时段的正交码和用于下行链路时段的正交码中的一个,存在于四个连续子帧当中的最后一个子帧中的多个时段当中的两个时段中使用的多个信道化正交码中的至少两个正交码被改变为用于上行链路时段的正交码和用于下行链路时段的正交码中的一个。
7.一种在系统中由UE(用户设备)测量来自第二节点B的控制信道上的同步信号和第二节点B信息的方法,该系统包括第一节点B、与所述第一节点B相邻的第二节点B以及所述第一节点B覆盖的小区中的所述UE,所述第一节点B和UE通过具有多个时段的帧,使用TDD(时分双工)CDMA(码分多址)通信技术,在所述帧的所述多个时段当中的至少一个时段上,从所述第一节点B向所述UE发送下行链路信道,在除发送下行链路信道的至少一个时段之外的其余时段中的至少一个时段上,从所述UE向所述第一节点B发送上行链路信道,所述UE和所述第二节点B通过不同于TDD CDMA通信技术的通信技术执行通信,所述同步信号用于同步所述UE和第二节点B,所述控制信道指示在从所述第二节点B发送至所述UE的至少一个下行链路信道上发送的第二节点B信息,所述方法包括步骤改变从所述第一节点B向所述UE发送下行链路信道的时段的位置,以及改变从所述UE向所述第一节点B发送所述上行链路信道的时段的位置,以便从所述第二节点B发送到所述UE的控制信道的时段位于前一子帧内以及下一子帧和帧中的一个内。
8.如权利要求7所述的方法,其中,前一子帧中的多个时段当中的第一时段和第二时段分别被改变为下行链路时段和上行链路时段,每个与存在于下一子帧中的第二切换点相邻的第三和第四时段分别被改变为下行链路时段和上行链路时段。
9.如权利要求7所述的方法,其中,每个与存在于前一子帧和下一子帧的每一个中的两个切换点中的一个切换点相邻的第一和第二时段被改变为下行链路时段和上行链路时段。
10.如权利要求7所述的方法,其中,存在于前一子帧和下一子帧中的多个时段当中彼此分开最大距离的第一时段和第二时段被改变为上行链路时段和下行链路时段。
11.如权利要求7所述的方法,其中,存在于四个连续子帧当中的第一子帧中的多个时段当中的开始四个时段被改变为上行链路时段和下行链路时段中的一个,而存在于四个连续子帧当中的最后一个子帧中的多个时段当中的最后四个时段被改变为上行链路时段和下行链路时段中的一个。
12.如权利要求7所述的方法,其中,存在于四个连续子帧当中的第一子帧中的多个时段当中的两个时段中使用的多个信道化正交码中的至少两个正交码被改变为用于上行链路时段的正交码和用于下行链路时段的正交码中的一个,存在于四个连续子帧中的最后一个子帧中的多个时段当中的两个时段中使用的多个信道化正交码中的至少两个正交码被改变为用于上行链路时段的正交码和用于下行链路时段的正交码中的一个。
13.一种在系统中由UE(用户设备)测量来自第二节点B的控制信道上的同步信号和第二节点B信息的方法,该系统包括第一节点B、与所述第一节点B相邻的第二节点B、用于管理所述第一节点B的无线电网络控制器(RNC)以及所述第一节点B覆盖的小区中的所述UE,所述第一节点B和UE通过具有多个时段的帧,使用TDD(时分双工)CDMA(码分多址)通信技术,在所述帧的多个时段中的至少一个时段上,从所述第一节点B向所述UE发送下行链路信道,在除发送下行链路信道的至少一个时段之外的其余时段中的至少一个时段上,从所述UE向所述第一节点B发送上行链路信道,所述UE和第二节点B通过不同于TDD CDMA通信技术的频带或通信技术执行通信,所述同步信号用于同步所述UE和所述第二节点B,所述控制信道指示在从所述第二节点B发送至所述UE的至少一个下行链路信道上发送的第二节点B信息,所述方法包括下列步骤由RNC确定可用于测量所述同步信号和第二节点B信息的所有参数,在无线电链路建立期间将所确定的参数发送至所述第一节点B,以及在无线电承载建立期间将所确定的参数发送至所述UE;如果由RNC识别出需要测量所述同步信号和第二节点B信息,则向所述第一节点B和UE发送用于测量所述同步信号和第二节点B信息的参数选择信息;由所述第一节点B和UE根据基于所述参数选择信息而从所有参数中选择的参数,改变从所述第一节点B向所述UE发送下行链路信道的下行链路时段的位置,和从所述UE向所述第一节点B发送上行链路信道的上行链路时段的位置;和由UE在除多个时段当中的改变的下行链路时段和改变的上行链路时段之外的时段中,接收从所述第二节点B发送的同步信号和第二节点B信息。
14.如权利要求13所述的方法,其中,每个参数包括测量时段开始点(MPSP)、测量时段(MP)、测量时段间隔(MPI)、测量时段序列(MPS)和测量时段序列重复次数(MPSRN)。
15.如权利要求13所述的方法,其中,所述参数选择信息是指示参数中的任一参数的索引。
16.如权利要求13所述的方法,其中,基于下行链路时段和上行链路时段的位置来确定所述参数,从所述第二节点B发送的控制信道的时段可位于前一子帧内以及下一子帧和帧中的一个内。
17.如权利要求16所述的方法,其中,在所述前一子帧和下一子帧中改变的下行链路时段和改变的上行链路时段连续出现,前一子帧中的改变的下行链路时段和改变的上行链路时段与下一子帧中的改变的下行链路时段和改变的上行链路时段尽可能远地分隔。
18.一种在系统中由UE(用户设备)测量来自第二节点B的控制信道上的同步信号以及第二节点B信息的方法,该系统包括第一节点B、与所述第一节点B相邻的第二节点B、用于管理所述第一节点B的无线电网络控制器(RNC)以及所述第一节点B覆盖的小区中的所述UE,所述第一节点B和UE在具有多个时段的帧上使用TDD(时分双工)CDMA(码分多址)通信技术,在所述帧的多个时段当中的至少一个时段上,从所述第一节点B向UE发送下行链路信道,在除发送下行链路信道的至少一个时段之外的其余时段中的至少一个时段上,从所述UE向第一节点B发送上行链路信道,所述UE和所述第二节点B通过不同于TDD CDMA通信技术的频带或通信技术执行通信,所述同步信号用于同步所述UE和所述第二节点B,所述控制信道指示在从所述第二节点B发送至所述UE的至少一个下行链路信道上发送的第二节点B信息,所述方法包括下列步骤由RNC确定可用于测量所述同步信号和第二节点B信息的所有参数,如果RNC识别出所述UE需要测量所述同步信号和第二节点B信息,则向所述第一节点B和UE发送所确定的参数中的任何一个参数;由所述第一节点B和UE根据基于参数选择信息由RNC选择的参数,改变从所述第一节点B向UE发送下行链路信道的下行链路时段的位置,和从所述UE向第一节点B发送上行链路信道的上行链路时段的位置;和由UE在除了所述多个时段当中改变的下行链路时段和改变的上行链路时段之外的时段中,接收从所述第二节点B发送的所述同步信号和第二节点B信息。
19.如权利要求18所述的方法,其中,每个参数包括测量时段开始点(MPSP)、测量时段(MP)、测量时段间隔(MPI)、测量时段序列(MPS)和测量时段序列重复次数(MPSRN)。
20.如权利要求18所述的方法,其中,所述参数选择信息是指示参数中的任一参数的索引。
21.如权利要求18所述的方法,其中,根据下行链路时段和上行链路时段的位置确定所述参数,从所述第二节点B发送的控制信道的时段可位于前一子帧内以及下一子帧和帧中的一个内。
22.如权利要求21所述的方法,其中,所述前一子帧和下一子帧中改变的下行链路时段和改变的上行链路时段连续出现,以及所述前一子帧中改变的下行链路时段和改变的上行链路时段与下一子帧中改变的下行链路时段和改变的上行链路时段尽可能远地分隔。
23.一种在系统中由UE(用户设备)测量来自第二节点B的控制信道上的同步信号以及第二节点B信息的装置,该系统包括第一节点B、与所述第一节点B相邻的第二节点B、用于管理所述第一节点B的无线网络控制器(RNC)以及所述第一节点B覆盖的小区中的UE,所述第一节点B和UE通过具有多个时段的帧,使用TDD(时分双工)CDMA(码分多址)通信技术,在所述帧的所述多个时段中的至少一个时段上,从所述第一节点B向UE发送下行链路信道,在除发送下行链路信道的至少一个时段之外的其余时段中的至少一个时段上,从所述UE向第一节点B发送上行链路信道,所述UE和第二节点B通过不同于TDD CDMA通信技术的频带或通信技术执行通信,所述同步信号用于同步所述UE和第二节点B,所述控制信道指示在从所述第二节点B发送至UE的至少一个下行链路信道上发送的第二节点B信息,所述装置包括RNC,用于确定可用于测量所述同步信号和第二节点B信息的所有参数,在无线电链路建立期间将所确定的参数发送至所述第一节点B,且在无线电承载建立期间将所确定的参数发送至所述UE,如果识别出需要测量所述同步信号和第二节点B信息,则向所述第一节点B和UE发送用于测量所述同步信号和第二节点B信息的参数选择信息;第一节点B,用于根据基于所述参数选择信息从所有参数中选择的参数,改变从所述第一节点B向所述UE发送下行链路信道的下行链路时段的位置,和从所述UE向第一节点B发送上行链路信道的上行链路时段的位置;和UE,用于根据基于所述参数选择信息从所有参数中选择的参数,改变从所述第一节点B向UE发送下行链路信道的下行链路时段的位置,和从所述UE向第一节点B发送上行链路信道的上行链路时段的位置,并在除了多个时段当中改变的下行链路时段和改变的上行链路时段之外的时段中,接收从所述第二节点B发送的所述同步信号和第二节点B信息。
24.如权利要求23所述的装置,其中,每个参数包括测量时段开始点(MPSP)、测量时段(MP)、测量时段间隔(MPI)、测量时段序列(MPS)和测量时段序列重复次数(MPSRN)。
25.如权利要求23所述的装置,其中,所述参数选择信息是指示参数中的任一参数的索引。
26.如权利要求23所述的装置,其中,根据下行链路时段和上行链路时段的位置确定所述参数,从所述第二节点B发送的控制信道的时段可位于前一子帧内和下一子帧和帧中的一个内。
27.如权利要求26所述的装置,其中,所述前一子帧和下一子帧中改变的下行链路时段和改变的上行链路时段连续出现,所述前一子帧中改变的下行链路时段和改变的上行链路时段与下一子帧中改变的下行链路时段和改变的上行链路时段尽可能远地分隔。
28.一种在系统中由UE(用户设备)测量来自第二节点B的控制信道上的同步信号和第二节点B信息的装置,该系统包括第一节点B、与所述第一节点B相邻的第二节点B、用于管理所述第一节点B的无线电网络控制器(RNC)以及所述第一节点B覆盖的小区中的所述UE,所述第一节点B和UE通过具有多个时段的帧,使用TDD(时分双工)CDMA(码分多址)通信技术,在所述帧的多个时段中的至少一个时段上,从所述第一节点B向UE发送下行链路信道,在除了发送下行链路信道的至少一个时段之外的其余时段中的至少一个时段上,从所述UE向第一节点B发送上行链路信道,所述UE和第二节点B通过不同于TDD CDMA通信技术的频带或通信技术执行通信,所述同步信号用于同步所述UE和第二节点B,所述控制信道指示在从所述第二节点B发送至所述UE的至少一个下行链路信道上发送的第二节点B信息,所述装置包括RNC,用于确定可用于测量所述同步信号和第二节点B信息的所有参数,如果识别出所述UE需要测量所述同步信号和第二节点B信息,则向所述第一节点B和UE发送所确定的参数中的任一个;第一节点B,用于根据基于参数选择信息由RNC选择的参数,改变从所述第一节点B向UE发送所述下行链路信道的下行链路时段的位置,和从所述UE向第一节点B发送所述上行链路信道的上行链路时段的位置;和UE,用于根据基于参数选择信息由RNC选择的参数,改变从所述第一节点B向UE发送所述下行链路信道的下行链路时段的位置,和从所述UE向第一节点B发送所述上行链路信道的上行链路时段的位置,并在除了多个时段当中改变的下行链路时段和改变的上行链路时段之外的时段中,接收从所述第二节点B发送的所述同步信号和第二节点B信息。
29.如权利要求28所述的装置,其中,每个参数包括测量时段开始点(MPSP)、测量时段(MP)、测量时段间隔(MPI)、测量时段序列(MPS)和测量时段序列重复次数(MPSRN)。
30.如权利要求28所述的装置,其中,所述参数选择信息是指示参数中的任一参数的索引。
31.如权利要求28所述的装置,其中,根据下行链路时段和上行链路时段的位置确定所述参数,从所述第二节点B发送的控制信道的时段可位于前一子帧内以及下一子帧和帧中的一个内。
32.如权利要求31所述的装置,其中,所述前一子帧和下一子帧中改变的下行链路时段和改变的上行链路时段连续出现,所述前一子帧中改变的下行链路时段和改变的上行链路时段与下一子帧中改变的下行链路时段和改变的上行链路时段尽可能远地分隔。
全文摘要
RNC确定可用于来自第二节点B的同步信号和第二节点B信息的测量的参数,在无线电链路建立期间向第一节点B发送确定的参数,以及在无线电承载建立期间向UE发送确定的参数,并向第一节点B和UE发送参数选择信息。第一节点B改变从第一节点B向UE发送下行链路信道的下行链路时段的位置,和从UE向第一节点B发送上行链路信道的上行链路时段的位置。UE在除了多个时段当中改变的下行链路时段和改变的上行链路时段之外的其余时段中,接收同步信号和第二节点B信息。
文档编号H04J13/00GK1589541SQ02822763
公开日2005年3月2日 申请日期2002年11月18日 优先权日2001年11月17日
发明者金正坤, 李炫又, 崔成豪, 李周镐, 金亨官, 杜高科, 李小强, 王婷, 张淑伟, 郭龙准, 李国熙, 黄承吾, 李惠英, 朴俊枸, 张真元 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1