用于分组发送/接收的比特加扰的方法和设备的制作方法

文档序号:7600685阅读:88来源:国知局
专利名称:用于分组发送/接收的比特加扰的方法和设备的制作方法
技术领域
本发明一般涉及一种宽带码分多址(WCDMA)无线通信系统。具体说,本发明涉及一种在用于高速分组发送/接收的发射机/接收机的介质存取控制-高速(MAC-hs)层中用于执行比特加扰/解扰的方法和设备。
背景技术
移动通信系统已从它的最初发展阶段中的集中语音服务发展到用于提供数据服务和多媒体服务的高速、高质量无线分组数据传输。主要由3GPP(第三代伙伴计划)和3GPP2致力的高速下行链路分组接入(HSDPA)和1xEV-DV(演进数据和语音)的标准化工作是对发现2Mbps或更高速率、高质量无线数据分组传输的解决方案的努力的一种清楚的证据。第四代移动通信系统的目的在于提供更高速、更高质量的多媒体服务。
在无线通信中,无线电信道环境是高速、高质量数据服务的障碍。由于衰落导致的信号功率改变、屏蔽、由灵活移动和频繁的移动速度变化引起的多普勒效应、来自其他用户的干扰、和多径干扰以及附加的白高斯噪声(AWGN),使得无线电信道环境经常改变。因此得出以下结论为了提供高速无线数据分组服务,需要超过现有第2和3代移动通信系统技术的先进的技术来改善对信道环境的适应性。尽管在现有系统中采用的快速功率控制改善了对信道环境的适应性,但3GPP和3GPP2都致力于高速数据分组传输系统的标准化。两个标准普遍提出了自适应调制及编码方案(AMCS)和混合自动重复请求(HARQ)。
该AMCS是根据下行链路信道环境的改变而自适应地改变调制方案和编码率的一种方法。通常,用户设备(UE)测量下行链路信号的信噪比(SNR)并将它报告给节点B。该节点B然后基于该SNR信息而估计下行链路信道环境,并根据该估计而判决合适的调制方案和编码率。因此,使用AMCS的系统为靠近节点B的UE,即处于好信道状态的UE,应用高阶调制方案,如16QAM(正交幅度调制)或64QAM,和高编码率,如3/4。对于在小区边界的UE,即处于坏信道状态的UE,该系统应用低阶调制方案,如BPSK(二进制相移键控)、QPSK(正交psk)、或8PSK(8阶PSK),和低编码率,如1/2。相对于传统快速功率控制方法,该AMCS通过减小干扰而平均地提高系统性能。
HARQ是当在最初发送的分组中产生误差时,重发该分组以补偿该误差的方案。HARQ方案还能分为用于误差补偿的跟踪组合(CC)、全增量冗余(FIR)、和部分增量冗余(PIR)方法。
在误差补偿的CC方法中,初始发送的相同分组全部被重发。根据预定的方法,接收机组合该重发的分组和缓冲的最初发送的分组,由此增加输入到解码器的编码比特的可靠性,并因此获得整个系统性能增益。相同两个分组的组合给出重复编码的效果。因此,获得大约3分贝的平均性能增益。
误差补偿的FIR方法通过发送包括从信道编码器产生的奇偶校验比特的分组代替相同的最初发送的分组,来改善接收机的解码性能。该解码器使用新的奇偶校验比特以及初始发送信息。所引起的编码率的减小增加了解码性能。低编码率的性能增益高于由重复编码而获得的性能增益,这在编码理论中是公知的。因此,该FIR在性能增益方面,提供比CC好的性能。
与FIR不同,误差补偿的PIR方法在重发期间发送包括信息比特和新奇偶校验比特的数据分组。在解码期间,最初发送的信息比特与重发的信息比特组合,导致误差补偿的CC方法的效果,并且奇偶校验比特的使用导致误差补偿的FIR方法的效果。该PIR使用比FIR高的编码率。因此,在性能方面,该PIR通常位于FIR和CC之间。
尽管AMC和HARQ是增加对链路变化的适应性的独立技术,但它们的组合能大大的改善系统性能。即,在节点B的发射机根据下行链路信道状态而自适应地判决调制方案和用于信道编码器的编码率,并对应地发送数据分组。如果UE中的接收机解码数据分组失败,则请求重发。该节点B响应于重发请求,而以预定的HARQ方案重发预定的数据分组。
图1是用于高速分组数据发送的传统发射机的物理层配置的方框图。如图1所示,该发射机包括循环冗余校验(CRC)加法器102、比特加扰器104、码块分割器106、信道编码器108、HARQ功能块110、交织器112、星座重排器114、调制器116、控制器118、和发射天线120。
参考图1,从较高介质存取控制(MAC)层接收的传送块100在CRC加法器102中被附加上CRC码,并被提供给比特加扰器104。下面将描述传送块100的结构。
对于高速下行链路共用信道(HS-DSCH),在MAC层中产生的协议数据单元(PDU)包括MAC-hs报头和一个或多个MAC-hs服务数据单元(SDU)。值得注意的是,MAC-hs SDU等效于MAC-d PDU。对于一个发送时间间隔(TTI),只有一个MAC-hs PDU可发送给一个UE,并且该MAC-hs报头具有可变长度。在一个TTI中的MAC-hs SDU处于相同的重排队列中。
该比特加扰器104在每个比特的基础上使用预定初始值来对附加了CRC的传送块进行加扰。通过码块分割器106将所加扰的比特提供给信道编码器108。如果输入数据的大小超过可以输入到信道编码器108的最大比特数,则该码块分割器106使用该最大比特数对数据进行分割。
在对输入比特执行turbo编码之后,信道编码器108输出编码的比特,该编码的比特包括表示输入比特的系统部分和表示用于系统部分的误差校正的奇偶校验比特的奇偶校验部分。该信道编码器108(turbo编码器)108以至少一个编码率,如1/2、3/4等,对该输入比特进行编码。可替换地,该信道编码器108可具有1/6或1/5的母编码率,以便通过穿孔或重复来支持多个编码率。在该情况下,需要用于判决多个编码率之一的操作。
该HARQ功能块110包括所编码比特到预定数据速率的速率匹配操作。当编码比特数不等于通过空中发送的比特数时,通过编码比特的重复或穿孔来执行速率匹配。交织器112对经过速率匹配的编码比特进行交织。
该星座重排器114重排交织的比特,并且该调制器116以M-阶PSK或M-阶QAM的调制方案将重排的比特映射为调制符号。该调制符号通过发射天线120被发送。该星座重排器114区别交织比特的系统部分与奇偶校验部分,并将系统部分分配到高可靠性位置,而将奇偶校验部分分配到低可靠性位置。而且,该星座重排器114区别初始发送比特和重发比特,并将初始发送比特映射为具有低误差概率的调制符号,并将重发比特映射为具有高误差概率的调制符号。
同时,该控制器118根据当前的无线电信道状态而控制信道编码器108的编码率、HARQ功能块110的速率匹配、和调制器116的调制方案。在HSDPA无线通信系统的情况下,该控制器118支持AMCS。
参考图2,将描述用于高速分组数据接收的传统接收机的结构。如图2所示,该接收机包括接收天线200、电抗功率检测器(BPD)202、解调器204、星座重排器206、去交织器208、比特分集(decollection)缓冲器210、速率失配器(dematcher)212、编码块整合(desegmentation)缓冲器214、turbo解码器216、比特解扰器218、CRC校验器220、和数据缓冲器222。
参考图2,该BPD 202估计通过接收天线200接收的信号的导频对业务功率比。该解调器204基于估计的功率比而从输入符号序列中提取比特流。该星座重排器206将比特流重排,以输出重排的编码比特。该去交织器208与发射机中的交织器112的交织一致地对重排的编码比特进行去交织。将去交织的比特通过比特分集缓冲器210、速率失配器212、和编码块整合缓冲器214而施加到turbo解码器216的输入端。该turbo解码器216通过将接收的比特分离为系统部分和奇偶校验部分来提取信息比特。
在第三代通信系统中,该发射机在所有用户能接收的公共导频信道上发送预置的导频信号。该接收机使用该导频信号来估计信道特性,尤其是衰落。该估计的信道特性用于将由衰落引起失真的信号恢复为原始信号,并且也估计导频对业务功率比。
该导频对业务功率比估计是成功解调在较高阶调制方案,如16QAM或64QAM中调制的信号的重要过程。如果该发射机将该功率比通知接收机,就不需要该功率比估计。然而,在使用阶数等于或高于16QAM的调制方案的普通高速分组发送系统,如1xEV-DV或HSDPA中,接收机应该估计功率比以减轻信号负载。接收在接收机的功率比估计而不是接收通过信令发送的功率比,称之为电抗功率比检测。在发射机的发送功率不一致的情况下,在解调中使用导频对业务功率比可能引起问题。
下面将讨论发射机中的非均匀平均功率的情况。高阶调制符号具有不同的功率电平。在16QAM中,在沿着x和y轴具有同相(I)分量和正交相位(Q)分量的坐标平面中,四个接近原点(0,0)的内部符号的功率被指定为Pin=2A2。对于8个中间符号,Pmiddle=10A2,并且对于4个外部符号,Pouter=18A2。A表示在每个内部符号和轴之间的距离。因此,三类符号的平均功率的总和被指定为Ptotal=(2A2+10A2+18A2)/3=10A2。如果A是0.3162,则Ptotal=1。
假设在数据信道中发送的数据符号表示为Sd,并且把在导频信道中发送的导频符号表示为Sp。如果符号的功率是<S>,那么来自发射机的发送信号Tx表示为Tx=WdAdSd+WPApSp(1)在此W表示沃尔什扩展码,由此从导频信道中区分数据信道,A表示数据和导频信道的信道增益,并且S表示在分组中的业务数据符号和导频符号。该导频符号SP跟随在发射机和接收机之间的预置模式(pattern)。
该高速分组发送系统发送分组中的信号Tx,其中每个分组加载有多个时隙。一个时隙持续时间是0.667毫秒,并且每个时隙的符号数量依据时隙的扩展系数(SF)而改变。对于异步HSDPA,一个分组使用三个时隙,并且对于SF=16,每个分组中发送480个符号。
因此,由于一个调制符号包括四个比特,在16QAM中随机产生1920比特。在QPSK中,一个符号包括两个比特,并因而产生960个比特。如果为了发送480个符号,而均匀地产生120个内部符号、240个中间符号、和120个外部符号,则480个符号的平均功率<Si>是1。然而,在实际发送中不总是均匀地产生所有符号。在极端情况下,产生的1920个比特全是0,所有符号是A+jA内部符号,导致<Si>=0.2。该接收机也估计该平均功率是0.2而不是1,尽管不存在噪音或失真。相反,如果所有比特是1,则该符号是3A+j3A外部符号,并且<Si>是1.8。
下面将根据概率密度函数(PDF)来描述非均匀平均功率的特性。假设总的发送功率是1,然后在完全均匀地产生三类符号(内部符号、中间符号和外部符号)的情况下,总发送功率的90%(Ad2=0.9)或者业务信道的平均功率是0.9(P=Ad2<Si>=Ad2)。但是,业务信道通过m=0.9和σ=0.0232显示功率分布,其中m是平均功率,并且σ是标准偏差。
如果业务信道占据总发送功率的90%(Ad2=0.9),该平均符号功率<Si>是0.8,并且产生具有0.2功率(<N>=0.2)的噪音,则以普通电抗功率比检测方法来计算AWGN信道的接收功率。检测业务信道的累积平均值的方法可以表示为Rx=WdAdSd+WPApSp+N(2)在通过沃尔什恢复而分离导频信道之后,该功率剩余Rxd=AdSd+N (3)为了获得Ad,累积的平均功率被计算为P=Ad2<Sd>+<N> (4)
在理想情况下,当<Sd>是1,并且<N>是0时,由公式(4)可知P=Ad2=0.9。然而,如前面所述,如果<Sd>是0.9,并且<N>是0.2,则P=Ad2<Sd>+<N>=1.01。由于P≠Ad2,所以不能精确地获得Ad2。
如上所述,当在16QAM信号星座中均匀创建发送符号时,通过有效估计导频对业务功率比能估计精确的符号边界Ad。否则,不能精确估计该符号边界Ad,由此使得解调性能降级。估计该性能降低了1.0到1.5dB。
因此,使用比特加扰器104和比特解扰器218来解决非均匀发送功率的问题。该比特加扰器104以这样一种方式,即将集中在1或0上的非均匀输入比特转换为具有1和0的均匀分布的方式,操作具有预定初始值的输入比特。该比特解扰器218对所接收的比特执行比特加扰的逆过程,由此恢复原始比特。
关于接收机的解码,该turbo解码器216通过迭代解码而更精确地提取信息比特。然而,发生太多次迭代将导致解码延迟和功率消耗。因此,将该turbo解码器216的迭代解码限制为预定最大数目。然而,如果在最大数目迭代之前实现正常的数据恢复,则终止该迭代解码,使得大大减小了turbo解码器216的处理延迟和功率消耗。由此,对解码器输出的CRC校验可作为终止迭代解码的标准。
为了确定是否通过CRC校验终止该迭代解码,首先,所有码块必须包括CRC比特,以允许turbo解码器中的CRC校验。在HSDPA系统中部分满足该条件。当较高层传送块大小(TBS)短于或等于turbo编码的最大长度(即,5114)时,满足该条件。如果TBS长于5114,则该传送块被分割为多个码块,并且每个码块不能包括CRC。在该情况下,不满足上述条件。
第二,当确定是否通过CRC校验终止该迭代解码时,在传统系统中,接收机不能执行没有比特加扰的CRC校验,因为发射机在附加CRC之后执行比特加扰。因此,基于CRC校验的迭代解码终止是不可行的。为了在turbo解码器216中使用基于CRC校验的迭代解码终止方案,该比特加扰器218必须合并在turbo解码器216中。
然而,在turbo解码器216中包含比特解扰器218是不容易的。而且,在turbo解码器216与比特加扰器218分开的结构中,该turbo解码器216必须被改进以将比特解扰器218的输出反馈给turbo解码器216的输入。
因此,需要一种发送/接收系统,其中可以利用现有turbo解码器结构来应用基于CRC校验的迭代解码终止方案。

发明内容
本发明的目的是基本解决至少上述问题和/或缺点,并至少提供以下优点。因此,本发明的一个目的是在无线通信系统中提供一种使用基于CRC校验的迭代解码终止方案的方法和设备,而不修改turbo解码器的结构。
本发明的另一个目的是在无线通信系统中提供一种方法和设备,用于在将CRC附加到输入比特之前,执行比特加扰。
本发明的另一个目的是在无线通信系统中提供一种方法和设备,用于解扰输入的经过比特加扰的比特,以便可以在turbo解码器中使用基于CRC校验的迭代解码终止方案。
通过在无线通信系统中提供一种用于分组发送/接收的比特加扰方法和设备来实现上述目的。
根据本发明的一个方面,在使用HARQ(混合自动重复请求)和高阶调制方案的移动通信系统中发送分组数据的方法中,包含在传送块中的数据比特被比特加扰,并被附有误差校正码。该附加误差校正码的传送块在每个编码块的基础上被信道编码、调制和发送。
根据本发明的另一方面,在使用HARQ方案和高阶调制方案的移动通信系统中接收分组数据的方法中,与发射机中使用的调制方案一致地解调接收的信号,将解调数据转换为编码块,每个编码块被信道解码,并且输出数据比特。根据本发明一个方面的方法使用包含在数据比特中的误差校正码来确定在数据比特中是否产生误差,并且对该编码块进行迭代解码,直到确定没有检测到误差为止。如果确定没有检测到误差,则除了误差校正码的数据比特被比特加扰。


根据下面结合附图的详细描述,本发明的上述和其他目的、特征和优点将变得更清楚,其中图1是在传统移动通信系统中用于高速下行链路分组传输的发射机的方框图;图2是在传统移动通信系统中用于高速下行链路分组传输的接收机的方框图;图3是根据本发明一个实施例在移动通信系统中用于高速下行链路分组传输的发射机的方框图;图4图示了根据本发明一个实施例的用于普通高速下行链路分组传输的MAC-hs PDU的结构;图5图示了根据本发明一个实施例的用于高速下行链路分组传输的MAC-hs PDU和发射机中加扰器的详细结构;图6示范性地图示了根据本发明一个实施例在CDMA移动通信系统中的16QAM信号星座;图7是根据本发明一个实施例在移动通信系统中用于高速下行链路分组传输的接收机的方框图;和图8图示了根据本发明一个实施例的在接收机中接收的用于高速下行链路分组传输的MAC-hs PDU和接收机中解扰器的详细结构。
具体实施例方式
下面将参考附图描述本发明的示范实施例。在下面的描述中,为了简明,公知的功能或结构没有进行详细描述。
根据本发明,发射机在附加CRC之前执行比特加扰,以便接收机可使用CRC校验作为在无线通信系统中终止迭代解码的标准。对经过CRC校验的比特执行比特解扰。
图3是根据本发明一个实施例的用于高速分组数据发送的发射机的方框图。如图3所示,该发射机包括比特加扰器302、CRC加法器304、码块分割器306、信道编码器308、HARQ功能块310、交织器312、星座重排器314、调制器316、控制器318、和发射天线320。尽管示出了比特加扰器302和其他部件在同一层上,但是根据本发明的一个实施例,比特加扰器302可以在更高MAC层上,而其他部件在物理层上。
参考图3,该MAC层通过比特加扰器302对传送块的比特进行加扰。然后该CRC加法器304将CRC附加到该加扰的传送块,并将其提供给码块分割器306。下面将更详细地描述该加扰的传送块。
如图4所示,对于HS-DSCH,在MAC层中产生的PDU包括MAC-hs报头和一个或多个MAC-hs SDU。在此,MAC-hs SDU等效于MAC-d PDU。对于一个TTI,只有一个MAC-hs PDU可发送给一个UE,并且该MAC-hs报头具有可变长度。在一个TTI中的MAC-hs SDU处于相同的重排队列中。
MAC-hs报头包括用于HS-DSCH的MAC PDU参数。该MAC PDU参数如下。
□版本标记(VF)这是表示MAC-hs格式化的格式可以扩展的一个比特标记。在当前协议版本中该VF必须设为0,而不是1。
□队列标识符(队列ID)该队列ID识别独立于缓冲器的重排队列,该缓冲器在接收机中管理另一重排队列中的数据。该字段是3比特。
□发送序列号(TSN)该TSN是HS-DSCH的发送序列号。它用于重排,以支持连续发送到更高层。该字段是6比特。
□尺寸索引标识符(SID)该SID表示连续MAC-d PDU的大小。SID表示在更高层中创建的MAC-d PDU的大小,并且它独立于队列ID。该SID字段是3比特。
□NN表示相同大小的连续MAC-d PDU的数目。它是7比特。在FTD(频分双工)模式中,对于一个TTI可以发送最多70个PDU。
□F该字段是表示跟随着SID或当前SID是最后一个的标记。如果F字段设置为0,它被SID跟随。如果它被设置为1,则不再有SID,并且跟随着MAC-d PDU。
在物理信道上发送如此配置的传送块之前,该MAC-hs层通过比特加扰器302以对发射机和接收机公知的方法对该传送块进行加扰,由此防止HS-PDSCH(高速物理下行链路共用信道)比特的不均匀发送。
在第三代通信系统中,该发射机在所有用户能接收的公共导频信道上发送预置的导频信号,并且接收机使用该导频信号估计信道特性,尤其是衰落。该估计的信道特性用于将由衰落引起失真的信号恢复为正常信号,并且也估计导频对业务功率比。
该导频对业务功率比估计对于以高阶调制方案,如16QAM或64QAM调制的信号的解调是一个必要过程。如果该发射机将该功率比告诉接收机,就不需要该功率比估计,然而,在使用阶数等于或高于16QAM的调制方案的普通高速分组发送系统,如1xEV-DV或HSDPA中,接收机应该估计功率比以减轻信号负载。接收在接收机的功率比估计代替接收用信令发送的功率比,称之为电抗功率比检测。在发射机的发送功率不均匀的情况下,在解调中使用导频对业务功率比可引起问题。
如果在16QAM信号星座中均匀创建发送符号,则能够有效地估计导频对业务功率比。否则,产生全1或全0的符号的估计误差,导致性能降级。估计性能降低1.0到1.5dB。因此,比特加扰器302用于克服在高阶调制方案中的非均匀发送功率。
图5详细图示了根据本发明一个实施例的比特加扰器302的结构。参考图5,假设给比特加扰器302的传送块的B输入比特表示为bim,1、bim,2、bim,3、...、bim,B,并且加扰的比特表示为dim,1、dim,2、dim,3、...、dim,B。该输入比特(传送块)530包括MAC-hs报头510和MAC-hs有效负载520。该MAC-hs报头510包括VF、队列ID、TSN、SID、N字段、F标记,并且MAC-hs有效负载520包括至少一个MAC-hs SDU。
移位寄存器540存储预定的16比特初始值g={g1,g2,...,g16}。第一加法器550对在移位寄存器值中选定的预定数目的值求和,并将该总和反馈作为移位寄存器540的最高有效位(MSB)值。第二加法器560对输入比特530和第一加法器550的输出进行求和,并输出该总和作为加扰的比特。该比特加扰可以表示为dim,k=(bim,k+yk)mod2k(5)其中k是1和B之间的自然数,并且yk规定为yk=0,-15<k<1yk=1,r=1yk=(Σx=116gx·yk-x)mod2,1<k≤B]]>其中初始值g={g1,g2,...,g16}={0,0,0,0,0,0,0,0,0,0,1,0,1,1,0,1}。
当集中在1或0上的非均匀信号被输入时,上述比特加扰通过加扰固有的功能将输入信号转换为均匀信号。
如这里所述,提出了一种对于所有UE使用预定加扰码g对高速分组数据进行比特加扰的发送设备和方法。然而,这里所描述的仅仅是示范性应用,并且本领域技术人员应当理解通过以各种其他方式应用创造性的比特加扰,如在对于每个UE在比特加扰中使用UE专用比特加扰码,可实现其他系统性能改善。例如,UE专用比特加扰码可以是UE ID。
返回来参考图3,如果附加CRC的传送块超过用于信道编码器输入的最大比特数,则该码块分割器106将传送块分割为预定大小的块。例如,信道编码器108能接收的最大比特数对于传统编码是504,而对于turbo编码是5114。
信道编码器308以预定编码率(例如,1/2或3/4)对输入比特进行编码。如果信道编码器308使用1/3、1/6或1/5的母码通过穿孔或重复而支持多个编码率,则它需要选择多个编码率中的一个。
在实际的物理通信系统中,不可能从发射机接收没有任何失真或噪音的信号。尤其是,在通过无线网络发送/接收信号的无线通信系统中,该系统比有线网络遭受更严重的失真或噪音的影响。对于该问题的一个有效解决方案是误差校正编码。该误差校正编码是通过发送包括系统部分和得自系统部分的奇偶校验部分的编码比特来补偿失真或噪音影响的方案。该系统部分包括要发送的信息比特,并且奇偶校验部分包括在接收机解码中用于校正信息比特的发送误差的奇偶校验比特。
下一代的移动通信系统需要更强大的信道编码技术,以更可靠地发送高速多媒体数据。该使用信道编码器的信道编码技术即使在低SNR下,在比特误差率(BER)方面也提供接近香农极限的性能。
在HARQ功能块310中,对编码比特进行速率匹配。在编码比特数不等于通过空中发送的比特数的情况下,通过重复和穿孔所编码的比特来执行速率匹配。该交织器312对速率匹配的编码比特进行交织。该交织的目的是为了使得在数据发送期间由突发误差(burst errors)引起的数据丢失最小化。
该星座重排器314重排该交织编码的比特。该调制器316以M-阶PSK或M-阶QAM将重排的比特映射为调制符号,并通过发射天线320而发送它们。该星座重排器314将交织编码的比特分离为系统部分与奇偶校验部分,并将系统部分分配到高可靠性位置,而将奇偶校验部分分配到低可靠性位置。而且,该星座重排器314区别重发比特和初始发送比特,并将初始发送比特映射为具有低误差概率的调制符号,而将重发比特映射为具有高误差概率的调制符号。
该控制器318根据当前无线电信道状态而控制信道编码器308的编码率、该HARQ功能块310的速率匹配、以及调制器316的调制方案。在HSDPA无线通信系统中,该控制器318支持AMCS。
在发射机中,在来自信道编码器的编码比特中,在系统部分和奇偶校验部分之间没有区别。然而,该系统比特和奇偶校验比特在优先级上不同。当以特定误差率在发送数据中产生误差时,在奇偶校验比特而不是系统比特中产生误差,有利于接收机的解码。这可以通过以下事实来解释,即系统比特是实际的信息比特,而奇偶校验比特是附加用于在解码中补偿发送误差的冗余比特。因此,该系统比特在高可靠性比特位置上被发送,而奇偶校验比特在低可靠性位置上被发送,以便减小系统比特的误差概率,并由此提高系统性能。
与根据比特可靠性的系统部分和奇偶校验部分的发送一起,在本发明的另一个示范实施例中,有可能是,在重发时,在编码比特中交换系统部分和奇偶校验部分,或者通过反转该奇偶校验部分而将该编码比特映射为与初始发送不同的区域中的调制符号,或在分组中重排该编码比特。这些操作可通过星座重排器314执行。
将详细描述图3的星座重排器314的操作。在16QAM中,四个编码比特被映射到16个有效信号点中的一个。图6图示了16QAM信号星座的范例。如图6所示,每个信号点映射为四个编码比特。
参考图6,16个信号点可分为3个区,区I具有最高误差概率,区III具有最低误差概率,而区II具有中间误差概率。因此,可以看出在区I的信号点6、7、10和11中的符号具有比其他区中的信号点高的误差概率。在差环境(例如,高误差概率区域)中的符号的连续发送能导致系统性能的降级。通过反转重发分组的比特可提高系统性能,并由此在与初始发送分组不同的区域中发送重发分组。
M阶调制符号包括log2M个比特。在M阶调制符号中,比特的可靠性不同。例如,16QAM符号对应于四个编码比特。前两比特被映射为高可靠性比特,而后两个比特被映射为低可靠性比特。如果使用相同可靠性(即,它们中的一些具有高可靠性,而其他一些具有低可靠性)来连续发送重发比特,则比特的特定部分的误差概率增加。
因此,该星座重排器314在重发中将输入比特偏移预定比特数目,从而以低可靠性发送的比特能够以高可靠性重发。这反映了turbo解码器均匀输入比特的对数似然比(LLR),因此提高了解码性能。在上述操作之后,通过发射天线320发送该调制符号。
图7是根据本发明一个实施例的用于高速分组接收的接收机的方框图。如图7所示,该接收机包括接收天线700、BPD 702、解调器704、星座重排器706、去交织器708、比特分集缓冲器710、速率失配器712、码块整合缓冲器714、turbo解码器716、CRC校验器718、数据缓冲器720、和比特解扰器722。
参考图7,该BPD 202估计通过接收天线700接收的信号的导频对业务功率比。该解调器704基于该估计的功率比而从输入符号序列中提取比特流。该星座重排器706重排比特流,以输出编码比特。该去交织器708与发射机中的交织器312的交织一致地对编码比特进行去交织。将去交织的比特通过比特分集缓冲器710、速率失配器712、和码块整合缓冲器714而施加到turbo解码器716的输入端。该turbo解码器716通过将接收的比特分离为系统部分和奇偶校验部分来提取信息比特。
该turbo解码器716通过迭代解码输出该信息比特。作为终止该迭代解码的标准,可以使用最大数目解码迭代次数、最大似然比、或CRC校验。传统地,对附加CRC的信号执行比特加扰,从而该接收机在比特解扰之前不能使用公知的CRC比特执行CRC校验。因此,该CRC校验不能用作终止解码迭代的标准。相反,本发明的实施例能在每次解码迭代时执行CRC校验,使得CRC校验可以用作终止迭代解码的标准。而且,根据本发明的实施例,考虑到使用CRC校验作为标准的turbo解码器716的特性,可以依照设计者的选择,在没有CRC校验器718的情况下执行CRC校验。
该CRC校验器718通过校验信息比特的CRC而确定肯定/否定(ACK/NACK)。在ACK的情况下,该解码比特缓存在数据缓冲器720中,并且与较高层(即MAC-hs层)的比特加扰器302的比特加扰一致地在比特解扰器722进行比特解扰。
通过对于物理层使用基于CRC校验的迭代解码终止方案,本发明的接收机检测信号而不需要更多的解码迭代次数。因此,在接收机中降低功率消耗并且增加吞吐量。
图8是图7所示的接收机中的比特解扰器722的详细方框图。该比特解扰器722操作如下。
参考图8,移位寄存器840存储预定的初始值g={g1,g2,...,g16}。第一加法器850对移位寄存器值中选定的预定数量的值求和,并反馈该总和作为移位寄存器840的MSB值。第二加法器860对从物理层接收的比特与第一加法器850的输出进行求和,并输出该总和作为解扰的比特(或传送块)830。
在本发明的实施例中,对所有UE使用预定的加扰码g进行高速分组数据的比特加扰。这仅仅是示范性应用,并且本领域技术人员应当理解通过以各种方式应用创造性的比特加扰,如在对于每个UE在比特加扰中使用UE专用比特加扰码,可实现其他系统性能改善。例如,该UE专用比特加扰码可以是UE ID。
如上所述,该解扰比特830包括MAC-hs报头810和MAC-hs有效负载820。该MAC-hs报头810包括VF、队列ID、TSN、SID、N字段,F标记,并且MAC-hs有效负载820包括至少一个MAC-hs SDU。
从使用上述本发明的实施例中产生若干优点。对于在WCDMA无线通信系统中的高速分组数据发送/接收,本发明的实施例可以在CRC附加之前执行比特加扰以解决高阶调制中包含的非均匀发送功率问题,并可在CRC校验之后执行比特解扰。这能够根据CRC校验终止turbo解码器的迭代解码。因此,在接收机中降低功率消耗并增加吞吐量。
尽管参照其特定优选实施例而示出并描述了本发明,但本领域的普通技术人员应当理解,其中可作出形式和细节上的各种改变,而不背离由所附权利要求限定的本发明的精髓和范围。
权利要求
1.一种使用混合自动重发请求(HARQ)方案和高阶调制方案在移动通信系统中发送分组数据的方法,包括对包含在传送块中的多个数据比特进行比特加扰;对经过比特加扰的传送块附加误差校正码;以每个编码块为基础,对附加了误差校正码的传送块进行信道编码;和对经过信道编码的传送块进行调制,并发送该调制后的传送块。
2.根据权利要求1的方法,其中比特加扰的步骤包括使用预定的公共加扰码对数据比特进行比特加扰。
3.根据权利要求1的方法,其中比特加扰的步骤包括使用预定的用户设备(UE)专用加扰码对数据比特进行比特加扰。
4.根据权利要求1的方法,其中比特加扰步骤包括在第一求和装置中对初始值的预定数量的选定值进行求和;将初始值的预定数量的选定值的总和反馈给移位寄存器装置的最高有效位;在第二求和装置中对传送块与初始值的预定数量的选定值的总和进行求和;对移位寄存器装置的比特进行移位,并将预定数量的选定值从移位寄存器装置馈送给第一求和装置;和对传送块与第一求和装置的总和进行连续求和以输出加扰比特。
5.一种使用混合自动重发请求(HARQ)方案和高阶调制方案在移动通信系统中发送分组数据的设备,包括比特加扰器,用于对包含在传送块中的数据比特进行比特加扰;误差校正码添加器,用于向比特加扰的传送块附加误差校正码;信道编码器,用于在每个编码块的基础上,对附加误差校正码的传送块进行信道编码;和调制器,用于调制经过信道编码的传送块。
6.根据权利要求5的设备,其中比特加扰器使用预定的公共加扰码对数据比特进行比特加扰。
7.根据权利要求5的设备,其中比特加扰器使用预定的用户设备(UE)专用加扰码对数据比特进行比特加扰。
8.根据权利要求5的设备,其中比特加扰器包括移位寄存器装置,其最初加载有一组选定值;第一求和装置,用于对寄存器装置的预定数量的比特进行求和,并将第一总和输出给移位寄存器装置的最高有效位;第二求和装置,用于对第一求和装置的输出和传送块进行求和。
9.一种使用混合自动重发请求(HARQ)方案和高阶调制方案在移动通信系统中接收分组数据的方法,包括与发射机中使用的调制方案一致地解调所接收的信号;将解调数据转换为至少一个或多个编码块,对所述至少一个或多个编码块中的每一个进行信道解码,并输出多个数据比特;使用包含在数据比特中的误差校正码确定是否在多个数据比特中发生误差,并迭代解码该编码块直到在确定中没有检测到误差为止;和如果在确定中没有检测到误差,则对除了误差校正码之外的多个数据比特进行比特解扰。
10.根据权利要求9的方法,其中比特解扰步骤包括在第二求和装置中接收多个数据比特;在第一求和装置中对存储在移位寄存器装置中的初始值的预定数量的选定值进行求和;在第二求和装置中对多个数据比特中的第一比特和初始值的预定数量的选定值的第一总和进行求和,以输出第一解扰比特;将比特寄存器的预定数量的选定值的总和输出给移位寄存器装置的最高有效位;对移位寄存器装置的比特进行移位,并将预定数量的选定值从移位寄存器装置馈送给第一求和装置;和对第二求和装置中接收的多个数据比特与来自第一求和装置的总和进行连续求和,以输出解扰的数据比特。
11.一种使用混合自动重发请求(HARQ)方案和高阶调制方案在移动通信系统中接收分组数据的设备,包括解调器,用于与发射机中使用的调制方案一致地解调所接收的信号;信道解码器,用于将解调数据转换为编码块,对每个编码块进行信道解码,输出多个数据比特,并且迭代解码该编码块直到在编码块中检测不到误差为止;误差校验器,用于使用包含在数据比特中的误差校正码来确定是否在多个数据比特中发生误差,并将该确定结果提供给信道解码器;和比特解扰器,用于如果没有检测到误差,则对除了误差校正码之外的多个数据比特进行比特解扰。
12.根据权利要求11的设备,其中比特解扰器包括移位寄存器装置,其最初加载有一组选定值;第一求和装置,用于对移位寄存器装置的预定数量的比特进行求和,并将第一总和输出给比特移位寄存器的最高有效位;和第二求和装置,用于对第一求和装置的输出与接收的多个数据比特进行求和。
全文摘要
提供了一种在无线通信系统中用于分组发送/接收的比特加扰方法和设备。发射机在附加CRC之前执行比特加扰,并且接收机在CRC校验之后执行比特解扰。这能根据CRC校验终止在turbo解码器的迭代解码。因此,在接收机中降低功耗并增加吞吐量。
文档编号H04L1/16GK1645782SQ20041009974
公开日2005年7月27日 申请日期2004年11月15日 优先权日2003年11月13日
发明者金鲁善, 金宪基, 崔镇圭, 郑惠京 申请人:三星电子株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1