用于估计信道的设备和方法

文档序号:7891760阅读:167来源:国知局
专利名称:用于估计信道的设备和方法
技术领域
本发明涉及电信领域,具体而言,涉及在多路输入情形(其中,接收机从多于一个的发射天线接收信号)中的信道估计领域。
背景技术
当今及未来移动无线应用对高数据速率的稳定增长的需求,迫切需要有效开发可用带宽(换而言之,有效的信道容量)的高数据速率技术。因此,近年来多输入多输出(MIMO)发射系统受到极大重视。MIMO系统采用多个发射点和多个接收点(每个发射点都具有发射天线,每个接收点都具有接收天线),以接收由多个发射点通过不同通信信道发射的信号。在需要区分来自数个发射天线的相互冲突(impinging)信号的MIMO技术中,使用了空时码或特殊复用方法。
在每个接收天线上相冲突的信号是来自NT个天线的信号叠加,其中,NT表示发射点的数量。这意味着对于信道估计存在新的挑战。需要信道参数(如信道脉冲响应或信道传递函数)以进行接收数据的的后继处理。尽管区分出与数个发射点(每个发射点都具有发射天线)相对应的信号是一项挑战性的工作,然而只要信号互不相关,就能够直接将具有一个天线的接收机扩展成具有数个接收天线的系统。信道估计单元的结构与接收天线的数量NR无关。自多输入单输出(MISO)系统到MIMO系统的扩展将采用NR个并行信道估计单元,每个接收点(接收天线)对应一个并行信道估计单元。
在无线系统中相关发射技术的使用需要对移动无线信道进行估计和跟踪。由于将多个发射天线发射的信号视为相互干扰,MIMO系统的信道估计不同于单发射天线的情形。可将MIMO系统与多载波调制方案一起使用,以进一步提高移动无线系统的通信容量和质量。多载波调制技术中最具代表性的技术为正交频分复用(OFDM)技术。
过去数年来,多载波调制,特别是正交频分复用(OFDM),已成功应用于多种数字通信系统。尤其是对于在广播情形(例如,数字电视)中的高数据速率发射,OFDM在弥散(dispersive)信道上的传输方面体现出的优越性能成为重要的优点。OFDM已被选用于多种数据广播标准,如DAB或DVB-T。OFDM的另一无线应用是在高速无线局域网(WLAN)中。
OFDM最初于1960年代提出。S.Weinstein和P.Ebert于“DataTransmission by Frequency Division Multiplexing Using the DiscreteFourier Transform”(IEEE Transactions on CommunicationTechnology,vol.COM-19,pp.628-634,1971年10月)中提出了使用离散傅里叶变换(DFT)的有效调制。通过将周期前缀(cyclic prefix)插入比信道最大延迟还长的保护间隔(GI),能够完全消除符号间干扰(ISI),并保持接收信号的正交性。由于未来移动通信系统应当支持高于现有系统若干倍的数据速率,具有适当编码和交织的多载波系统通过应用快速傅里叶变换得以有效实施,以及对无线信道损伤的足够鲁棒性。
另一种基于OFDM的方法称作多载波码分多址(MC-CDMA),该技术作为OFDM调制的补充而被提出,是在频率方向进行的扩展,参见K.Fazel和L.Papke的“On the Performance ofConvolutionally-Coded CDMA/OFDM for Mobile CommunicationSystems”(Proc.IEEE Int.Symposium on Personal,Indoor andMobile Radio Communications(PIMRC′93),日本横滨,pp.468-472,1993年9月)。MC-CDMA被认为是用于第四代系统下行链路的看好侯选技术。此外,还提出了具有可变扩展因子的MC/CDMA系统,如H.Atarashi和M.Sawahashi的“Variable Spreading FactorOrthogonal Frequency and Code Division Multiplexing(VSF-OFCDM)”(3tdInternational Workshop on Multi-CarrierSpread-Spectrum & Related Topics(MC-SS 2001),德国Oberpfaffenhofen,2001年9月)所描述。
在图4中显示出了OFDM系统的方框图。对于基于OFDM的MIMO系统,在每个发射点采用一个OFDM调制器,而OFDM解调以独立于每个接收点的方式执行。信号流被分成NC个并行的子流。将第l个符号块(OFDM符号)的第i个子流(通常称为第i个副载波)用Xl,i来表示。经S/P转换器701执行串行至并行转换(S/P)后,对每个块由IFFT变换器703执行具有NFFT个点的离散傅里叶逆变换(DFT),随后,由GI模块705插入具有NGI个采样的保护间隔,以获得经P/S转换器703执行并行至串行(P/S)转换后的信号xl,n。经过数模(D/A)转换后,在具有脉冲响应h(t,τ)的移动无线信道上将信号x(t)发射。在接收天线ν处接收的信号由来自NT个发射点的叠加信号组成。假设同步良好,则获得于接收天线ν处在采样瞬时t=[n+lNsym]Tspl接收的相冲突的信号yl,n(v)=Δy(v)([n+lNsym]Tspl)=Σμ=1NT∫-∞∞h(μ,v)(t,τ)·x(μ)(t-τ)dτ+n(t)|t=[n+lNsym]Tspl]]>其中,n(t)表示加性高斯白噪声,Nsym=NFFT+NGI表示每OFDM符号的采样数量。由接收机所接收的信号yl,n首先由S/P转换器709进行串行至并行(S/P)转换,并由GI模块711去除保护间隔。通过对信号采样的接收块执行离散傅里叶变换(DFT)(在图4中,使用FFT变换器713)来恢复信息,以在频域获得OFDM解调输出Yl,i。在接收天线ν处经过OFDM解调后接收的信号由下式给出Yl,i(v)=Σμ=1NTXl,i(μ)·Hl,i(μ,v)+Nl,i]]>其中,Xl,i(μ)和Hl,i(μ,ν)分别表示在第l个OFDM符号的副载波i上发射天线μ的发射信息符号和信道传递函数(CTF),项Nl,i表示具有零均值与方差No的加性高斯白噪声(AWGN)。
当在多径衰落信道上发射OFDM信号时,接收信号将具有未知的幅值和相位变化。对相干发射,需要由信道估计器对这些幅值和相位变化进行估计。
下面将描述借助导频符号的信道估计(PACE),其中,保留发射数据的子集(sub-set)用于发射已知的信息(称为“导频符号”)。这些导频信号用作信道估计的辅助信息。
为进行公式描述,在第iDf个副载波上OFDM符号lDt的接收导频信号为Yl~Dt,i~Df=Σμ=1NTXl~Dt,i~Df(μ)Hl~Dt,i~Df(μ)+Nl~Dt,i~Dfl~={1,2,···,L/Dt}]]>i~={1,2,···,Nc/Df}]]>其中, 和 分别表示在第l=l~Dt]]>个OFDM符号的副载波i=i~Df]]>上发射天线μ的发射导频符号和信道传递函数(CTF)。假设CTF在变量l和i(即时间和频率)上变化。项 表示加性高斯白噪声。此外,l表示每帧中的OFDM符号数量,Nc表示每OFDM符号中的副载波数量,Df和Dt表示在频率和时间上的导频间隔,NT表示发射天线的数量。目的是对在所测帧Yl,i内的所有{l,i,μ}的Hl,i(μ)进行估计。另外,在接收机端,在位置(l,i)=(l~Dt,i~Df)]]>的符号Xl,i(μ)已知。信道估计现包括以下几个任务1.分离NT个叠加信号;2.当Dt或Df大于1时进行内插;3.通过采用 的相关对噪声 求平均。为估计给定 时的Hl,i(μ),当考虑一个OFDM符号时,存在具有NcNT个未知量的Nc个方程。从而,该线性方程系统通常不存在直接解。通过将 变换到时域,可减少未知量的数量,使得能够在时域求得所得到的方程系统的解。该方法具有这样的优点在一个步骤中,能够将基于DFT的内插(它属于标准技术)与NT个叠加信号的估计以及分离进行组合,从而产生计算高效的估计器。
对于MIMO-OFDM系统的时域信道估计,将一个OFDM符号中的接收导频信号 预乘(pre-multiply)以发射导频序列的复共轭 (其中,1≤i~≤N′p]]>)。然后将结果经由N’p-点IDFT变换到时域。随后,通过矩阵求逆将NT个叠加信号分离。通过用有限脉冲响应(FIR)滤波器对IDFT操作的输出进行滤波,获得时域信道估计。基于DFT的内插仅通过加上对于信道脉冲响应(CIR)估计的Nc-Q个零,即将长度Q的估计的长度扩展至Nc个采样来实现。该技术称为零填充(zero padding)。N’p-点DFT将导频信号的CIR估计变换成整个OFDM符号的频率响应估计。
基于离散傅里叶变换(DFT)的估计器具有如下优点存在采用傅里叶变换形式的计算高效的变换,且基于DFT的内插简单。
估计的性能通常取决于导频信号的选择。期望选择使估计器的最小均方差(MMSE)标准(是对性能的一种测量)和计算复杂度最小的一组导频序列。由Y.Gong和K.Letaief于“Low Rank ChannelEstimation for Space-Time Coded Wideband OFDM Systems”(Proc.IEEE Vehicular Technology Conference(VTC’2001-Fall),美国Atlantic城,pp.722-776,2001年)中系统性地导出了基于OFDM-MIMO系统的最小平方(LS)和MMSE标准的估计器。
I.Barhumi等人在“Optimal training sequences for channelestimation in MIMO OFDM systems immobile wireless channels”(International Zurich Seminar on Broadband Communications(IZS02),2002年2月)中描述了MIMO OFDM系统的基于导频音的信道估计和跟踪方案。特别是,这些作者描述了基于彼此正交和移相的导频音的信道估计方案。尽管在以上所述现有技术中的导频符号允许进行精确信道估计,但是为了执行由信道估计算法所需的矩阵求逆,需要在接收机端进行大量复杂计算。由于这种高度的计算复杂性,不能够以低成本实现以上现有技术文献中所述的估计方案,使得所披露的这些算法可能不适于大量销售的移动接收机。
Yi Gong等人(“Low Rank Channel Estimation for Space-TimeCoded Wideband OFDM systems”,IEEE Vehicular TechnologyConference(VTC 2001-Fall),vol.2,pp.772-776,2001年9月)描述了降低了复杂性的信道估计方案,其中,为估计信道,通过应用预先计算出的奇异值分解来避免矩阵求逆。不过,由于不得不计算奇异值分解,该方法仍很复杂。
Y.Li等人(“Simplified Channel Estimation for OFDM Systemswith Multiple Transmit Antennas”,IEEE Transactions on WirelessCommunications,vol.1,pp.67-75,2002年1月)提出了用于具有多个发射天线的基于DFT变换的OFDM信道估计方案。特别是,Li披露了一种用于产生导频符号的方法,该导频符号由多个发射和接收天线发射,并在接收端用于信道估计。这些导频符号的产生方法是将具有较好定时和频率同步特性的训练序列乘以在导频符号之间以及每个导频符号的后续值之间引入附加相移的复序列。更具体而言,将训练序列的每个值乘以引入相移的复因子,其中,相移取决于指派给被乘的值的数,指派给对应发射点的数和发射点的总数。导频符号彼此正交且相移。导频符号由OFDM方案调制,并通过多个通信信道发射。在接收机端(多个接收机的其中一个),正在接收的信号包括通过多个通信信道的多个发射信号的叠加。Li等人还给出了对于基于相移序列的导频音的设计原则,其中相移序列对于均方差(MSE)而言最优。此外,通过选择正交导频序列,可避免估计器通常所需的矩阵求逆。不过,由于在训练序列之间获得良好正交性的困难,矩阵求逆可能是必需的。另外,如果训练序列非正交,则由于不能直接分离与通信信道相对应的路径,由Li提出的信道估计方案变得更加复杂。
图5示出了由Li给出的现有技术信道估计方案,在此考虑了两个发射天线的情形。
现有技术信道估计器包括多个乘法器,其中,图5只示出了三个与第n个接收序列的第k个值r[n,k]相关的乘法器。并行设置的第一乘法器901,第二乘法器903和第三乘法器905各自具有第一和第二输入与输出。第一乘法器901的输出与第一快速傅里叶逆变换(IFFT)模块907相连,第二乘法器903的输出与第二IFFT模块909相连,第三乘法器905的输出与第三IFFT模块911相连。这里应当注意,对于每个IFFT模块,总共连接由K个乘法器,其中,K表示在频域中接收序列的长度,且对于三个IFFT模块,设置总数为3K的输入信号。每个IFFT模块907,909和911均能够执行应用于K个输入值的快速逆傅里叶算法。此外,IFFT模块907,909和911均包括多个输出,其中,仅使用每个IFFT模块的前K0个输出。其他输出例如各自接地。
第一IFFT模块907的K0个输出与第一估计模块913相连,第三IFFT模块911的前K0个输出与第二估计模块915相连。第二IFFT模块909的K0个输出与第一估计模块913和第二估计模块915分别相连。第一估计模块913和第二估计模块915具有K0个输出,每个输出与多个滤波器中的相应滤波器917相连,且每个滤波器各具有一输出。对应于第一估计模块913的滤波器917的K0个输出与第一傅里叶变换(FFT)模块917相连,对应于第二估计模块915的滤波器917的K0个输出与第二FFT模块921相连。第一FFT模块919和第二FFT模块921具有K个输出,其中,K如上所述是副载波数量。此外,由于Li所述的简化算法,对应于第一估计模块913的第一滤波器917的输出与第二估计模块915相连,对应于第二估计模块915的滤波器917的输出还与第一估计模块913相连,从而建立多个反馈环路。
如上所述,图5示出了对于有两个发射天线的情形的现有技术估计器的示例,从而,接收信号r[n,k]为可能受信道噪声损坏的两个发射信号的叠加。接收信号通过分离装置(在图5中未示出)被分成两个接收信号。然后,接收信号的复本被乘以与各个发射天线相对应的复共轭信号。此外,第一发射天线所发射的导频符号乘以由第二天线发射的导频符号的复共轭版本。更切确而言,接收信号的第一复本的K个值乘以由第一天线发射的导频符号的复共轭版本的K个值。接收信号的第二版本的K个值乘以由第二发射天线发射的导频符号的复共轭版本的K个值。此外,为获得后续信道估计算法所需的中间值,第一天线所发射的导频符号的K个值乘以由第二发射天线所发射的导频符号的K个复共轭值。
如上所述,所有乘法操作都并行执行,从而将来自乘法器901的K个结果馈送到第一IFFT模块907。将来自K个乘法器903的K个结果馈送到第二IFFT模块909。将来自K个乘法器905的K个结果馈送到第三IFFT模块911。为将频域输入信号变换成时域输出信号,每个IFFT模块可执行快速傅里叶逆变换。
第一和第二估计模块913和915可基于多个输入信号执行信道估计算法。更切确而言,第一估计模块913接收3K0个输入信号以生成K0个输出信号,K0个输出信号与自第一发射天线至期望接收天线的第一信道的信道脉冲响应相对应。第二估计模块915以类似方式接收3K0个输入信号以生成K0个输出值,K0个输出值与自第二发射天线至接收天线的第二通信信道相对应。然后,各K0个输出值经滤波器917滤波。
如上所述,将来自滤波器的各输出信号反馈给第一和第二信道估计模块913和915,这是由于信道估计模块913和915可基于以前计算的值以及自IFFT模块获得的当前值估计各通信信道的信道脉冲响应。为计算所需的信道脉冲响应,每个估计模块应用估计算法,在估计算法中,执行矩阵-向量相乘而非矩阵求逆。经滤波以及零填充至后面快速傅里叶变换所需的长度后,获得第一和第二通信信道的信道传递函数。
如上所述,Li通过引入其中存在矩阵-向量相乘的迭代方案并利用导频符号正交性,来避免矩阵求逆。然而,为计算与两个通信信道相对应的两个信道脉冲响应,需要三次快速傅里叶逆变换和3K个乘法器。此外,Li所采用的信道估计算法仍然具有因所需的矩阵-向量相乘所导致的高度复杂性。因此,随发射天线数量的增加,由于具有大量的复数值相乘,由Li所给出的复杂估计方案的复杂度迅速提升。另外,为提供信道估计所需的多个中间值,在两个导频符号的相乘后必须跟有傅里叶逆变换。因此,估计模块913和915不能独立操作,从而不可避免地需要额外的定时和控制操作。

发明内容
本发明的目的在于提供一种复杂性减少的信道估计改进构思。
该目的通过根据权利要求1的信道估计装置或根据权利要求9的信道估计装置,或根据权利要求10的估计信道方法或根据权利要求11的估计信道方法,或根据权利要求12的计算机程序来实现。
本发明基于的思路是,通过有效采用傅里叶变换的特性,能够简化基于傅里叶变换的信道估计方案。特别是,已经发现,如果发射点发射用于在接收点处进行信道估计的不同导频序列,基于傅里叶变换的变换(例如,傅里叶变换或傅里叶逆变换)提供从多个发射点中的一个发射点延伸到接收点的通信信道的估计信道脉冲响应。特别是,如果导频序列彼此正交且相移,则基于傅里叶变换的变换直接提供所要估计信道的估计信道响应。
例如,在至少有两个发射点发射用于信道估计的导频序列的环境中,在接收点处接收的信号包括由各个发射点所发射信号的叠加,其中,在接收点处接收的信号可以是属于单载波调制方案的时域信号,或属于多载波调制方案(例如,OFDM)的频域信号。
由于例如为了利用空间分集发射方案的正特性(positivecharacteristic)使导频序列彼此不同并且发射点彼此空间分开,由提供器(可包括天线,对接收点处所接收的信号应用的滤波器等)提供的输入信号包括来自发射点的信号(每个信号通过各自的通信信道发射)的叠加。
对于上述考虑的两个发射点发射信息的情形,输入信号包括通过特性可能不同的两个物理信道发射的两个信号的叠加。如果使输入信号以这样的方式进行乘法运算将其分成两个可能相同的复本,其中,复本数量通常等于发射点的数量,则输入信号的每个复本包括相关导频序列信息,即与各导频序列发射通过的信道相关的信道信息所覆盖的相移。
然后,输入信号的每个复本被预乘以根据与所要估计信道相关的训练序列导出的信号。因此,如果使用基于有效利用具体导频序列的相位信息的傅里叶变换的变换器,将输入信号的每个复本进行变换,则应用于输入信号复本的变换器所提供的变换信号包括第一信道的信道脉冲响应,应用于输入信号另一复本的变换器所提供的信号包括另一通信信道的另一信道脉冲响应。
尽管Li等人所披露的估计器需要多次附加傅里叶变换以计算信道估计方案所需的中间值,然而为估计信道脉冲响应,每个通信信道仅需要一次IDFT运算,这简化了接收机的结构,并降低了发明的信道估计方案的复杂性。此外,所提出的接收机结构相比于现有技术接收机结构而言做出的改进并不对信道估计器的性能有任何负面影响。
此外,由于本发明的信道估计方案,需要执行明显较少的乘法,由于为获得中间结果没必要执行导频序列-导频序列相乘,这导致进一步地减小复杂度。
另外,由于变换的信号已包含所要估计的信道脉冲响应的估计,与现有技术信道估计方案相比,本发明的信道估计方案更为简化。因此,没有必要进行矩阵求逆或矩阵-向量相乘,这进一步降低了接收机结构的复杂性。
此外,由于可将用于提供具体信道的估计的相应变换器有效调整到通过所要估计的信道发射的导频序列的相移,可以对彼此之间具有不同相移(假设这些相移在接收点处已知)的任何正交序列应用本发明的信道估计方案。
本发明方法还可应用于任何传输系统中的信道估计,即,类似频分多址或时分多址系统的多址传输系统。


下面将参照以下附图详细描述本发明的其他实施例,其中图1示出了根据本发明第一实施例、用于估计信道的发明设备的方框图;图2示出了根据本发明又一实施例、用于估计信道的另一设备的方框图;图3示出了根据本发明再一实施例、用于估计信道的再一设备的方框图;图4说明了OFDM调制方案;以及图5示出了现有技术信道估计方案的方框图。
具体实施例方式
在图1中,示出了用于估计信道的发明设备的方框图,其中,将该设备用于以多个发射天线为特征的多输出情形中。为清楚起见,图1仅显示两个发射天线101和103。
图1所示设备包括具有与提供器107相连的输出的接收天线105。提供器107具有与乘法器109相连的输出,乘法器109用于提供输入信号的多个复本。乘法器109具有多个输出,其数量与所要提供的复本的数量相对应,换而言之,对应于发射点的数量。出于简便考虑,在图1中仅显示出乘法器109的输出111和另一输出113。
输出111与变换器115相连,且另一输出113与变换器117相连。变换器115和117均具有对应于各变换器所执行的变换(或更切确而言,对应于变换长度)的多个输出。变换器115的多个输出与抽取器119相连,变换器117的多个输出与抽取器121相连。抽取器119和抽取器121具有多个输出,其中,抽取器119或抽取器121各自的输出的数量等于或最好小于变换器115和117各自的输出的数量。
接收天线105接收来自多个发射点的模拟信号。因此,输入信号包括来自多个发射点的信号的叠加。提供器107执行例如滤波,模数转换,解调等,使得依据基本解调方案,在提供器107的输出108处提供的输入信号为离散时域或频域信号。例如,如果使用OFDM调制方案,则在输出108处提供的输入信号为频域信号。相反,如果使用单载波调制方案,则在输出108处提供的输入信号为时域信号。
乘法器109经由输出108接收输入信号,并提供输入信号的多个复本,其中,复本的数量等于如上所述发射点的数量。乘法器109例如可产生输入信号的该多个确切复本,以及可提供与该多个发射点相对应的多个路径,其中,每个路径与输入信号的一个复本相关。
最好是,对于输入信号的每个复本,使用用于对复本进行变换或对从复本得出的信号进行变换的变换器。在图1中,仅由变换器115接收在输出111处提供的复本,仅由变换器117接收经由输出113提供的输入信号的复本(另一复本)。换而言之,变换器115仅指定给由输出111所提供的输入信号的复本,变换器117仅指定给由输出113所提供的输入信号的另一复本。此外,如图1所示,变换器115和117彼此独立操作。
变换器115经由多个输出提供对应于发射点与接收点之间一个通信路径的变换信号,变换器117经由多个输出提供对应于另一发射点与该接收点之间另一通信路径的变换信号。因此,为获得变换信号,变换器115对输入信号的复本或对自输入信号复本得出(例如通过预乘)的信号应用基于傅里叶变换的变换算法,变换器117对输入信号的另一复本或对自输入信号另一复本得出(例如通过预乘)的信号应用基于傅里叶变换的变换算法。
变换器115和变换器117可执行傅里叶变换,离散傅里叶变换,快速傅里叶变换,傅里叶逆变换,离散傅里叶逆变换,或快速傅里叶逆变换。通常,用于将乘法器所提供的信号进行变换的多个变换器可执行变换算法,该变换算法将具体训练序列的相移进行变换,使得可以得出具体信道信息。这可通过将相移变换成延迟来实现,这是基于傅里叶变换的算法的固有特性。
本发明的信道估计方案是基于对相应于输入信号的相应复本的每个路径进行分别的处理,其中,路径的数量对应于发射点的数量或所要估计的通信信道的数量。此外,本发明的信道估计方案对每个所要估计的信道而言仅需要一个变换器。换而言之,如果有NT个发射点发射用于NT个通信信道的估计的导频序列,则必须有至多NT个变换器用于提供信道估计。由于各变换器可独立操作,在无需使用任何中间值的条件下提供信道估计。更具体而言,为估计具体通信信道,需要仅一个变换器,以及仅额外了解与要估计的对应信道(信道脉冲响应)相关的导频序列。与现有技术信道估计方案相对比,变换器之间的交叉连接以及从训练序列的组合获得的中间结果均没必要存在。
对于每个变换的信号,应用用于抽取一部分变换信号的相关抽取器,以获得要估计的信道的估计信道脉冲响应。在图1中,抽取器119抽取一部分由变换器115提供的变换信号,抽取器121抽取一部分由变换器117提供的变换信号。抽取各变换信号的一部分意味着还使用由各变换器115和117提供的离散值的仅仅一个子集。
例如,抽取器119和121可从变换器115和117所提供的各变换信号抽取多个相继值,其中,相继值的数量可由对信道预先了解的信息(例如,预知的信道长度)来确定。在此情形下,抽取器119从相应的变换信号中抽取子集,该子集不比所要估计的信道的信道长度更长。不过,对信道预先了解的信息也可为信道能量。在此情形下,提取器119提取变换信号的子集,使得由变换信号抽取的子集具有大于例如80%信道能量的能量。对于各变换信号未抽取的其余离散值,可通过将其设置为例如零来将其丢弃。抽取器121以完全相同的方式操作。
此外,抽取器119和121可从相应变换信号抽取大于预定阈值的值。例如,预定阈值确定所要抽取的值的最小量值。可从包含在变换信号中包含的最大量值获得预定阈值。例如,预定阈值可等于最大量值的0.2。此外,如果一能量标准被用于抽取一部分变换信号,可选择预定阈值,使得包含在高于阈值的变换信号中的离散值具有不小于例如80%信道能量的能量。可选地,可选择阈值,使得丢弃值(即,不被抽取的值)的能量小于例如20%信道能量。为执行阈值操作,抽取器还可包括比较器,用于将包含在各变换信号中的离散值与阈值进行比较。
如图1所示,由抽取器119抽取的部分变换信号为例如从发射点101延伸至接收天线105的信道的估计信道脉冲。由抽取器121提供的部分变换信号为例如从发射点103延伸至接收天线105的另一信道的估计信道脉冲响应。显然,每个抽取器可仅接收来自相关变换器的变换信号。更具体而言,每个抽取器仅对由相关变换器提供的变换信号操作,使得可分别估计各信道脉冲估计,尤其是在用于信道估计的导频序列在预定正交范围内彼此正交且彼此相移时,使得能够有效利用傅里叶变换的特性。不过,由于难以实现完全正交,可允许任意两个导频序列的内积的绝对值大于或等于零,但最好小于0.2。因此,预定正交范围由具有等于零的起始值和等于0.2的最终值的间隔来定义。
根据本发明的又一实施例,相乘与变换的操作可相互交换。在此情形下,通过使用基于傅里叶变换的变换算法,变换器对输入信号或输入信号的复本进行变换,以获得变换信号。此后,可由乘法器提供变换信号的多个复本,其中,复本数量最好等于发射点的数量。为获得要估计的信道的估计信道脉冲响应,对于变换信号的每个复本,可使用抽取器抽取变换信号的一部分。
图2显示出根据本发明又一实施例的用于估计信道的发明设备,其中,再次考虑两个发射点(即,两个通信信道)的情形。
与图1所示设备相比,图2所示的设备包括预乘法器201,预乘法器201具有与乘法器109的输出111相连的输入和与变换器115相连的输出203。另外,预乘法器201具有另一输入202。此外,如图3所示设备包括预乘法器207,预乘法器207具有与乘法器109的输出113相连的输入和与变换器117相连的输出209。另外,预乘法器207具有另一输入208。
与图1所示实施例进行进一步对比,图2所示设备包括与抽取器119的输出相连的处理装置211,其中,处理装置211具有多个输出,输出的数量等于或小于抽取器119的输出的数量。另外,该设备包括与抽取器121相连的处理装置213,其中,装置213具有多个输出,其输出数量等于或小于抽取器121的输出的数量。显然,处理装置211与通信路径有关,处理装置213与另一通信路径相关。
与如图1所示设备更进一步对比,在乘法器109与各变换器115和117之间连接有预乘法器201和207。与乘法器109的输出111相对应的路径提供用于估计通信信道的信号,与乘法器109的输出113相关的另一路径提供用于估计另一通信信道的信号。
具体地,预乘法器201可将输入信号,即输出111提供的输入信号的复本预乘以与限定要估计的信道的发射点相关的导频序列的复共轭版本,其中,经由另一输入202向乘法器201提供与第一发射点相关的导频序列的复共轭版本。不过,在导频序列为全1序列的情形中,或如果导频序列的系数仅在很小范围(即,小于最大量值与最小量值之间的比的0.1)内变化,可通过由输出111提供给变换器115的输入信号绕过预乘法器201。
然而,由于发射多个不同的导频序列,至少有一个导频序列具有非全1的系数。因此,预乘法器207可将经由输出113提供的输入信号(该输入信号的复本)预乘以与限定要估计的另一信道的另一发射点相关的另一导频序列的复共轭版本。
此处应注意,由于在各预乘法器201和/或207执行的预乘期间能够考虑到共轭,从而向各预乘法器201和207提供的导频序列版本并不一定必须是复共轭。此外,不对各导频序列求共轭,而是代之以对提供给各预乘法器的输入信号的各复本求共轭,例如通过在预乘法器109与各预乘法器201或207之间引入附加的求共轭装置。此外,还可由各变换器或乘法器109执行预乘运算。
此外,例如当输入信号属于使用M元QAM(M大于4)的OFDM调制方案时,预乘法器201和207可将经由乘法器109的输出提供的输入信号(或该输入信号的复本)预乘以与所要估计的信道相关的导频序列的求逆版本,其中,该版本可等于其各求逆或复共轭版本。在此情形下,该发明设备还可包括用于执行必要的求逆的处理装置。可选地,预乘法器可被构造成用于执行必要的除法。
由预乘法器201提供的预乘信号提供给变换器115,由预乘法器207提供的预乘信号提供给变换器117。变换器115和117对相关的预乘信号应用单变换算法,使得抽取器119和抽取器121能够从上述各变换信号中抽取信道估计。
与图1所示设备进行比较,图2中所示设备还包括处理装置211和213。处理装置211可基于由抽取器119提供的估计信道脉冲响应而提供增强估计信道脉冲响应,处理装置213可基于由抽取器121提供的另一估计信道脉冲响应而提供另一增强估计信道脉冲响应。例如,装置211和213可减小包含在各估计信道脉冲响应中例如由可能的信道噪声导致的估计误差。
应注意,如装置211和213所代表的处理装置在不了解任何其他导频序列的条件下对相关抽取器119和121所抽取的部分进行操作。处理装置211可仅对与相应处理路径相关的信息进行处理,即装置211不需要与另一处理路径相关的另一导频序列的任何信息,反之亦然。
每个处理装置还可包括信道估计器,例如最小均方差(MMSE)估计器,最小平方(LS)估计器或最大似然(ML)估计器或它们的变型。各处理装置通过提供进一步增强的估计来减小损害接收信道估计的信道噪声。处理装置可执行滤波操作,即Wiener滤波,其中滤波器系数从MMSE标准获得。
此外,处理装置可执行对信道输入响应的各估计设定阈值的简单阈值操作,从而将在阈值以下的各信道估计的系数丢弃或置零。例如,类似于前述方法,阈值可从能量标准得出。此外,可仅对各抽取器所提供的每个信道估计的多个最后系数应用阈值操作,以缩短各信道估计的长度。
此外,由装置211和213表示的处理装置可包括上述估计滤波器,其中,可迭代地调整估计滤波器,且其中为迭代输出增强的估计信道脉冲响应,迭代调整方案基于在不同时刻从相应抽取器抽取的部分。例如,处理装置可基于以前获得的增强信道估计迭代确定滤波器系数,使得可提供当前的增强信道估计。此外,如果导频序列仅在不同时刻有效,或如果从一个发射点相继发射的导频序列的数量对于足够的信道估计而言过小,可将处理装置用于信道跟踪。
为了更精确描述借助导频符号的信道估计,下面,将限定接收信号的子集仅包含分别在频率方向以Df倍低速率 以及在时间方向以Dt倍低速率 采样的导频{Y~l~,i~(μ)}={Yl,i(μ)},]]>且{i,l}∈G。
考虑来自发射天线μ的OFDM符号l=l~Dt]]>的导频序列,其可由尺寸N′P的列尺寸来表示,Y~l~′=Σμ=1NTX~l~′(μ)H~l~′(μ)+N~l~′---∈CNP′×1]]>=Σμ=1NTX~l~′(μ)F~INP×Q′h~l~′(μ)+N~l~′]]>其中,发射导频序列,信道传递函数(CTS)和加性噪声项通过以下给出
X~l~′(μ)=diag(X~l~,1(μ),···,X~l~,NP′′(μ))∈CNP′×NP′]]>H~l~′(μ)=[H~l~,1(μ),···,H~l~,NP′(μ)]T∈CNP′×1]]>h~l~′(μ)=[h~l~,1(μ),···,h~l~,Q(μ)]T∈CQ×1.]]>N~l~′=[N~l~,1,···,N~l~,NP′]T∈CNP′×1]]>N′P×N′P的DFT矩阵 将CIR变换到频域,由以下定义{F~}i+1,n+1=e-j2πni/NP′;0≤i≤NP′-1,0≤n≤NP′-1]]>对于Q<N′P的情形,需去除最后N′P-Q个DFT输出,在形式上表述为N′P×Q维的矩阵INP′×Q=[IQ×Q,0NP′-Q×Q]T,]]>且在主对角线上的项为1,其他项为0。对于Q=N′P的情形,矩阵IN′P×N′P变为单位矩阵。实际上,使用N′P-点FFT可有效生成DFT变换。对于Q<N′P的情形,略过最后N′P-Q个输出。
因此,得到以下方程式Y~l~′=X~l~′H~l~′+N~l~′=X~l~′F~NTh~l~′+N~l~′]]>其中,X~l~′=[X~l~,′(1),···,X~l~,′(NT)]∈CNP′×NT×NP′]]>H~l~′=[H~l~′(1),···,H~l~′(NT)]T∈CNTNP′×1]]>h~l~′=[h~l~′(1),···,h~l~′(NT)]T∈CNTQ×1.]]>F~NT=diag(F~INP′×Q,···,F~INP′×Q)∈CNTNP′×NTQ]]>对于时域信道估计,发射导频序列 被预乘以 并且通过例如N′P-点IDFT,将结果变换到时域。在数学上可将这些操作表示为ξl~=Δ1NP′(X~l~′F~NT)HY~l~′=1NP′D~l~′HY~l~′---∈CNTQ×1]]>=1NP′D~l~′HD~l~′h~l~′+1NP′D~l~′HN~l~′]]>其中,引入了定义D~l~′=X~l~′F~NT.]]>以1/NP′F~NTH]]>的预乘表示NT次IDFT操作,对于每个 块有一次N′P-点IDFT操作。
通过以加权矩阵w对 滤波来获得时域信道估计,即,h^l~′=wξl~′]]>其中, 具有与 相同的结构。
基于以上定义,参照图3进行描述,图3示出了根据本发明再一实施例的用于估计信道的发明设备。
在图3中,考虑多个发射点发射导频序列以在接收点处估计各信道的情形。为便于说明,在图3中仅显示出与NT个发射点对应并因此与NT个通信信道相对应的NT个路径中的仅两个路径。
输入信号由乘法器(在图3中未示出)提供。乘法器具有多个输出,其中,相继的NP个输出与各预乘法器连接。根据如图3所示的实施例,对应于一通信路径的前NP个输出与预乘法器301相连,对应于另一通信路径最后NP个输出与预乘法器303相连。预乘法器301具有另一输入305和输出307。预乘法器303具有另一输入309和输出311。
此外,图3中所示的设备包括NT个频域(FD)窗口。具体地,频域窗口313与预乘法器301的输出307相连,频域窗口315与预乘法器303的输出311相连。每个频域窗口都具有输出,其中,频域窗口313的输出与变换器317相连,频域窗口315的输出与变换器319相连。变换器317和变换器319可执行NP-点傅里叶逆变换(IFFT)。
不采用参照图2所述的用于抽取多个输出的抽取器,而是变换器317的前Q个相继输出与滤波器321相连,将其余输出丢弃。因此,变换器319的前Q个连续输出与滤波器312相连,将其余输出丢弃。换而言之,通过将各自的Q个输出与滤波器321以及滤波器323硬连接来取代各抽取器。
零填充器325具有NC个与可执行NC-点快速傅里叶变换(FFT)的FFT变换器329相连的输出。从而,零填充器327具有NC个与可执行NC-点FFT的FFT变换器331相连的输出。
FFT变换器329具有NC个与求逆窗口333相连的输出,且求逆窗口333具有多个输出,FFT变换器331的NC个输出与求逆窗口335相连,且求逆窗口335具有多个输出。
如图3所示,将输入信号的每个复本提供给相关的预乘法器。具体地,输入信号的复本提供给预乘法器301,预乘法器301将该复本预乘以可从与限定所要估计的信道的发射点相关的训练序列得出的信号。
从而,输入信号的另一复本提供给预乘法器303,预乘法器303将该输入信号的另一复本(由Np个离散值组成)预乘以与限定另一所要估计的信道的另一发射点相关的另一训练序列。
此处应注意,如同以上所述,对应导频率列的每个版本可为复共轭导频序列。由预乘法器301和预乘法器309生成的预乘信号被提供给各自的频域窗口313和315,每个频率窗口可执行频率窗口化(frequency windowing),以减小因后继IFFT操作导致的泄漏效应(leakage effect)。例如,频域窗口313和315可为对各自的预乘信号进行滤波而形成,以调整所要变换的信号,从而减小泄漏效应。
随后,IFFT变换器317和319独立执行IFFT算法,IFFT算法分别应用于由频域窗口313和频域窗口315提供的输出信号。
如上所述,滤波器321和323可执行滤波,以便通过例如减小损害各信道估计的估计误差,由估计信道脉冲响应提供增强估计信道脉冲响应,以及由另一估计信道脉冲响应提供另一增强估计信道脉冲响应。例如,滤波器321和323执行MMSE,LS或ML估计。此外,滤波器321和323可执行如上所述的阈值操作。
此处应注意,IFFT变换器317和319的输出信号可直接应用于时域或频域信号的均衡。例如当将如图3所示设备应用于单载波发射系统中的信道估计时。在时域中,例如可将分布式反馈均衡器用于均衡。此外,信道估计和增强信道估计包含有可用于信道编码和信道解码目的的信道状态信息。
为获得对应于各估计信道脉冲响应或各增强估计信道脉冲响应的信道变换函数,对滤波器321提供的增强估计信道脉冲响应应用相继的快速傅里叶变换,对滤波器323提供的另一增强估计信道脉冲响应应用快速傅里叶变换。执行两个变换,以便将具体的增强信道估计变换到频域,以获得与增强估计信道脉冲相关的信道传递函数,以及与另一增强估计信道脉冲相关的另一信道传递函数。
执行各FFT之前,将每个增强信道估计零填充至由各IFFT变换器329和331执行的后继FFT所需的长度。更具体而言,零填充器325将滤波器323所提供的增强估计信道脉冲响应的长度进行扩展,以使零填充器325所提供的输出信号长度等于由后继FFT变换所需的NC。以相似的方式对滤波器323所提供的另一增强估计信道脉冲响应的长度进行扩展,使得零填充器327向FFT变换器331提供NC个离散值。
经FFT变换之后,由求逆窗口333和求逆窗口335执行求逆窗口化(inverse windowing),以减小由频域窗口313和频域窗口315所导致的效应(影响)。
此处还应注意,滤波器321,零填充器325,FFT变换器329和求逆窗口333构成与处理路径相关的处理装置,滤波器323,零位填充器327,FFT变换器331和随后的求逆窗口335构成与另一处理路径相关的处理装置。
如上所述,接收的导频序列被预乘以NT个导频序列,其中每个序列与某个发射天线发射的信号相对应,并且此后经由IDFT变换到时域。简单地通过向信道脉冲响应估计添加NC-Q个零来执行基于DFT的内插,从而通过零填充将 的长度扩展至采样数量,即hl~Dt′(μ)=[h~l~,1(μ),···,h~l~,Q(μ),0,···,0]T]]>=[h~l~′(μ)T,0,···,0]T---∈CNFFT×1]]>其中, 表示向量。通过滤波,可在时域内改善信道估计。NC-点DFT将导频的信道脉冲响应估计变换到如图3所考虑的各个OFDM符号的频率响应估计。
假设信道脉冲响应为时间有限的, 是严格时间有限的,且通过零填充简单地执行基于FFT的内插。此处应注意,即便对于导频间隔Df等于1的情形,由于每发射天线的输出数量以NT的因子减小,从而也需要零填充。
通过对零填充的信道脉冲估计进行NC-点DFT来获得整个OFDM符号(导频和数据)的信道传递函数的估计H^′=FNTh^′orH^′(μ)=Fh^′(μ)]]>其中,FNT为由NT个块的NC-点DFT矩阵F组成的NTNc×NTNc块对角DFT矩阵。
DFT的有效实施方式为快速傅里叶变换算法。对于最优效率而言,对FFT的点数应为2的幂。不过,在实际系统中,NC和N′Pv 可不必总是2的幂。因此,可使用零填充来实施快速傅里叶变换。在输出端,可跳过所获得信道传递函数的多个最后点以保持所需的估计。由此,此处应注意,还必须对时域中的变换进行调整,这是由于内插比应为1/Df。内插比定义了在频域Df中的导频间隔,其等于到时域的逆DFT与到频域的反变换之间的比的倒数,也就是1/Df。
下面,参照最小平方估计器。假设存在 的逆,则最小平方估计器由以下给出h^LSl~′=NP′(Dl~′HDl~′)-1ξl~′]]>=(Dl~′HDl~′)-1Dl~′HY~l~′.]]>由于估计器取决于发射信号,应正确选择导频序列。如果 是满秩的,则存在LS估计器,不幸的是,情况并不总是如此。使LS估计器存在的必要条件是N′P≥NTQ。
实际上,两倍的过采样在使导频所导致的系统开销最小和使性能最优之间提供很好的折衷。假设保护间隔比信道的最大延迟更长。
下面,参照Wiener滤波器。Wiener滤波器为使接收导频的MMSE最小的估计器。因此,还将其称为MMSE估计器,这由有限脉冲响应(FIR)滤波器来描述。通常,Wiener滤波器取决于期望符号n的位置。为生成MMSE估计器,需要知道相关矩阵R′ξξ与R′hξ。OFDM符号的MMSE估计器由以下给出h^l~′=Rhξ′Rξξ′-1ξl~′=w′ξl~′=1NP′w′Dl~′HY~l~′]]>w′=Rhξ′Rξξ′-1---∈CQNT×QNT]]>其中,相关矩阵R′ξξ与R′hξ由下式定义
R′ξξ=ΔE{ξl~′ξl~′H}=1NP′′2Dl~′HRy~y~′Dl~′∈CQNT×QNT]]>=1NP′2Dl~′HX~l~′RH~H~′X~l~′HDl~′+N0NP′2Dl~′HDl~′]]>=1NP′2Dl~′HDl~′Rh~h~′Dl~′HDl~′+N0NP′2Dl~′HDl~′]]>且Rhξ′=ΔE{hl~Dt′ξl~′H}∈CQNT×QNT]]>=1NP′Rhh~′Dl~′HDl~′]]>在时域中的协方差 与频域中的协方差矩阵 有关,即Rh~h~′=F~NTHRH~H~′F~NT]]>假设来自不同发射天线的相冲突的信号互不相关,则由Rh~h~′=E{h~l~′h~l~′H}]]>定义的自相关矩阵具有方块图的形式Rh~h~′=diag(Rh~h~′(1),···,Rh~h~′(NT))∈CNTQ×NTQ.]]>此外存在以下关系Rhh~′(μ)=Rh~h~′(μ)0∈CNFFT×Q]]>且Rhh~′=diag(Rh~h~′(1),···,Rhh~′(NT)),]]>其中,0表示适当维度的全零矩阵。另外,上述方程仅对采样间隔的信道才真正成立。
应注意,尽管LS估计器要求 是满秩的,而MMSE估计器要求Rξξ具有可逆性,正如以上所看到的。为此,不过, 没有必要为满秩的。因此,即便N′P<NTQ也可存在MMSE估计器。
对于 为满秩的情形,存在 的逆。则可将Wiener滤波器简化成w′=NP′Rhh~′·[Rh~h~′+(Dl~′HDl~′)-1N0]-1·(Dl~′HDl~′)-1.]]>因此,相应的MMSE估计变为h^l~′=NP′Rhh~′·[Rh~h~′+(Dl~′HDl~′)-1N0]-1·(Dl~′HDl~′)-1.ξl~′]]>=Rhh~′·[Rh~h~′+(Dl~′HDl~′)-1N0]-1·h^LSl~′.]]>这表示,LS估计用于MMSE估计器的输入。通过在第二个等式中用 的平均值来代替 可独立于在 中所获得的发射导频地得到MMSE估计器。可以看到,可根据滤波任务分离由LS估计器执行的NT个信号的分离。
通常假设信道抽头(channel tap)以及不同发射天线的衰落互不相关。那么,对于采样间隔的信道,自相关矩阵具有对角形式Rh~h~′=diag(σ1(1)2,···,σQ(1)2,···,σQ(NT)2)]]>其中,σQ(1)2表示第一发射天线的信道抽头Q的平均接收信号功率。
下面,将描述最优导频序列。MMSE估计器通常取决于导频符号的选择。然而,通过选择适当的导频信号,估计器变得独立于发射的导频。期望选择一组导频序列,其使得MMSE(即,估计器的性能)和估计器的计算复杂性最小。对于LS估计器以及MMSE估计器而言,估计器的主要计算负担在于现有技术信道估计方案所需的 矩阵求逆。如果可使 对角线化,则可避免计算昂贵的矩阵求逆,即Dl~′HDl~′=F~NTHX~l~′HX~l~′F~NT=NP′I---∈INTQ×NTQ.]]>下面,将推导出使 对角线化并因此满足以上方程的充分条件。
为使接收机的复杂性保持最小,期望使 对角线化。那么,可将LS和MMSE估计器极大简化。实现对角线化的必要条件是N′P≥NTQ。可将矩阵 表示为 其中,块 具有Q×Q的维度。
对角线化的必要条件由下式给出Dl~′(μ)HDl~′(m)=ΔINP′×QTF~HX~l~′(μ)HX~l~′(m)F~INP′×Q]]>=NP′I,μ=m0,μ≠m.]]>第一部分对于任何导频序列都成立,这是由于X~l~′(μ)HX~l~′(μ)=I]]>以及INP′×QTF~HF~INP′×Q=NP′IQ×Q.]]>下面,导出满足以上方程的充分条件。检查向量 的分量是有益的。在不失一般性的条件下,假设要估计来自天线1的信号。则, 的项具有以下形式
ξl~,n(1)=1NP′Σμ=1NTΣi~=1NP′X~l~,i~(1)*X~l~,i~(μ)ej2π·(i~-1)·(n-1)/NP′Σq=1Qh~l~,q(μ)e-j2π·(i~-1)·(q-1)/NP′]]>+1NP′Σi~=1NP′X~l~,i~(1)*N~l~,i~ej2π·(i~-1)·(n-1)/NP′,n={1,···,Q}]]>重新整理以上方程各项得到ξl,n~(1)=1NP′Σμ=1NTΣq=1Qh~l~,q(μ)Σi~=1NP′X~l~,i~(1)*X~l~,i~(μ)ej2π·(i~-1)·(n-q)/NP′+n~l~,nn={1,···,Q}]]>其中, 表示平均白高斯噪声(AWGN)过程,它是通过对于 预乘以 并且之后进行IDFT而得到的。在最里边的求和内的项基本为 的IDFT。
在进一步考察发射导频序列的傅里叶变换特性之前,由以下定义任意序列的DFT,FN(xn)k=ΔΣn=1Nxne-j2πk·(n-1)/N---k={0,···,N-1}.]]>此外,定义以下序列,fN(k)=Δ1NΣn~=0N-1e-j2πnk/N]]>=sin(πk)Nsin(πk/N)·e-jπk·(N-1)/N=δk]]>其中1≤k<N其中,δk表示单位脉冲函数,定义为 其中,k为满足1≤k<NT关系的任意常数。因此,得到ξl~,n(1)=1NP′Σμ=1NTΣq=1Qh~l~,q(μ)FNP′(X~l~,i~(1)*X~l~,i~(μ))q-n+n~l~,n]]>可以看出, 的正交性的充分条件是选择一组具有以下特性FNP′(X~l~,i~(1)*X~l~,i~(μ))q-n=cδn-q-kQ]]>的导频序列,其中c为满足c>0关系的任意常数。在此情形,得到以下化简ξl~,n(1)=Σq=1Qh~l~,q(1)δn-q+n~l~,n=h~l~,n(1)+n~l~,n]]>其中n={1,…,Q},Q≤N′P/NT。
注意,该条件等效于使 对角线化。
通过检查正交序列(诸如Hadamard序列)的DFT特性,可以看出也满足以上方程。此外,相移序列集X~l~,i~(μ)=e-j2π·(i~-1)·(μ-1)/NT;μ={1,···,NP′}]]>
也满足以上方程,这将在下面看到。还可利用这些相移序列进一步化简接收机的结构。 的DFT为FNP′(X~l~,i~(1)*X~l~,i~(μ))q-n=NP′fNP′(n-q-(μ-1)NP′/NT)=NP′δn-q-(μ-1)NP′/NT.]]>因此,得到 的期望结果ξl~,n(1)=Σμ=1NTΣq=1Qh~l~,q(μ)δn-q-(μ-1)NP′/NT+n~l~,n.]]>=h~l~,n(1)+n~l~,n]]>其中n={1,…,Q},Q≤N′P/NT因此,如果适当选择导频序列,能够大大简化LS估计器以及MSE估计器。
w′=Rhh~′·[Rh~h~′+IN0NP′]-1]]>h^l~′=w′·ξl~′.]]>h^LSl~′=ξl~′]]>可以看出,估计器变得与所选导频序列无关,这极大简化了滤波器生成。
对于采样间隔的信道的特殊情形,Wiener滤波器成为w′=diag(σ1(1)2σ1(1)2+N0NP′,···,σQ(1)2σQ(1)2+N0NP′,···,σQ(NT)2σQ(NT)2+N0NP′).]]>对于非采样间隔的信道,Wiener滤波器的最优解并非对角矩阵。不过,常常可选择次优化(sub-optimum)单抽头滤波器。
此外,根据某些实现要求,本发明用于估计信道的方法可通过硬件或软件来实现。可使用数字存储介质来实现,特别是其上存储有电可读控制信号的盘或CD,它能够与可编程计算机系统协同工作,以实现本发明的方法。因此,本发明通常为在机器可读载体上存储有程序代码的计算机程序产品,当计算机程序产品在计算机上运行时,程序代码用于执行本发明的方法。因此,换而言之,本发明的方法为具有程序代码的计算机程序,当该计算机程序在计算机上运行时,执行本发明方法。
权利要求
1.一种用于估计一环境中从发射点至接收点的信道的设备,其中在该环境中存在至少两个彼此间隔开的发射点,每个发射点都具有与之相关的导频序列,其中导频序列彼此不同,该设备包括提供器(107),用于提供输入信号,该输入信号包括来自发射点的信号的叠加;乘法器(109),用于提供输入信号的多个复本,复本的数量等于发射点的数量;针对输入信号的每个复本的变换器(115,117;317,319),用于将该复本或由该复本得出的信号进行变换以获得变换的信号,该变换器(115,117;317,319)能够应用基于傅里叶变换的变换算法;以及针对每个变换信号的抽取器(119,121),用于抽取一部分变换信号,以获得要估计的信道的估计信道脉冲响应,其中,每个抽取器(119,121)能够仅从相关的变换器(115,117;317,319)接收变换信号。
2.根据权利要求1的设备,其中,导频序列在预定正交范围内彼此正交,并且彼此相移,所述设备还包括针对每个抽取器(119,121)的处理装置(211,213),用于在不知道任何导频序列的情况下处理相关抽取器(119,121)抽取的部分。
3.根据权利要求2的设备,其中,处理装置(211,213)包括估计滤波器(321,323),其中基于在不同时刻自相应抽取器(119,121)抽取的部分对估计滤波器(321,323)进行迭代调整,该估计滤波器(321,323)能够输出增强估计信道脉冲响应。
4.根据权利要求2的设备,其中,处理装置(211,213)包括零填充器(325,327),零填充器(325,327)用于将估计信道脉冲响应或增强估计信道脉冲响应零填充至预定长度。
5.根据权利要求4的设备,其中,处理装置(211,213)还包括变换器(329,331),变换器(329,331)用于对零填充的估计信道脉冲响应或零填充的增强估计信道脉冲响应进行变换,以输出要估计的信道的信道变换函数。
6.根据权利要求4的设备,其中,所述设备还包括频域窗口(313,315),用于在变换之前对每个复本或由复本得到的信号进行窗口化处理,以减小泄漏效应,并且所述设备还包括求逆窗口(333,335),用于对零填充的估计信道脉冲响应或增强估计信道脉冲响应进行窗口化处理,以减小信道变换函数中频域窗口(313,315)的影响。
7.根据上述任何一项权利要求的设备,其中,在乘法器(109)和变换器(115,117;317,319)之间连接有预乘法器(202,208;301,309),以产生由复本导出的信号,预乘法器(202,208;301,309)能够将输入信号预乘以与限定所要估计的信道的发射点相关的导频序列的复共轭版本,以获得预乘输入信号。
8.根据权利要求1的设备,其中,抽取器(119,121)能够从变换信号中抽取大于预定阈值的值。
9.一种用于估计一环境中从发射点至接收点的信道的设备,其中在该环境中存在至少两个彼此间隔开的发射点,每个发射点都具有与之相关的导频序列,其中导频序列彼此不同,该设备包括提供器(107),用于提供输入信号,输入信号包括来自发射点的信号的叠加;用于变换输入信号或输入信号复本以获得变换信号的变换器,该变换器能够应用基于傅里叶变换的变换算法;乘法器(109),用于提供变换信号的多个复本,复本数量等于发射点的数量;针对变换信号的每个复本的抽取器(119,121),用于抽取该变换信号复本的一部分,以获得要估计的信道的估计信道脉冲响应。
10.一种用于估计一环境中从发射点至接收点的信道的方法,其中在该环境中存在至少两个彼此间隔开的发射点,每个发射点都具有与之相关的导频序列,其中导频序列彼此不同,该方法包括以下步骤提供输入信号,所述输入信号包括来自发射点的信号的叠加;提供输入信号的多个复本,复本的数量等于发射点的数量;针对输入信号的每个复本,通过应用基于傅里叶变换的变换算法将该复本或者从该复本得出的信号进行变换,以获得变换的信号;以及针对每个变换的信号,抽取该变换信号的一部分,以获得要估计的信道的估计信道脉冲响应,其中仅接收一个相关变换信号。
11.一种用于估计一环境中从发射点至接收点的信道的方法,其中在该环境中存在至少两个彼此间隔开的发射点,每个发射点都具有与之相关的导频序列,其中导频序列彼此不同,该方法包括以下步骤提供输入信号,所述输入信号包括来自发射点的信号的叠加;通过应用基于傅里叶变换的变换算法,变换输入信号或者从输入信号得出的信号,以获得变换的信号;提供变换信号的多个复本,复本的数量等于发射点的数量;以及针对变换信号的每个复本,抽取该变换信号复本的一部分,以获得要估计的信道的估计信道脉冲响应。
12.一种具有程序代码的计算机程序,其中当该程序在计算机上运行时,该程序代码用于执行根据权利要求10或根据权利要求11的信道估计方法。
全文摘要
提供了一种用于在一环境中对从发射点至接收点的信道进行估计的设备,且在该环境中存在至少两个彼此间隔开的发射点,每个发射点都具有与之相关的导频序列,其中,导频序列彼此不同,该设备包括提供器(107),用于提供输入信号,输入信号包括来自发射点的信号的叠加;乘法器(109),用于提供输入信号的多个复本,复本的数量等于发射点的数量;针对输入信号的每个复本的变换器(115,117),用于将复本或由复本得出的信号进行变换以获得变换的信号,变换器(115,117)可应用基于傅里叶变换的变换算法;和针对每个变换信号的抽取器(119,121),用于抽取一部分变换信号,以获得对所要估计信道的估计信道脉冲响应,其中,每个抽取器(119,121)可仅从相关的变换器接收变换信号。
文档编号H04B3/00GK1643867SQ03807345
公开日2005年7月20日 申请日期2003年6月22日 优先权日2003年6月22日
发明者冈瑟尔·奥尔 申请人:都科摩欧洲通信技术研究所有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1